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 

Abstract— In this paper we introduce a simple and effective 

method for substantially reducing the spot wandering and 

scattering effects in the free space optical (FSO) communications 

using a spherical concave mirror (SCM). The advantages of using 

SCMs for focusing the light onto a small area photodetector (PD) 

are the high efficiency in collecting income scattered light beam 

in a turbulence channel and independency between the position 

of the SCM focal point and the fluctuations of the refractive 

index of the channel. The proposed method is experimentally 

evaluated in the controlled turbulence environment for a 

propagation distance up to 104 m. The results show that SCM 

can effectively compensate the optical spot scattering and 

wandering effect thus improving performance of the FSO system.  

 
Index Terms— FSO link, air turbulence, laser beams 

scattering and wandering, concave spherical mirrors 

 

I. INTRODUCTION 

ompared to the radio frequency based technologies the 

emerging free space optical communications system 

offers numerous advantageous including license free 

operation, high data rates, high directionality (i.e. high 

security) and lower power consumption when using a highly 

directional laser beam for point-to-point links [1, 2]. However, 

the FSO link performance is highly susceptible to the weather 

condition  [3]. Fog, aerosol, turbulence, and pointing error 

affect the link performance in a number of ways, with fog 

being the biggest problem mainly resulting in high optical 

attenuation. The atmospheric turbulences and building sway 

will affect the optical spot size at the receiver, thus making 

detection and tracking a challenging task. 

The atmospheric turbulences cause intensity fluctuation and 

beam wandering due to variation of the refraction index 

between the different heated air masses [4-6]. The influence of 
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the air turbulence on the laser beam diverging angle has been 

extensively studied by means of mathematical modelling [6-

9]. In [10, 11] the relation between the link length and the spot 

aperture as well as the intensity fluctuation was 

experimentally investigated. 

  In order to improve the FSO link performance; a number of 

schemes have been proposed including (i) modulation 

schemes [5, 12, 13], (ii) channel coding [14]; (ii) automatic 

beam tracking for building swaying; and (iii) multiple 

transmitters and receivers for fading effects caused by the 

atmospheric turbulence [15, 16]. Alternatively, a fast steering 

mirror (FSM) can be used to dynamically direct the light 

towards the receiver [17]. FSM uses a flat mirror to correct the 

beam propagating path. This method, however, is unable to 

compensate for the laser beam scattering effects. FSM is also 

complex to implement because of the position-sensing 

detector and the associated control module. The simplest 

method to compensate for the scintillation effect is to use the 

aperture averaging technology in which a concentrating lens 

with a radius greater than the transverse coherence distance 

can effectively reduce the turbulence effect [2]. 

The main objective of this paper is to use a SCM at the 

receiver side of an FSO link to focus the incoming scattered 

laser beams onto a small area photodetector (PD) in order to 

mitigate the beam scattering and wandering effects. This 

method is simple and induces a minimum optical power loss. 

We have devised an experimental set up to demonstrate the 

potential ability of a SCM to compensate for turbulence effect. 

The maximum length of the optical link was 104 m and 

turbulence was generated using a number of heaters and fans 

positioned along the propagation path. The rest of this paper is 

organized as follows: the system analysis and experimental 

setup are introduced in Sections II and III, respectively. 

Results are presented in Section IV. Finally, the conclusions 

are given in Section V.  

II. METHOD 

The atmospheric turbulence affects the laser beam trajectory 

by refractions, as a result of light propagation through air 

masses with different temperatures (i.e. different refractive 

indices). The optical spot displacement from its normal 

position in the receiver plane is a function of the refraction 

indices of the propagation channel (i.e. air). The maximum 

amplitude of the spot wandering can be estimated using the 

resultant refraction index of the turbulence taking into account 
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the temperature of the air as light propagates through it. The 

detailed evaluation of the laser beam trajectory which is 

determined by the distribution, size and temperatures of the air 

masses is not the goal of this paper.  

A. Compensating the LASER beam trajectory perturbations 

In FSO links, the scintillation and beam wandering result in 

a high outage probability. The scintillation induced can be 

reduced significantly using the aperture averaging technology 

where the receiver area is greater than the transverse 

coherence distance. For the aperture averaging, instead of 

using a large area PD, a large SCM together with a small area 

PD located close to the focal point can be used, as shown in 

Fig. 1. 

The distance dSF between the PD and the mirror focal point 

varies with the distance between the light source and the 

mirror. The expression of dSF can be deduced using the 

drawing Fig. 2 where θ is the beam incidence angle, r is the 

mirror curvature radius and l represents the normal distance 

between the light source and the mirror. 

For very long optical links comparing to the mirror diameter 

the beam incidence angle is θ ≈ 0 that implies tgθ ≈ θ. Thus, 

starting from the expression x
tg
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The distance between the mirror focal point F and the 

maximum light intensity point S is defined as:  
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Therefore, when the light is propagating from a light source 

towards a SCM, the maximum intensity of reflected beam is 

situated on the SCM normal axis at distance from the SCM 

focal point is defined by: 
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          (5) 

Assuming that all the light beams from the point source L 

pass through the point S, the PD can be located at this point 

where the spot area is at its minimum. However, for the 

outdoor FSO communications where the propagation distances 

are in the order of hundreds of meters to kilometres, light 

beams are almost parallel. Hence, 0  which implies that 

0SFd . Thus, for longer propagation distances the PD can 

readily be positioned in the focal point of the SCM.  

B. Minimum concave mirror radius 

The atmospheric turbulence alters the laser beams 

trajectories by multiple refractions. The resultant refractions 

and the volume of the air mass which create the turbulence 

give the magnitude of light spot displacement from normal 

position in the receiver plane. In order to estimate the spot 

maximum displacement, we considered one of the less 

favourable cases where the beam trajectory is affected by the 

turbulence near the transmitter as shown in Fig. 3. 

The light trajectory in the non-turbulent environment is 

perpendicular to the centre of the concave mirror. The distance  

l is measured on the normal axis of the SCM between T where 

the light escapes from turbulence and M. The amplitude of the 

spot wandering that increases with the distance l is denoted by 

d. We chose this setup for estimating the minimum radius of 

the SCM because under the same turbulence conditions the 

spot wandering amplitude varies around the maximum value. 

According to Fig. 3 and using the geometrical rules the 

following equations can be written: 
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can be rewritten as:   

 
Fig. 1. Light reflection from a spherical concave mirror. The mirror focuses 

the incoming beams from light source L to the point S where the receiver 

photodiode is placed. Point S is at distance dSF from the mirror focal point F. 
 

  
Fig. 2. The position of the point S related to the focal point F of a spherical 
concave mirror whose curvature centre is C. The trajectory of the incoming 

beam from point P which is parallel with the mirror normal axis is compared 

with the trajectory of the beam generated by point source L. 
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The distance d  is determined by solving (8), which is 

given by:  
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From (9) and (10), we deduced the spot displacement from 

the centre on a plane surface due to difference in the refractive 

indices defined as: 
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Since (11) shows that the light refraction depends on k  (i.e. 

the refractive indices of the two adjacent air masses) but not 

on the beam incidence angle, then we can consider 
4
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The maximum ratio 
maxk  between the refractive indices of 

two adjacent air volumes with different temperatures gives the 

maximum spot displacement denoted by 
maxd . 

In order to maintain the FSO link stability, all the beams 

refracted by the turbulent environment should propagate 

towards the mirror surface. For such beams the resultant ratio 

between refractive indices must satisfy the condition 
maxkk 

for the constant value of l. This implies that the SCM radius 

cr  must be greater than 
maxd . In order to determine the 

minimum radius of SCM we need to estimate the value of 

maxk , which is the ratio of the refractive indices of the air 

mass that the laser beam is propagating through it. 

III. EXPERIMENTAL SETUP 

In order to demonstrate the potential of the SCM in 

compensating for the laser beam scattering and wandering, we 

have set up an indoor experimental test bed, which is 

described in this section.  

A. Determination of the concave mirror radius 

Using (12) and the results reported in [3] where the 

expression of the variation of spot wandering radius with the 

temperature difference T  is given, we can estimate the 

maximum amplitude of the spot wandering for our 

experiment. The results presented in [3] showed that the 

maximum spot wandering is ~139 image pixels (~0.486 mm) 

when the laser beam propagates a distance of 0.5 m under the 

strong turbulence condition.  The maximum level of the 

turbulence was obtained when the temperature difference 

between the turbulent zone and the surrounding environment 

was 100 Kelvin [3]. We used these results to estimate the 

maximum resultant ratio maxk  that gives the spot displacement 

maxd  experimentally determined in [3]. For simplicity, the 

solution of (12) was estimated using MATLAB
TM

. Thus, for 

5.0l m and 486.0max d mm (experimentally determined in 

[3] for 100T K), we obtained 00094.1max k . Because the 

maximum temperature difference was less than 100 K and we 

made the assumption that maxkk   for experimental purposes 

(12) is monotonic for 0k  and the spot wandering amplitude 

maxdd   for maxkk  . This allows us to calculate the 

maximum amplitude of the spot wandering 4.97max d mm 

for 00094.1max k  and 104l m. We choose the SCM radius 

4.97max  drc mm to ensure that beams refracted by the 

turbulent environment propagate towards SCM and are 

collected by SCM. 

 
Fig. 3. Light resultant refraction at the edge of a turbulent environment which 

encloses the light transmitter; the minimum concave mirror radius rc can be 

determined when the maximum ratio between refractive indexes 𝑠𝑖𝑛𝜃2/𝑠𝑖𝑛𝜃1 
is known. 
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B. Optical arrangements 

The experiment was performed in a controlled turbulent 

environment with a propagation channel length of 28 m. We 

used both visible and infrared light sources (Tx) and a single 

receiver (Rx). The Rx is placed on the focal point of SCM to 

ensure harvesting maximum optical power in the absence of 

turbulence. The propagation distances of 52 m and 104 m 

were achieved by means of single and three reflections of the 

laser beam within the channel, respectively, seen in Fig. 5. 

Table I presents the critical parameters for the optical 

arrangement shown in Fig. 5 and for the configuration of the 

turbulence zones shown in Fig. 8. For an easy link alignment, 

visible wavelengths of 543 nm and 633 was used for the 

104 m link set up and 633 nm and 830 nm wavelengths for the 

52 m link. The visible light source (He-Ne gas laser) was 

modulated externally at 2 Kbit/s using an optical chopper. The 

830 nm infrared laser source was intensity modulated using 

pseudorandom binary sequence (PRBS) with on-off keying at 

a data rate of 10 Mbit/s. Note that the turbulence effect does 

not depend on the data rate and hence less focus is been given 

on the data rate. For all wavelengths, the received digital data 

was recorded using a digital oscilloscope Tektronix 

TDS-2012. 

Fig. 6 shows the beam spot size and shape in each point of 

reflection in the mirrors FM1, FM2 and SCM for the 543 nm. 

These spots are captured in a non-turbulent environment.The 

images (a) and (c) present the spot size before the first and the 

third reflections at FM1, the image (b) represents the spot 

before the second reflection at FM2 and the image (d) shows 

the spot size and shape at SCM. For being able to compare the 

spot sizes from different pictures, a black circle was drawn on 

the screen which allowed us to adjust the images zoom.  

Fig. 7 shows the picture of the scattered laser spot (left-hand 

side) and focused laser spot taken in front of the receiver 

(right-hand side) that was taken by placing the screen in front 

of the concave mirror at 104 m from the light source. Note that 

both images have the same scale thus illustrating the focusing 

power of the SCM. 

 
Fig. 5. Optical arrangement for evaluating the ability of the SCM to 

compensate the turbulence effect on laser beams propagation at 104 m. The 
laser beam that passes through the collimation arrangement (CA) is reflected 

twice in the flat mirror 1 (FM1) and one time in the flat mirror 2 (FM2). At 

the receiver side the spot is focused by the SCM to the receiver Rx. 
 

 
 

Fig. 6. Spot sizes and scattering at different points along the light 
propagation path for wavelength 543 nm (green) without turbulence; (a) and 

(c) 1st and the 3rd reflections at FM1; (b) reflection from FM2; and (d) 

reflection from SCM. 
 

 
 

 Fig. 7. Scattered spot at 104 m due to turbulence for 633 nm wavelength 

(left) and focused spot on the PD (top right); both images have the same 
scale which implies that they have similar number of pixels per mm2. 

 

 
Fig 8. The link set up for assessing the FSO performance under the 

turbulence condition.  

TABLE I 

DISTANCES AND DIMENSIONS FOR THE OPTICAL ARRANGEMENT 

Symbol Type Value (m) 

l1 transmitter – FM1 distance  25±0.1 

l2 FM1 – CM distance  26.5±0.1 

l3 
FM1 – FM2 distance  25.5±0.1 

c Collimation arrangement length  0.6 

d1 Inter-reflection distance  0.18 

d2 Inter-reflection distance  0.18 

d3 
Inter-reflection distance  0.3 

fc Concave mirror focal distance  1.22 

rc Concave mirror radius 0.165 
x0 Laser - turbulence zone Z1 distance  2 

x1 Distance between turbulence zones Z1 – Z2  6 

x2 Distance between turbulence zones Z2 – Z3  12 

x3 Turbulence Z3 – FM1  6.5 
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C. Generation of artificial turbulence  

The turbulence is generated by using a number of heaters 

and fans positioned along the propagation path Z1, Z2, and Z3 

between the transmitter (Tx) and the receiver to ensure a 

temperature difference of ~9
o 

C, see Fig. 8. We monitored the 

temperatures T1, T2 and T3 at positions Z1, Z2 and FM1, 

respectively.  

D. Characterization of channel performance  

At the receiver, the regenerated electrical signal is sampled 

and stored using a real-time digital oscilloscope for further 

analysis. The Q-factor and the scintillation index for the 

received signal are determined using: 

LH

LH vv
Q

 


 , 

1
2

2

1 





I

I
 ,        (13) 

where Hv and Lv  are the mean received voltages and H  and 

L  are the standard deviations for the ‘high’ and ‘low’ level 

signals, respectively, I  is the irradiance of the optical wave in 

the presence of turbulence and   denote an ensemble 

average. In a weak turbulence regime, the scintillation index is 

proportional to Rytov variance. 

IV. RESULTS 

The performance of the FSO link using a concave mirror at 

the receiver side was evaluated in the absence and presence of 

turbulence. In order to validate the effectiveness of the 

proposed scheme, we have measured Rytov variances and the 

Q-factors of the received signal with and without turbulence. 

The Q-factor is estimated using eye diagrams of the received 

10 Mbps OOK-NRZ signal with and without turbulence and 

SCM, as shown in Fig. 9.  

The eye-diagrams clearly illustrate the effectiveness of the 

SCM as shown in Fig. 9. The Rytov variance decreases from 

0.2614 to a negligible value of 0.0006 for the system without 

and with the mirror, respectively. The Q-factor drops from a 

value of 12 to 10 in the absence and presence of turbulence, 

respectively. However, the Q-factor drops from ~ 11 in the 

absence of turbulence to < 2 in the presence of the turbulence 

without mirror. Negating the optical gain of mirror, the 

improvement is significant and the turbulence has very little 

effect on the received signal with mirror. 

Similar experiment was repeated for two different laser 

sources at wavelengths of 543 nm and 633 nm with different 

propagation distances. Since these lasers were modulated 

using an external optical chopper, it is not possible to measure 

the bit error rate. Hence the performance is characterized 

using the Rytov variance calculated from the received optical 

signal. The measured Rytov variances for different cases are 

summarized in Table II. The Rytov variance with the mirror is 

insignificant compared to the variance for the link with no 

mirror. 

Figure 10 shows the estimated Q-factors at different 

propagation lengths under different environments. The first 

two and the last two values of Q-factor in each plot were 

obtained with and without SCM and turbulence, respectively. 

Since the concave mirror offers a significant optical gain, 

there is a major difference in the Q-factor in the absence of the 

turbulence with and without mirror. This figure clearly 

demonstrates the effectiveness of the proposed scheme as 

there is very marginal changes in Q-factor in the presence and 

absence of the turbulence with SCM, though significant 

changes can be observed in the presence of the turbulence 

without mirror. For example in Fig. 10(b) the Q-factor is 

significantly increased the Q-factor when the light propagates 

in both turbulent and respectively non-turbulent environment. 

The Q-factor values obtained demonstrate the efficiency of 

the SCM mitigating optical spot wandering and scattering at 

the receiver side on FSO link. 

V. CONCLUSIONS 

An indoor experimental test bed for assessing the FSO link 

performance using a SCM for compensating the laser beams 

scattering and wandering in a turbulence channel was 

introduced. The maximum link span of 104 m was obtained by 

means of multiple reflection of the laser beam using mirrors. 

SCM was used to harvest the scattered beam and focus it onto 

a small area PD positioned on the focal point of SCM. Results 

showed that with SCM the Q-factor is substantially improved. 

Even with no turbulence the received signal quality was 

improved when using the SCM. The method was tested for a 

range of light wavelengths (visible and infrared) showing the 

TABLE II 

SUMMARY OF RYTOV VARIANCE IN THE PRESENCE OF TURBULENCE WITH 

AND WITHOUT MIRROR 

Wavelength 

(nm) 
Link  

length (m) 

Rytov variance 

Without 

mirror 
With mirror 

543 52 0.0193 2·10
-5

 

543 104 0.0906 10
-4

 

633 104 0.1029 10
-5

 

850 52 0.254 6·10
-4

 
 

 

a)  b)   

c)  d)   
 

Fig 9. The eye-diagrams for OOK-NRZ received signal at 10 Mbps after 

propagation of 52 m : a) without turbulence and mirror; b) in turbulence 

environment without mirror; c) without turbulence and with mirror; d) with 

turbulence and with mirror. 
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highly improved performance. What need to be done next is to 

determine the minimum size of SCM, which is the subject of 

the next paper. 
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