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Abstract

Management of operating nuclear power plants greeliles on structural integrity
assessments for safety critical pressure vesselpiping components. In the present work,
residual stress profiles of girth welded austersitainless steel pipes are characterised using
an artificial neural network approach. The netwoak been trained using residual stress data
acquired from experimental measurements founderaliure. The neural network predictions
are validated using experimental measurements take@er using neutron diffraction and the
contour method. The approach can be used to prbdazigh-wall distribution of residual
stresses over a wide range of pipe geometries atting parameters thereby finding
potential applications in structural integrity assment of austenitic stainless steel girth

welds.
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1.0 Introduction

Characterisation of residual stress distributiorpriessure vessel and piping systems
has received increased attention owing to its impache economy and safety of operating
power plants. The presence of tensile residuasste induced by welding can have a
detrimental effect on the life of the componentd amay lead to crack initiation and growth,
and an increased risk of catastrophic failure bgtfire [1]. Residual stresses are generated as
a result of some form of displacement misfit; forample owing to differential thermal
expansion or localised plastic deformation [2]. Qlifging the magnitude and distribution of
residual stresses with high certainty in multi-pasgddments is a challenging task. This is
mainly because of the large number of interactiagtdrs such as welding parameters,
geometry, composition, microstructure, phase tanshtions, and the thermal and
mechanical properties of the weld and parent nateri3]. The use of finite element
computational methods is becoming increasingly tapior prediction of welding induced
residual stresses in thick-section components. KMewethese methods usually involve
complex non-linear analyses, and can be biasedhdwnalyst’'s judgements, inappropriate
assumptions, boundary conditions and modellingguarces [4]. Measurement techniques [5,
6] such as deep hole drilling [7], neutron diffiaat[8] and the contour method [9] can now
provide high quality residual stress data for ca@rpheldments. But such measurements are
costly, usually involve partial or full destructioof the component, have uncertainties
associated with random and systematic errors. gimeering fracture assessment procedures,
the three dimensional residual stress field is Mpguaimplified by considering a
representative one dimensional profile along theugh-thickness of the stress tensor
component acting normal to the crack face [10, $1ijess intensity factor is calculated from
this estimated through-thickness stress profile aseld directly in the fracture assessment.

Residual stress profiles using various analyticaldetls have been proposed recently for



austenitic stainless steel girth welds, mainly atgrsng the pipe geometry and welding heat
input as the critical input parameters [12], [1Bdd14]. In the present work, an artificial
neural network (ANN) model has been developed wisctrained using historical residual
stress measurements to predict through-wall rebgltess profiles along the weld-centre line

of austenitic stainless steel pipes.

2.0 Materials and methods

Artificial neural networks (ANNSs) [15] are employ@dmulti-variate systems to
determine non-linear relationships that can be tsasdlve problems in pattern recognition.
During training, a set of coefficients (known asgids and biases) are optimised using a
suitable algorithm such as back-propagation [16inryimizing an error function. In the
recent past, ANNs have been extensively used @ san-linear problems in materials
engineering [17], [18] and [19]. In this study, Miayer ANNs [20] are applied to predict
through-thickness residual stress profiles in cirferentially welded austenitic stainless steel
pipes using experimental data for training, presipueported in [12]. Residual stress data
used for training were measured using Deep Holdimyi(DHD), neutron diffraction, and
Block Removal Slitting and Layering (BRSL). Theidaltion data set comprises new
residual stress measurements (contour method aricbnediffraction) for three butt-welded
pipe components (Validation Welds 1, 2 and 3) fadigd from austenitic stainless steel with
different electrical heat inputs. A summary of thelding details of training and validation
mock-ups are given in Table 1. The process pararaatelope of training and validation
data representing the geometry and welding heat withe girth welds are illustrated in Fig.
1. The welds fabricated for the purpose of valmativere characterised by following a
standard metallographic procedure. Fig. 2 shows welcrographs and Vickers hardness
(HV5) maps of the three validation welds examingdjbnding down to 4000 grit using

silicon carbide paper and polishing with diamongpansion. Hardness measurements were



performed using a Vickers (HV) indenter, applyinigad of 5 kg, using an automated

Struers Duramin-A-300 hardness tester.

2.1 Artificial neural network approach

Historical residual stress measurements were usédin the ANN using a Scaled
Conjugate Gradient (SCG) algorith#i] taking into account the through-wall positiguipe
radius and thickness, net heat input (Q = arc iefficy x electrical heat inpugnd vyield
strength of the material (see Fig. 3). The inpuapeeters were simplified considering the
dimensionality phenomenon [22], of training dataakican otherwise increase exponentially
with the dimensionality of associated input spa&&perimental measurements were
performed in components fabricated from austerstainless steel using various welding
processes with net heat inp@ € 0.8-2.2 kJ/mm), wall thickness£ 16-110 mm) and pipe
mean radius to thickness ratig/'t{(= 1.8-25) by the UK nuclear industry in order tidate a
series of residual stress predictions using théefielement method. All residual stress
measurement techniques have limitations and agsedcimcertainties. For example BRSL
has low spatial resolution, neutron diffractiornvesy dependent on obtaining reliable stress-
free lattice parameter data (which can be chaltenépr weld metal where the composition,
texture and grain size vary) and DHD has limitedtisth resolution and the specific technique
used at that time was susceptible to plasticityoed errors. The uncertainties associated

with the historical data are judged to be in theeoof + 50 MPa.

An ensemble of networks having the multi-layer pptoon architecture was implemented in
the neural network toolbox in MATLAB [23]. The natvk’s non-linear capability was
realised by using the log-sigmoid transfer funciiothe first layer, and a linear function in
the second layer. Equation (1) denote the outfrttm the second layer as,

H 4
y:ZWllogh{ZWnpi +b(1)}+b(2) 0
i=1
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wherew; was the weight vector of the output layeg,weight vector of the hidden layda?
bias vector of the output layds'™ bias vector of the hidden layét,the number of hidden
nodesp the scalar input andthe number of inputs. Input variables were norsedl to a
value between —1 and 1 by using the transformablmnmalised input = 2 x (input —
minimum input) / (maximum input — minimum input—An ensemble of networks was
constituted by running 1024 independent trainiegaitions with the weights initialised
randomly on the error surface. The Bayesian EuoctionE(w) was used to evaluate the

generalisation ability of the network defined byation (2),
E(w) = aEg + fEs (2)

wherea andp are the objective function parameters controlisegght decay and the

variance in noisey is the weight matrixx the target vectop the input variables, armthe

output.
1 )
ESZEZ{X_C(Q\M} 3)
Er :%i|Wi| (4)

The regularisation terrfg limits the network weights and biases to smalugalthereby
decreasing the susceptibility of the model to dittng. The objective function parameters
were inferred from the training data and can largefluence the model complexity. The use
of over-complex models over simpler models is nstified as it can have an adverse effect

on the generalisation ability of the network [24].

2.2 Neutron diffraction

Through-wall residual stress profiles for Validatid/elds 1 and 2 (material type:
austenitic stainless steel type 316L, dimensioh8:r8m outside diameter, 25 mm thick and

320 mm long) were determined from neutron diff@ctmeasurements. A monochromatic



neutron beam with wavelength 1.648 A were usedatlintating to a nominal gauge volume
of (2.3% 2.3x 2.3) mnT at the SALSA beam line [25], Institut Laue LangevGrenoble,
France. A diffraction angle of approximately’39as obtained and the {311} reflection was
chosen (as being least sensitive to plastic siraline removed plug of material were used to
extract four small cubes of weld metal having disiens 5 mnk 5 mmx 5 mm to measure
the reference stress-free lattice paramelgr Position and direction specific stress-free
references were used for calculations by interpaaising a second order polynomial
function. The straing;, along the three orthogonal directions were catedlérom the shift in

diffraction peak positions using equation (5),

T
(6_ HO(X, y,z)) X —
£ty = — 360,100000¢ (5)

Tan(ex”)
360

For determining stresses from the measured strdnasnaterial was assumed to be isotropic.

Furthermore, the Kiner model was implemented in the DECcalc softwafg, [to calculate
the diffraction elastic constants. A Young's modulalue of 187 GPa and Poisson’s ratio of
0.303 were used to determine the stresses in thifeeent orientations from the measured

strains using equation (6), (7) and (8),
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2.3 Contour method

The contour method, a destructive technique toraete residual stresses was
applied to Validation Welds 1 and 2 after the nenitliffraction measurement, and to
measure both axial and hoop stresses in Valid&tleld 3 (material type: Esshete 1250,
dimensions: 180 mm outside diameter, 35 mm thick200 mm long). The contour method
can be applied to provide a full 2-D cross sectiomap of the hoop residual stresses present
in thick cylindrical components [27]. In this methdhe component of interest is cut into two
halves using wire electric discharge machining,déf®rmation contours of the relaxed cut
surfaces measured, the matching profiles averagealifninate shear effects) and then
applied as a boundary condition to the cut facenef half of the cut component in a linear
elastic finite element analysis. The distributidrhoop stress of the component of interest
can be determined by performing a cut along a kadial plane using the approach reported
[28], by cutting the pipe lengthways into two halwesing wire electro discharge machining
severing both the opposite thicknesses simultamgoLise axial stress residual profiles were
determined along different through-thickness posgiat 36, 90° and 144 with respect to
the flat edge (XX) in the clockwise direction ancteaged across 4on either sides of the
normal YY as shown in Fig. 4a. In order to determrtine axial stresses, a second cut was
performed along the radial-hoop plane XY (see #m.at the centre of the weld. The data
analysis procedure was similar to the hoop resiginats measurement with additional steps
implemented to account for the stress relaxatitecesf from the previous cut (along XZ
plane) by applying displacement boundary conditiminthe finite element model created for

measuring the hoop stresses.

3.0 Results and Discussion

A histogram was developed to manage scatter witldmeural network predictions

and to provide a reliable prediction interval of #stimated stress distributions. The 10% of



predictions with lowest error were determined framommittee of 1024 networks with the
histogram of output distribution divided into 25e®ents. Model predictions expressed as a
contour plot generated from the histograms of nétwaitputs (red and white colour
represents the most and least probable regionedigirons) are compared with the new
experimental measurements (i.e. Validation Weldsddnd 3) to assess the performance of
the ANN. In Fig. 5(a) the ANN prediction for resmlstresses in the axial direction of
Validation Weld 1 is compared with neutron measw@®ets. The agreement with
measurements is good considering the scatter acdib@nthe measured data. Fig. 5(b) shows
the ANN prediction for hoop stresses compared watidation measurements made by
neutron diffraction and the contour method, theetaor both top and bottom of the pipe.
Agreement between the experimental validation measents is excellent. However, the
ANN prediction is substantially more tensile towatHe inside diameter of the pipe. The
presence of high compressive stresses near tlikeisgiface is likely to be the result of the
specific weld procedure employed for Validation A&l and 2 (see Fig. 2(a) and (b)); that is
an unusually wide weld preparation was used wibtheking plate and weld joint closed up to
nearly one half of its initial width during weldinghis may have introduced unusually high
compressive hoop stresses in these welds whichlvegiend the envelope of the training
data. The ANN method only predicts based on thaitrg data used, therefore this result is
unsurprising, given that the stress profile of ¥ation Weld 1 is to some extent non-
representative of previously seen data. The irtglidi extrapolate beyond the boundaries of
the training data is a key limitation of the ANN tined. Despite this the ANN is in
favourable agreement with the measurements frontmgéness to the outer radius position,

and over-predicts the tensile magnitude of streal positions.

Predicted and measured residual stress profildseiaxial and hoop directions for Validation

Weld 2 are shown in Fig. 6 (a) and (b) respectivEhe ANN histogram map is in reasonable



agreement with the neutron measurements in thé dixégtion up to the through-wall
positionx/t = 0.7. However the hoop stress measurements dduigmh the ANN map fox/t

< 0.3 in the same manner as Validation Weld 2;ithie be expected because the pipe weld
was made in the same way as Validation Weld 1 (witide weld preparation and backing
plate). The hoop stress measurements near thesauface X/t > 0.7) are noticeably lower
than the contour measurements which closely fotleevANN predictions. A similar trend is
observed in the axial stress measurements appragpttte outer radius of the weld. The

lower than expected magnitude of axial and ho@sses measured by neutron diffraction for
x/t > 0.7 may be associated with uncertainties irsstfeee lattice parameter measurements
for austenitic weld metal owing to compositionatisons, texture and large grain size
effects [6, 8]. But the consistency of the neusdinork predictions is verified by the contour
method measurements carried out in the hoop dnre¢kig. 6b). The axial stress profiles
measured using the contour method at various pasi{Fig. 7a) are in good agreement with
the ANN prediction up ta/t < 0.8 and the latter imply the presence of higaesile stresses
approaching the outer surface. The mismatch inigietiand measured stress distribution
close to the outer surface is likely to be assediatith a lower density of surface
measurement data used to train the ANN. Additigrthké hoop stress profiles predicted by
the ANN approach for Validation Weld 3 are in rezole agreement with the measurements

made using the contour method (see Fig. 7b).

Interestingly, the ANN model rarely under-predittte magnitude of the measured tensile
stress by a large margin in the validation datadat is a useful characteristic if ANN
residual stress profiles are to be used in saféigal assessments of welded structures [10].
The advantage of the ANN method for defining thitowgall residual stress profiles
compared with computational weld mechanics or mesasent approaches is that the

information required to train the model is straightvard and historical measured data can be



used. On the contrary, the ANN provide somewhaiathred residual stress profile and are
unable to capture the stress variations througlhilckness especially in comparison with
neutron diffraction data. However, this limitatimnconsidered to be the consequence of
using insufficient neutron data in training andmaproved database with more neutron
measurements is recommended for the applicatitimeaiodel. Another drawback is that the
weldment for which a prediction is to be made niastwithin the range of weld types used

to train the model.

4.0 Conclusions

To summarise, an artificial neural network modeswlaveloped to characterise the through-
thickness distribution of residual stresses inwinterentially welded austenitic stainless steel
pipes, providing the weldment type lies within timundary of the training data envelope
used. The model has been validated by comparirdjqieel profiles with new experimental
measurements for three welded pipes constructed dgiferent process parameters. The
model has the potential to be developed into aftwatharacterising residual stress profiles
in different classes of weldment, for example plaié welds, nozzle welds, laser or electron
beam welds, etc. For each class of weldment, gegnmeaterial or stress component a

separate ANN can be trained provided sufficientsuead data are available.
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Figure and table captions

Table 1. Welding details of training and validation mocksup

Fig. 1. Process parameter envelope of training and vadilaata with respect to net heat
input, component thickness (t) and marker colounotiag R/t ratio (VW 1, VW 2 and VW 3

corresponding to Validation Weld 1, 2 and 3 respebt).

Fig. 2. Weld macrograph (on the left) and Vickers hardi{e’&) map (right) of (a)

Validation Weld 1 (b) Validation Weld 2, and (c) hdation Weld 3.

Fig. 3. Schematic of the ANN architecture used in thislgtulnput parameters t, R/t, x/t and
Q denote the pipe wall thickness, mean radius thekness ratio, through thickness position

from inner surface and net heat input (Q = arcificy x electrical heat input) respectively.

Fig. 4. Schematic illustration of (a) through-thicknessasw@ement locations in Validation

Weld 3 (b) location and direction of the perfornaashtour cuts.

Fig. 5. ANN model prediction of (a) axial stresses (onl#fg and (b) hoop stresses (on the

right) compared with experimental measurement¥#&idation Weld 1.

Fig. 6. ANN model prediction of (a) axial stresses andn@p stresses compared with

experimental measurements for Validation Weld 2.

Fig. 7. ANN model prediction of (a) axial stresses andn@p stresses compared with

experimental measurements for Validation Weld 3.



Table 1. Welding details of training and validation mock-ups

Mock-ups Welding Net Heat Input Welding Yield stress(p, w)*  Groovetype
Process (kJ/mm) passes (MPa)
Training
1 SAW 2.2 4 338, 476 Double V
2 MMAW 1.12 16 272, 446 Outer J
3 MMAW 1.68 26 328, 446 Outer J
4 MMAW 1.92 44 328, 446 Outer J
5 MMAW 1.12 A 328, 446 Outer J
6 MMAW 0.8 A 328, 446 Outer J
7 TIG 1.32 A 328, 446 Narrow gap
8 SAW 1.8 84 274, 483 Outer J
Validation
1 TIG 0.9 108 300, 500 Wide Single V
2 TIG 1.8 58 300, 500 Wide Single V
3 TIG, MMAW 15 25 370, 564 Single V

*where p, w are the parent and weld material ysttdngth at 1% proof stress. a - passes unknown.
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Fig. 1. (a) Schematic of the pipe girth weld geometry fairting and validation residual
stress measurement data, and (b) process paramgtope of training and validation data
with respect to net heat input, component thickifgsand marker colour denoting R/t ratio

(VW 1, VW 2 and VW 3 corresponding to Validation \&é, 2 and 3 respectively).
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Fig. 2. Weld macrograph (on the left) and Vickers hardrie’s) map (right) of (a)

Validation Weld 1 (b) Validation Weld 2, and (c) Néation Weld 3.
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Fig. 3. Schematic of the ANN architecture used in this gtulthput parameters t, R/t, x/t and
Q denote the pipe wall thickness, mean radius thekness ratio, through thickness position
from inner surface and net heat input (Q = arceficy x electrical heat input) respectively.
Normalised stresses (denote88S) is predicted as the output wherstands for the
predicted stress along axial or hoop direction, ¥8depresents the yield strength at 1%

proof stress.



Fig. 4. Schematic illustration of (a) through-thickness swament locations in Validation

Weld 3 (b) location and direction of the perfornoehtour cuts.
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Fig. 5. ANN model prediction of (a) axial stresses (onl#fg and (b) hoop stresses (on the

right) compared with experimental measurement¥#&idation Weld 1.
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Fig. 6. ANN model prediction of (a) axial stresses andn@p stresses compared with

experimental measurements for Validation Weld 2.
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Fig. 7. ANN model prediction of (a) axial stresses andn@p stresses compared with

experimental measurements for Validation Weld 3.




Highlights
We model residual stresses in multi-pass girth welds using artificial neural networks.

We validated the model with experimental measurements using neutron diffraction and
contour method.

A histogram network was developed to provide a reliable prediction interval of the estimated
stress distributions.

The model can function providing the weldment type lie within the boundary of the training
data envelope used.

ANN model can find potential applications in the structural integrity assessment of
weldments.
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