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Highlights 

 A literature search demonstrated the widespread use of isolate-level measurement 

of resistance 

 Faecal samples were tested for antimicrobial resistant E. coli at both the sample-

level and the isolate-level 
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 Sample-level measurement was more likely to demonstrate resistance 

 Using simulation we back predict isolate-level results from an historic study that 

only used sample-level measurement 

 We question the widespread use of single isolate tests as demonstrated by our 

literature search 

 

 

Introduction 

The primary problem associated with antimicrobial resistance (AMR) is failure of 

treatment in human medicine. However, resistance does not, generally, originate de 

novo in the patient in which treatment fails; rather it exists in a number of reservoirs 

within the patient's environment (Woolhouse et al., 2015). Treatment of the patient 

with an antimicrobial agent then provides a strong selection pressure in which resistant 

populations can outcompete their non-resistant counterparts. In order to address the 

interdependence of levels of AMR between a number of potential sources, a “systems 

map” approach has been suggested (Department of Health, 2014). The “systems maps” 

proposed are complex, pictorial representations of the inter-connections between 

reservoirs of potential resistance, possible transmission of resistance, and points of 

amplification of resistance in the presence of antimicrobials. Ideally we would identify 

which parts of the map were most amenable to modification and which parts are best 

targeted to address the main problem, which is resistance in human medicine. To do this 

requires accurate measurement of the component parts of the map. One key 

measurement is the prevalence of resistance in different bacterial reservoirs that make 

up the system of AMR and its transfer. 
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Prevalence estimates depend upon a sampling unit being defined as positive or 

negative. The number of bacteria in each sampling unit may be very large (e.g. >109  per 

gram of faeces) and, in faeces for example, can vary by several orders of magnitude 

(Smith and Crabb, 1961). Therefore it is not obvious how many bacteria per sample 

should be tested nor the threshold for the number of “positive” (i.e. resistant) bacteria 

that should deem a sample as being resistant. Alternatively there are various methods 

that seek to test the sample as a whole such as spread plating [e.g. “culturing” on agar 

(Batura et al., 2010)], streak plating in which samples are serially diluted on the agar 

through streaking to enable picking of isolates (Amyes et al., 1992; Gunn et al., 2008; 

Humphry and Gunn, 2014), and detection of genetic markers of resistance via methods 

such as PCR or sequencing (Waldeisen et al., 2011). It is not clear to us why only one 

bacterium per sample should be tested to determine a sample as resistant or sensitive. 

Comparisons between different methods on single isolates exist (Benedict et al., 2013; 

Dorado-Garcia et al., 2016; Lo-Ten-Foe et al., 2007; Luangtongkum et al., 2007; Luber et 

al., 2003) but we are not aware of anything that has been published comparing isolate 

based methods with whole sample methods. In this paper we quantify the relationship 

between streak plating and isolate-based methods of measuring resistance by applying 

both types of method to the same samples. Then, using historic baseline prevalence 

data for samples based on a sample-level test (streak-plating), we used the quantified 

relationship to back-calibrate and estimate the consequences had our baseline study 

used an isolate-based approach. This provides a “proof of concept” of how data such as 

these can be used to compare prevalence estimates across different studies that use 

different measures of resistance. Overall we seek to highlight that there is a need for the 

scientific community to reconsider the validity of taking a single bacterium per sample. 

Abstract 
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Antimicrobial resistance is primarily a problem in human medicine but there are 

unquantified links of transmission in both directions between animal and human 

populations. Quantitative assessment of the costs and benefits of reduced antimicrobial 

usage in livestock requires robust quantification of transmission of resistance between 

animals, the environment and the human population. This in turn requires appropriate 

measurement of resistance. To tackle this we selected two different methods for 

determining whether a sample is resistant – one based on screening a sample, the other 

on testing individual isolates. Our overall objective was to explore the differences arising 

from choice of measurement. A literature search demonstrated the widespread use of 

testing of individual isolates. 

Keywords: antimicrobial resistance; AMR; antibiotic; measurement; prevalence 

The first aim of this study was to compare, quantitatively, sample level and isolate level 

screening. Cattle or sheep faecal samples (n=41) submitted for routine parasitology 

were tested for antimicrobial resistance in two ways: (1) “streak” direct culture onto 

plates containing the antimicrobial of interest; (2) determination of minimum inhibitory 

concentration (MIC) of 8-10 isolates per sample compared to published MIC thresholds. 

Two antibiotics (ampicillin and nalidixic acid) were tested.  With ampicillin, direct culture 

resulted in more than double the number of resistant samples than the MIC method 

based on eight individual isolates. 

The second aim of this study was to demonstrate the utility of the observed relationship 

between these two measures of antimicrobial resistance to re-estimate the prevalence 

of antimicrobial resistance from a previous study, in which we had used “streak” 

cultures.  Boot-strap methods were used to estimate the proportion of samples that 

would have tested resistant in the historic study, had we used the isolate-based MIC 

method instead.  Our boot-strap results indicate that our estimates of prevalence of 
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antimicrobial resistance would have been considerably lower in the historic study had 

the MIC method been used.  

Finally we conclude that there is no single way of defining a sample as resistant to an 

antimicrobial agent. The method used greatly affects the estimated prevalence of 

antimicrobial resistance in a sampled population of animals, thus potentially resulting in 

misleading results. Comparing methods on the same samples allows us to re-estimate 

the prevalence from other studies, had other methods for determining resistance been 

used. The results of this study highlight the importance of establishing what the most 

appropriate measure of antimicrobial resistance is, for the proposed purpose of the 

results. 

Materials and Methods 

Literature survey 

To provide evidence regarding the use of individual isolates in relevant published studies 

we carried out a literature search. The search terms “prevalence antimicrobial resistance 

livestock” were entered into the online literature database “Web of Science”. The search 

hits were ordered in decreasing “relevance” to the search terms and the 50 most 

relevant hits were then sought through the SRUC online access system. Any papers that 

were accessible were then read to determine whether the microbiological test was a 

sample based method (such as streak plating or spread plating) or a method based on 

isolates and, if so, how many isolates per sample. 

Comparative study sampling 

Sub-samples were taken from 41 faecal samples submitted for routine parasitological 

(i.e. non-bacterial) screening from cattle (25 samples) and sheep (16 samples) to the SAC 
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(Scottish Agricultural College) Veterinary Investigation Centre, Inverness between 

August 2013 and July 2014. This study we call the “comparative study”.  

Comparative study laboratory methods 

Each sample was ‘streak’ cultured on three plates: a standard MacConkey plate and two 

containing antibiotic (ampicillin 16mg/L or nalidixic acid 15 mg/L). The streaking process 

on the plates involved sequentially streaking sub-samples from one streak to the next 

with the result that the concentration of sample decreased with each consecutive streak 

on a plate.  

Where present, one putative E. coli colony from each of the two antibiotic-containing 

plates was randomly selected resulting in 0-2 “resistant” isolates. From the standard 

(non-antibiotic) plate 8-10 colonies were selected in addition to the “resistant” isolates 

to make up a total of ten isolates selected per sample in order to make full use of the 

ten wells per row on the test plates.  These ten morphologically typical lactose 

fermenting colonies were selected and identified as E. coli based on their reactions in 

oxidase, indole, urease and Simmon’s citrate tests (Cowan, et al., 1993). They were then 

tested for the Minimum Inhibitory Concentration (MIC) for ampicillin, and nalidixic acid 

using concentrations from an appropriate standard with priority given to EUCAST 

(“European Committee on Antimicrobial Susceptibility Testing”) (see Table 1) 

breakpoints, or, if these were unavailable (in the case of nalidixic acid) then we used 

BSAC (British Society for Antimicrobial Chemotherapy) breakpoints. 

We have not assumed any level of sensitivity or specificity for either of the tests used. 

This is because it is not clear that there is a gold standard. Instead we calculate the 

conditional probabilities of each test dependent on the result of the other.  

Comparative Data Analysis 
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Only samples from which eight or more validated E. coli isolates were identified from 

the control plate, and tested for MIC were included in the analysis. Where a sample 

resulted in more than eight isolates being tested (maximum of ten) a sub-sample of 

eight was randomly selected from these data in order to achieve statistical balance. 

Hereafter these data will be referred to as the comparative study data. 

 

Statistical tests within the comparative study 

A McNemar exact test (package exact2x2 in R, (Fay, 2010)) was used to test whether the 

apparent difference in “marginal proportions” (i.e. prevalence using each method) was 

statistically significant.  

The conditional probabilities and confidence intervals were calculated assuming a 

binomial process using exact binomial confidence limits (using binom.test in R), relating 

the probability of a sample testing resistant or sensitive using one test conditional on 

the result from the other test.  

 

Assessing clustering (over-dispersion) 

The assessment of statistical clustering (aka “over-dispersion”) of resistant isolates was 

carried out with a quasi-binomial model in comparison to a null model of a binomial 

distribution based on a single overall proportion of isolates resistant. 

We defined each isolate as resistant or sensitive according to the relevant EUCAST or 

BSAC definition. Results were aggregated at the sample level and a binomial logistic 

model was run. This was re-run as a quasi-binomial model (which allows for clustering) 

and a chi-squared test used to test the significance of the dispersion accounted for in 

the quasi-binomial model (Dobson, 2002). This procedure was used on all samples for 
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both the ampicillin and nalidixic results and on the subset of samples for which streak 

plating tested resistance in the case of ampicillin. The number of samples testing 

resistant to nalidixic acid by streak plating was too few to allow the procedure to be run 

on just these samples. 

 

Historic sample-level prevalence study used for an illustration of re-calibration 

Historic sample-level data, based on plate streaking as described previously (Gunn et al., 

2008; Humphry and Gunn, 2014), were used to provide an illustration of the consequence 

of different definitions of a resistant sample. From a randomised survey of healthy animals, 

faeces samples were taken (1086 lambs from 104 randomly selected sheep farms, 312 

calves aged less than 6 weeks, and 804 adult cattle were collected from 100 randomly 

selected farms throughout the Highlands and Islands of Scotland). Faecal samples were 

tested using streak plating (see above) on three plates in total, one without antibiotic (i.e. 

control) and two with either of the respective two antibiotics (ampicillin & nalidixic acid). A 

sample was defined as being resistant if any isolates which grew on an antibiotic-containing 

plate were demonstrated to be E. coli. Hereafter these data will be referred to as the 

baseline study data. 

 

Simulated re-estimation 

A bootstrap approach was used to obtain 95% percentiles for the re-calibrated 

estimated animal level prevalence from the baseline study data of healthy animals. This 

was done for both antibiotics: ampicillin and nalidixic acid. By bootstrapping from the 

comparative study data we allow for clustering for which there was evidence in the 

comparative study data (see Results). 
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For each resistant sample (one sample per animal) in our baseline study (streak plate), a 

randomly selected resistant streak-plate sample from our comparative study was 

selected. The predicted results from testing a single isolate, and eight isolates were 

simulated by randomly sampling with replacement from the corresponding data from 

the comparative study. If one or more of the isolates in each of these random selections 

were resistant isolates, then the baseline sample was deemed to be simulated as 

“EUCAST1sim” or “EUCAST8sim” resistant for the one and eight isolate sampling 

respectively. Then, using these predicted results for resistance, we calculated the 

population prevalence simulated as if a single isolate, or eight isolates had been tested 

using the EUCAST/BSAC criteria. This process was repeated 1000 times to provide a 95% 

percentile interval for the original baseline study prevalence based on bootstrapping 

from the comparative study.   

The prevalence that we report for the baseline study and the simulated re-estimation is 

the proportion of samples positive with one sample per animal in the baseline study. 

This boot-strapping method is illustrated in Figure 1 in the form of a flow diagram. 

 

Results 

Literature sample 

From the fifty most “relevant” (according to the search engine in Web of Science) papers 

returned, we were able, through the SRUC online library system to access 18 papers for 

examination (see appendix for full list of these papers). Of the 18 papers we accessed, 

eight did not state the number of isolates tested per sample, four papers were not 

applicable (e.g. review papers), five specifically stated that they tested one isolate per 

sample, and one paper declared that they tested “up to two colonies per plate”. 
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Comparative study 

In total, 41 samples were tested. An insufficient number of confirmed E. coli isolates 

were obtained from one sample to be included in the data analysis. Of the remaining 40 

samples: three showed resistance by streak plating to nalidixic acid; fourteen showed 

resistance by streak plating to ampicillin. The 40 samples all yielded eight or more 

isolates from the control plate for further testing.  

Table 2 gives cross-classification of samples measured as resistant or not according to 

the streak plate method and according to the testing of eight isolates for their MIC 

(EUCAST/BSAC method). One or more isolates from one of these samples is interpreted 

here as defining the sample as resistant using EUCAST/BSAC thresholds.  Using the exact 

McNemar test we found that the difference in “marginal proportions” (i.e. prevalence 

using each method) was statistically significant at the 5% level in the case of ampicillin 

(p=0.008) but not for nalidixic acid (p=0.5). 

 

Note that no isolates were classified as resistant using the EUCAST method from 

samples that were classified as sensitive using the streak plate method. 

Table 3 provides estimates and confidence intervals for the conditional probability of a 

result dependent on a result using the alternative method. The confidence intervals are 

relatively wide due to the relatively small sample size. It is noticeable that the estimates 

for the conditional probabilities for ampicillin and nalidixic acid are close to one another. 

Whilst taking into account the large confidence intervals, it is noteworthy that there is a 

large overlap of confidence ranges -except in the case of Pr(sample tests sensitive with 
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streak plating given that the sample contributed 0 resistant isolates from eight) in which 

the overlap is smaller.  
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*From the six samples that contributed at least one ampicillin resistant isolate there 

were, in total, 18 resistant isolates and thirty sensitive isolates. From the one sample 

that contributed at least one nalidixic resistant isolate there were six resistant and two 

sensitive isolates.  

Evidence of clustering 

Evidence of clustering is presented visually (Figure 2) as well as analysed statistically. The 

histogram of the actual data has “fatter tails” than the expected number (the points) 

suggesting clustering in the data. 

 

 

In the case of nalidixic acid only three samples tested resistant using the streak plating, 

of these three samples, two had no isolates testing resistant and the third sample had 

six out of the eight isolates testing resistant. The proportion of isolates resistant from 

samples testing resistant (to nalidixic acid using streak plating) is therefore 6/24 = 0.25 

(0.10, 0.47). The probability of a single sample (testing resistant using streak plating) 

giving six or more isolates resistant if we assume a background isolate level prevalence 

of 0.25 amongst those samples testing resistant using streak plating, may be calculated 

from the cumulative distribution function of the binomial and is p=0.004 for a single, 

specified sample and p=0.012 for any one of three samples. Therefore despite the low 

numbers of resistant samples, this low p-value suggests clustering may also be present 

for nalidixic acid.  
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More formal statistical testing for clustering was also employed. In the case of ampicillin 

the procedure could be run on all samples and also on only those samples that tested 

resistant using streak plating. In the case of nalidixic acid the number of samples that 

tested resistant using streak plating was low and therefore the statistical procedure was 

only appropriate when applied to all samples. In the case of ampicillin the p-values 

(1.3*10-20 including all samples and 2*10-7 for just those samples which tested resistant 

using streak plating) strongly suggest clustering. Similarly for nalidixic acid, a p-value of 

1.8*10-30 strongly suggests clustering when all samples were included. We therefore 

chose to use the bootstrap approach for back calculation rather than rely on a binomial 

assumption for the distribution of positive isolates. 

Phenotypic diversity 

Figure 3 illustrates the distribution of MIC values from samples broken down by the 

status of each sample according to the streak-plating sample-level method. Note that 

samples that tested resistant by streak-plating contained isolates from both sides of the 

breakpoint.  
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Simulated re-estimation 

The simulated estimates for the prevalences based on one or eight isolates from a 

control plate (EUCAST1sim and EUCAST8sim) are substantially lower than the original 

streak plating estimates collected in the baseline prevalence survey (Tables 4, 5). 
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Discussion 

Our literature search demonstrated that studies reporting prevalence of antimicrobial 

resistance commonly estimate the resistance using just one isolate per sample. The 

justification for this choice of measurement over alternatives, for example the whole 

sample streak plating method, does not appear to be considered. Results presented in 

this paper demonstrate that the method used affects the prevalence estimate greatly. 

The data presented allowed us to relate, quantitatively, one method (isolate-based) with 

another (streak plating). Other studies have looked at the relationship between different 

methods based on testing the same isolates (Benedict et al., 2013; Dorado-Garcia et al., 

2016; Lo-Ten-Foe et al., 2007; Luangtongkum et al., 2007; Luber et al., 2003) but work 

comparing sample based testing with isolate based testing has not been reported to the 

authors’ knowledge. We report here such a comparison. This comparison is based on a 

small sample size but never the less gives interesting results for quantifying the 

relationship between the two different methods of testing for antimicrobial resistance. 

We see from the 2 by 2 classification tables (Results) that when compared to a sample of 

eight isolates tested for MIC and classified under EUCAST or BSAC guidelines, the streak 

plating method appears more likely to categorise a sample as resistant. This is either 

because the method is more sensitive or less specific (or a combination of both) than 

the measured MIC-based isolate method for both ampicillin and nalidixic acid. 

Our thesis is that there is no single gold standard for defining a sample as resistant or 

sensitive. It may be tempting however to assume 100% specificity, that is, when 

resistance is identified by any method, then it is assumed that the sample contains 

phenotypically resistant bacteria of the species of interest. For the purposes of this 

study we do not need to make this assumption and therefore we do not do so. In short 
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we have not chosen either method, or a combination of the two, as being a gold 

standard test. 

The distribution of MIC values (Figure 3) for isolates taken from samples deemed 

sensitive and resistant using the streak plate method suggest a bimodal distribution 

(Martinez, 2014) for both ampicillin and nalidixic acid. Since these appear to cluster on 

either side of the MIC threshold for defining resistance, this suggests that the cut-off 

used has relevance to the bacterial population. It is clear that streak plate sensitive 

samples only provided sensitive isolates whilst the streak plate resistant samples 

included isolates from both resistant and sensitive sub-populations. For both ampicillin 

and nalidixic acid, the majority of isolates from samples found to be resistant using 

streak plating were themselves found to be sensitive using the measured MIC and the 

relevant MIC threshold. This is further evidence of phenotypic diversity amongst isolates 

within a single sample deemed resistant by streak plating (Humphry et al., 2002).  

We found strong evidence of clustering. This evidence means that resistant E. coli are 

not homogenously or randomly dispersed amongst samples. If clustering were 100% 

complete then a sample would be either all resistant or all sensitive. Such a situation 

would mean that taking a single isolate per sample would be sufficient to describe the 

sample. In practice, the data show that there is good evidence of a mixture of resistant 

and sensitive isolates within a resistant sample even with the clustering observed. 

Antimicrobial resistance is a complex system. There are different species of bacteria 

within a sample, and different antimicrobials to consider. Even when we restrict our 

view to a single bacterial species and a single antimicrobial, different clones (colony 

forming units) within a sample will demonstrate the ability to grow in different 

concentrations of antimicrobial (MIC). Alternatively, given what we know of the ability 

of resistant genes to cross species boundaries within intestinal systems (horizontal 
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transfer) (Huddleston, 2014), we might believe that we need to consider the presence of 

resistance genes throughout the whole bacterial population. The description of a sample 

as “susceptible” or “resistant” therefore represents a single binary summary of the 

whole bacterial population, its sampling and testing processes. We could think of this 

population summary as being analogous to providing a summary statistic from a sample. 

We do not believe that the summary statistic fully describes the population, but it may 

be useful as an indication of one aspect of the population's distribution. 

We know that the density of bacteria in faeces can be very high and can vary from 

animal to animal by orders of magnitude (Smith and Crabb, 1961) and we know that the 

isolate-level prevalence within a sample of E. coli that are resistant can vary greatly 

(Humphry et al., 2002). Therefore even when we test as many as eight isolates we 

identify fewer samples as being resistant compared to when we test using the streak 

plating method. It is valuable to demonstrate this empirically and to give quantitative 

estimates to the relationship between methods. The streak plating method is inherently 

capable of screening a very large, but not quantified, number of isolates at one time. We 

also note that it is common for studies of prevalence of resistance to test one isolate per 

sample (see appendix) and this is likely to affect resistance prevalence estimates to a 

greater extent than in the case of eight isolates per sample (Table 2). This suggests that 

streak plating would be more sensitive or less specific than testing one or eight isolates 

per sample - with the caveat that there is no gold standard. 

To show one potential use of our results, we back-calculated our prevalence estimate 

from a randomly sampled baseline historic study had we used one or eight isolates 

determined resistant or susceptible using a breakpoint defined method (Table 2). This 

back-calibration is only applicable if we assume that the relationship between the two 

tests was the same in the population considered by the historic baseline study as it was 
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in our more recent comparative study. The most important assumption is that the 

frequency distribution of number of resistant isolates within a sample that tests 

resistant using streak plating has stayed approximately the same. The similarity in the 

conditional probabilities (Table 3) between ampicillin and nalidixic acid indicate that for 

faecal samples, the statistical relationship between streak plating results and isolate 

based results may be fairly consistent across populations. The wide confidence intervals 

around these conditional probabilities is a consequence of the low numbers of samples 

in our study. In the absence of any knowledge to the contrary, assuming that 

relationship to be the same is the most parsimonious position to start - until evidence is 

found to the contrary. Again, our back-calibrated estimates for prevalence of resistance, 

using one or eight isolates, are substantially lower than those originally reported, based 

upon the streak plating method. Our primary conclusion is that the prevalence estimates 

that researchers produce are a function of the laboratory method of summarising the 

multitude of latent “data” that are the population of bacteria of interest in a sample.  

Given how much the results we present depend on the method used, it is our belief that 

the scientific community, even at this stage, ought to be open-minded to using the best 

available method to answer a particular question. For example, highly sensitive methods 

such as streak plating, spread plating or genetic screening for resistance genes through 

PCR or whole gene sequencing might become more relevant as we attempt to 

understand the antibiotic resistance “systems map” better (Department of Health, 

2014). There are environments (such as livestock holdings or hospitals) in which 

antibiotic use, through natural selection pressure, might quickly and substantially 

amplify even very low levels of resistance. Therefore using a measure that is effective at 

identifying resistance even when present in low levels, may be a better predictor of 

future clinical problems or transfer of resistance than a method which focusses on a 

small number of isolates.  
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There is another important potential advantage of systems of measurement that screen 

samples of bacteria rather than only testing individual picked isolates. Screening 

samples inherently takes into account, without necessarily measuring directly, the 

bacterial density of the sample (Humphry and Gunn, 2014). When modelling risk of 

transfer of bacteria from one environment to another, the bacterial density is an 

important contributor to the risk (Gerhardts et al., 2012). Streak plating, plate screening 

and sample screening for genetic markers of resistance fulfil this function of inherently 

accounting for bacterial density within their system of measurement. Methods such as 

streak plating do not however, by themselves, offer estimates of bacterial density, but 

they are positively correlated with bacterial density (Humphry and Gunn, 2014). 

In conclusion, we hope we have presented sufficient evidence to support our thesis that 

the prevalence estimate of antibiotic resistance is greatly dependent on the method 

used. The extent of this we believe may surprise many. Sample level methods, not based 

on individual isolates, but screening the sample as a whole can be much more sensitive 

at identifying low within-sample prevalences of resistance. We present the argument 

that sample level screening techniques in the future should be an important part of the 

research community’s armoury when trying to populate systems level models such as 

the “systems map” (Department of Health, 2014). Understanding which screening 

measure is best for particular clinical or research questions should therefore be one 

component of the widespread and escalating research effort demanded by society.  
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Figure 1. A flow diagram illustrating the algorithm for simulating results from the 

baseline data as if the samples had been tested using the isolate based method. 

 

Figure 2. Histogram for the frequency of samples based on the number of resistant 

isolates (out of eight tested from each sample) from those samples that tested resistant 

to ampicillin using streak plating. The black dots give the expected number of samples if 

the process were a purely binomial process with a single isolate-level prevalence for all 

samples that tested resistant using streak plating.  
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Figure 3. Frequency of MICs to ampicillin or nalidixic acid for each of the eight E. coli 

isolates from each of the forty samples in the comparative study. Light bars indicate 

isolates taken from samples that tested sensitive to antibiotic when tested using the 

streak plating method. Dark grey indicates isolates taken from samples that tested 

resistant to antibiotic when tested using the streak plating method. The EUCAST 

guidelines state that a threshold MIC of over eight mg/L should be deemed resistant.  

For nalidixic acid the BSAC guidelines state that a threshold MIC of over 16 mg/L should 

be deemed resistant. The results for ampicillin are in the top graph, results for nalidixic 

acid are in the bottom graph. 
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Table 1: The two antibiotics, the concentrations (µg/mL) used in the agar plates for 

testing the sample using the plate streak method and the MIC breakpoints chosen to 

determine an isolate’s categorisation as sensitive/resistant. 

Units in µg/mL Ampicillin Nalidixic acid 

Concentration used in streak plate 16 15 

Sensitive threshold for isolate MIC MIC a ≤ 8 MICb ≤16 

a. EUCAST, 2015;  

b. BSAC, 2012;  

 

 

Appendix I 

Eighteen references accessed online under the search terms: “prevalence antimicrobial 

resistance livestock” within the Web of Knowledge database: 

 

Reference Description of sampling method 
Clinical sample or 
not clinical sample 

(Argudín and Butayea, 2016) implied one isolate per sample but not explicit Not clinical 

(Alonso et al., 2016) 
"Up to 2 colonies per plate were selected for 
posterior identification Not clinical 

(Katakweba et al., 2016) Number of isolates per sample not stated Not clinical 

(Horigan et al., 2016) Review  

(Hanon et al., 2015) "one isolate/faecal sample" Not clinical 

(Van Boeckel et al., 2015) Review of usage  

(Guerra et al., 2014) Number of isolates per sample not stated Not clinical 

(Schwaiger et al., 2014) Number of isolates per sample not stated Not clinical 

(Burow et al., 2014) 
Review - unstated number of isolates per 
sample 

Treatment and 
control groups 

(Roug et al., 2013) Number of isolates per sample not stated Not clinical 

(Thai et al., 2012) Number of isolates per sample not stated Not clinical 
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(Kreausukon et al., 2012) Number of isolates per sample not stated Not clinical 

(Egger et al., 2012) Number of isolates per sample not stated Not clinical 

(Hur et al., 2012) Review  

(Williams et al., 2011) Faecal broth sample Not clinical 

(Guenther et al., 2010a) One colony per sample Not clinical 

(Guenther et al., 2010b) One colony per sample Not clinical 
(Padungtod and Kaneene, 
2006) 

One isolate per sample went through to AST 
testing Some clinical 

 

 

Figure Caption 
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Table 2. A cross classification of resistance to ampicillin and nalidixic acid for samples 

tested using the measured EUCAST or BSAC isolate MIC based method and the sample 

level streak plating method from samples taken in the calibration study.  

  

 

 Streak plating method 

 

   Sensitive Resistant 

MIC method. 

Sample resistant 

if at least one out 

of eight isolates 

resistant. 

Ampicillin Sensitive 26 8  

 Resistant 0 6*  

    

Nalidixic acid Sensitive 37 2 

 Resistant 0 1* 

 

Table 3. The conditional probabilities and confidence intervals (calculated assuming a 

binomial process using binom.test() in R) relating the probability of a sample testing 

resistant or sensitive using one test depending on the result from the other test. The 

symbol “|” is the statistical symbol for the conditional “given that”. 

 Ampicillin Nalidixic acid 

Pr(resistant isolates >0 | sample tested 

resistant with streak plating) 

0.43 (0.18, 0.71) 0.33 (0.008, 0.91) 

Pr(resistant isolates >0 | sample tested 

sensitive with streak plating) 

0 (0.00, 0.13) 0 (0.00, 0.09) 

Pr(a single isolate is resistant | sample tested 

resistant with streak plating) 

0.16 (0.10, 0.24) 0.25 (0.10, 0.47) 

Pr(a single isolate is resistant | sample tested 

sensitive with streak plating) 

0 (0.00, 0.13) 0 (0.00, 0.09) 
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Pr(sample tests sensitive with streak plating | 

sample contributed 0 resistant isolates from 

eight) 

0.76 (0.59, 0.89) 0.95 (0.83, 0.99) 

Pr(sample tests resistant with streak plating | 

sample contributed >0 resistant isolates from 

eight) 

1.00 (0.54, 1.00) 1.00 (0.025, 1.00) 

 

Table 4. The predicted base-line animal-level prevalences for resistance to ampicillin, 

simulated and based on either single or eight isolates.  Prevalence predictions presented 

with their percentile intervals in comparison to the prevalence estimated originally using 

streak plating. 

 

 

 

Animal-level (i.e. sample-level) prevalence estimate of ampicillin 

resistance 

 Streak plate 

animal-level 

prevalence 

from original 

baseline 

survey 

Simulated median 

and 95% percentile 

interval for animal-

level prevalence 

had one isolate 

been tested  

(EUCAST1sim) 

Simulated median 

and 95% percentile 

interval for animal-

level prevalence 

had eight isolates 

been tested 

(EUCAST8sim) 

Calves 88% 14% (11%, 18%) 31% (25%, 36%) 

Adult 

Cattle 

47% 7.6% (6.0%, 9.5%) 17% (14%, 19%) 

Sheep 19% 3.1% (2.2%, 4.1%) 6.7% (5.5%, 7.9%) 
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Table 5. The predicted base-line animal-level prevalences for resistance to nalidixic acid, 

simulated and based on either single or eight isolates.  Prevalence predictions presented 

with their percentile intervals in comparison to the prevalence estimated originally using 

streak plating. 

 

 

Animal-level (i.e. sample-level) prevalence estimate of nalidixic acid resistance 

 Streak plate 

animal-level 

prevalence from 

original baseline 

survey 

Simulated median and 

95% percentile interval 

for animal-level 

prevalence had one 

isolate been tested 

(EUCAST1sim) 

Simulated median 

and 95% percentile 

interval for animal-

level prevalence had 

eight isolates been 

tested 

(EUCAST8sim) 

Calves 6.69% 1.59% (0.64%, 2.87%) 2.23% (0.96%, 3.50%) 

Adult 

Cattle 

1.84% 0.49% (0.12%, 0.86%)  0.61% (0.12%, 1.10%) 

Sheep 0.64% 0.16% (0%, 0.40%) 0.16% (0%, 0.40%) 
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