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A Deformable Surface Model with Volume Preserving
Springs
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Abstract. This paper discusses the possibility of employing a surface model to
emulate volume behaviour. This is inspired by a significant interest in
employing the surface data due to its simplicity. However, there are issues in
properties estimation and volume preservation. Therefore, the aim of the
ongoing research includes exploring the potential of a surface mass spring
model with shape-preserving springs for volume simulation. Initial evaluations
illustrate the feasibility of employing a mass spring model with volume
preserving springs to simulate the dynamic behaviour of a soft volume. The
proposed framework can be further explored to address other material
properties.

Keywords: Deformable Model, Mass Spring Systems, Volume Preservation

1 Introduction

The dynamic behaviour of human organs can be replicated using the soft solid
simulation techniques. These organs are initially modelled into 3 dimensional
volumes based on medical data such as CT/MRI scans. This volume data can then be
rendered in a virtual environment based on the organ’s material and mechanical
properties. The haptic devices provide the tactile interaction with the model in the
virtual environment, which makes it more useful in areas such as the medical training.

However, due to the benefit of having a less complex mesh network, surface data is
increasingly being utilised to emulate volumetric solid behaviour. The main issue is
constant volume preservation as well as correct volume behaviour during simulation.
Generally, a surface model would collapse under gravity and without the internal
volume, determining the correct deformation effect would be a challenge.

2 Related Works

Commonly, surface data is re-meshed in order to create internal volume. However,
this creates computational overhead during simulation imposed by a more complex



volume network. The addition of new artificial springs [1] to the existing volume
mesh produces a stiffer object [2]. [3] [4] addressed shape preservation and [2]
introduced weighted constraints that control the deformation distribution of the
muscle instead of using additional springs. However, this method is fundamentally
focusing on the local radius of influence of the interaction and is not influenced by the
orientation of the interaction force.

A more effective shape preserving method has been embedded into the Mass
Spring Systems (MSS) where springs are placed at the nodes. They are also known as
the Local Shape Memory [5]. These springs have been employed to simulate non-
linear skin behaviour of a virtual thigh [6] [7]. [8] administered these springs to
preserve object shape during simulation. However, the stiffness of the springs was
either statistically fine-tuned based on predefined properties [9] or regularly
distributed. [10] extended this method by extracting the properties of the springs
based on radial links [11][12].

Volume behaviour is influenced by the properties estimated for the model. Regular
properties distribution is very common where the regular node concentration is
assumed [1] [13] [14] [15]. In the case of irregular node concentrations, the mesh
topology is modified to be as regular as possible [16] [17]. However, when a portion
of the surface model is refined, the regular topology becomes irregular. Consequently,
the properties require re-estimation within the refined area. [8] attempted properties
re-estimation after surface refinement but the behaviour patterns between the coarse
and the refined area do not coincide. The behaviour has been improved by our method
discussed in [10] where these patterns achieve a higher level of co-incidence.

3 The Proposed Deformable Model

The scope of dynamic behaviour in this research is within a constrained space such as
a human breast fixed on a static body (Fig. 1). The model is constructed from the
surface mesh and the dynamic behaviour is achieved by employing the surface MSS
with volume preserving springs.

Fig. 1. A breast model (geometrical mesh and rendered model)

To address the issue of properties estimation as well as the non-existence of inner
volume for the proposed surface model, the object’s internal volume represented by
the surface elements has to be considered. This framework extended the scheme



described in [10], where a surface mass spring systems with additional shape
preserving springs are employed.

3.1 Surface Mass Spring Systems (SMSS)

The SMSS is based on the surface mesh topology where the springs are represented
by the edges of the triangular elements (Fig. 2). For instance, the edge that connects
the nodes with mass m; and m; is the spring with stiffness k.
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Fig. 2. a) Nodes connected by edges (b) A pair of nodes connected by a spring
For the spring link #j , the internal force Fj; is
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, where ||pi—pil| is the magnitude of the displacement of the current state of the spring
link i, I;1s the rest length of the spring link, and Kj; is the stiffness (spring) coefficient
of the node pair. The spring stiffness is estimated based on a distribution algorithm
described in [10] [13] [18] [19].

3.2 Volume Preserving Springs
The proposed volume springs (Fig. 3) are commonly utilised to preserve the shape of

the model at equilibrium. They behave in a similar way as the surface spring but the
rest length of each spring is zero.

at runtime : p’, - p,

Fig. 3. The inner spring that provides a volumetric support to the mass at i

Based on Equation (1), the reaction force imposed on the mass at node i,
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, where K is the stiffness of the inner spring at node i, p’; is the new position of node
i at runtime and p; is the anchored position of node i. In order to not only preserve the
object shape but also maintain a constant volume during simulation, the concept of
these shape preserving springs has been extended.

3.3 Volume Discretisation for Properties Estimation

The relationship between the deformable model and the real material is important.
The elasticity modulus of a material is extracted from the stress and strain
relationship, where a constant magnitude of force is imposed along the axis parallel to
the normal of the surface. The initial volume discretisation supported by each node
should support this relationship. In a MSS, force directly influences the dynamic
behaviour of the nodes. Therefore, the volume supported by a node should be
discretised along its normal.

The radial link method in [10] is extended, where the new distance vector with
length L’; relative to the object centre of mass, the initial length L; and the surface
normal at the node, are derived. The new volume (Fig. 4) is based on node i relative
to the new centre point ¢; and the other nodes or vertices of the triangular element.
The new L’; is the scalar projection of L; along the normal unit vector of point i. This
explicit method guides the estimation of mass and spring stiffness for all nodes
relative to their respective normals and neighbouring triangles.

Qid volume

Mew volume

Fig. 4. Volume discretisation relative to the normal at node i

3.4 Properties Estimation

Based on the discretisation (Fig. 4), mass at node i is estimated as



, where the estimation ratio for each node is the total volume under the neighbouring
triangular elements # (of which node i is a member) divided by the total volume for all
n nodes, and M is the object mass.

The stiffness of the volume preserving springs describes the level of elasticity of
the virtual space or volume represented by the node. Therefore, the value of the
stiffness is influenced by the stress and strain relationship along the axis parallel to
the normal at the node. The stiffness dimension based on Young’s Modulus and shear
modulus is initialised before the simulation. The dimension is defined as
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, where , Kgpand K¢ are the spring stiffness based on linear elasticity modulus and
shear (rigidity) modulus respectively, E is the Young’s Modulus and v is the Poisson
Ratio of the material.

The behaviour of the spring stiffness at runtime depends on the orientation of the
acting force along each spring. The stiffness K; of the spring at each node i can be
determined at runtime:

I
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, where N and F are the normal and force at node i.
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3.5 Volume Preservation

In order to preserve volume during simulation, the spring dimension can be extended
to address other properties such as bulk elasticity as a factor against volume variation
during simulation. Bulk stiffness Kp at node i is
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Volume displacement during simulation can be derived based on the volume
calculation employed in [2]. This calculation will be correct even when the surface
becomes concave during simulation. Therefore, force at node i along its normal unit
vector at a time step without any external force interaction on the surface is

F.=K,A"w,N; ®)
, where AV is the volume displacement, and w; is the constraint that controls the
distribution of the volume penalty force. The constraint is set to 1, which means
volume change affects all nodes equally but constrained by their respective bulk
stiffness. Therefore, in order to correctly distribute the interaction force effect to the
object surface, the constraint is estimated based on the interaction radius of influence



where, the sum of the constraints is equal to the number of nodes. The radius of
influence [2] has been modified and the interaction force orientation is introduced as
the correction factor. If the surface nodes are within the radius of influence r, weight
at node i is
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, where p; and py are the position vector of node i and the position of where force is
imposed respectively. Since the sum of weighted constraints is equal to the number of
nodes [2], the constraint values have to be normalised. Therefore, based on Equation
(3) and (4), the penalty force at node i is

F.=K,AV w,M .
lp-p,

4 Empirical Experiments

The framework for the experiments has been implemented on top of Microsoft Visual
C++, OpenGL and OpenHaptics platforms. Phantom Desktop haptic device enables
interaction and the desktop PC has the specification of Intel Pentium 4, 2.40 GHz and
1 G RAM. Each time step denotes 0.01 s. To evaluate the estimation method and the
feasibility of having a 3 dimensional stiffness, 2 schemes have been compared:

e Scheme A : Irregular mass and inner stiffness (single stiffness dimension)
e Scheme B : The Proposed Estimation

Further comparisons are carried out against the Finite Element Model (FEM) and
volume MSS (VMSS). The elasticity modulus is re-extracted from the model to
evaluate if the proposed model emulates the same material behaviour.

4.1 Properties Estimation

To evaluate properties estimation, a local area is refined and the properties are then
re-estimated. A constant force is imposed on a node and the displacement data is
collected. The displacement patterns within the coarse and the refined area are
compared. If the patterns are identical, the deformation behaviour is preserved despite
the change in the mesh topology. The displacement behaviours are studied where 2
values are analysed:

1) The standard deviation between the 2 patterns determines their level of
co-incidence. The smaller the standard deviation, the more identical the
patterns are



ii) The mean deviation of the 2 patterns represents the error in behaviour
after refinement. The least value indicates the least deviation from the
original behaviour

Fig. 5 describes the findings based on a sphere model with irregular mesh topology
to illustrate the concept. The standard deviations comparison in 5(a) shows that B
produces high level of co-incidence between the patterns. Furthermore, it maintains a
minimal displacement deviation for any magnitude of force compared to A which
deviation increases with force (5(b)). Hence, the analysis concludes that B preserves
the properties and behaviour with minimal standard deviation when a local area is
refined. Tests have been carried out on models with various mesh complexities and
they also draw similar conclusions.

Standard Deviation Comparison
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Fig. 5. (a) The standard deviation (b) Average displacement deviation

The stiffness of the springs is based on the real clasticity properties of the
material. Therefore, to evaluate scheme B, the Young’s modulus (E) can be derived
from the strain and stress relationship of the deformable model and compared to the
original E. The values (Table 1) demonstrate that the deformable surface model can
closely emulate the volume material behaviour.



Table 1. The Young’s Modulus (E) extracted from the model when a constant stretching force
is imposed on the surface of a cube.

Model (nodes) Cube (602)] Cube (1352) | Cube (2402)
E (67 Pascal) 67.80 66.80 67.00

E (100 Pascal) 100.07 98.70 98.70
E (3.25 Kpa) 3.30 3.17 3.11

4.2 Performance
A simple performance test has been carried out to illustrate that the surface data

reduces the computational cost. Table 2 shows that the average frame per second
(FPS) achieved by the VMSS and the proposed surface model.

Table 2. Total FPS Comparison

Model (number of Cube Cube Cube Sphere
surface nodes) (602) (1352) (2402) (1000)
VMSS 77 37 20 47
Scheme B 80 44 25 77

4.3 Volume Behaviour

To produce a more realistic global deformation based on the interaction force radius
and orientation of influence, the weighted constraint is manipulated at runtime.

Fig. 6. (a) Constraints are uniform (b) Constraints extracted at runtime

When the constraints are set to 1, the global deformation as in Fig. 6 (a) is
produced. Upon interaction, the constraint at each node is updated in regards to the
radius and the interaction force orientation. Consequently, figure 6 (b) shows that the
automatic constraint derivation produces a more realistic behaviour.

Other models such as cubes with different surface mesh complexities have been
compared with the FEM model as analysed by SolidWorks/Cosmos. A shear force is
imposed on the top surface while the opposite surface is fixed. When compared with
FEM, the shape produced is similar with minor deviation (Fig. 7).



(a) (b)
Fig. 7. Shape comparison (a) FEM (b) Scheme B

When a constant force is imposed on the surface, the object shape changes and
deforms. The analysis concludes that scheme B preserves the object volume with the
least volume deviation as illustrated in Fig. 8.

Volume Deviation Percentage
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Fig. 8. The percentage of the average volume deviation

Conclusions

This paper has illustrated the feasibility of employing a surface mesh to simulate soft
volume. The proposed framework introduces volumetric discretisation based on the
node normal, the anisotropic extraction of inner spring relative to force orientation as
well as weighted constraints to control global deformation effect. Local deformation
behaviour is preserved regardless of the mesh resolutions and global deformation
effect is achieved despite the non-existence of internal volume. It displays similar
behaviour with the FEM model and produces minimal deviation from the original
elasticity modulus. Furthermore, the computational performance is better than the
volume counterpart. Even though the proposed method is based on materials that are
linearly elastic, homogeneous and incompressible, it can also be extended to address
other properties.

The framework is currently explored in the ongoing research in breast simulation.
Further evaluations such as the perception test with the users will be carried out to
verify the visual and haptic feedback experienced by the users
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