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Abstract  16 

Biogas technology, as a pro-poor renewable energy source, has been promoted in Uganda since 17 

the 1980s by the government and NGOs. However, many of the biogas designs promoted have 18 

proved to be too expensive for the average Ugandan to afford. A cheaper flexible balloon 19 

digester has been proposed, but there have been lack of evidence on the economic viability of 20 

this design. The purpose of this study was to analyze the economic potential of a flexible balloon 21 

digester among smallholder farmers in Uganda using the tool of cost-benefit analysis. Primary 22 

data were obtained from survey of experimental households and 144 non-biogas households in 23 

central Uganda. The results revealed that the net present value was negative and the payback 24 

period was greater than the economic life of the digester. However, sensitivity analysis revealed 25 

that with a 50% reduction in investment cost the technology is financially viable for 67% of the 26 

households and to all households as a group (NPV= UGX5,804,730). The initial investment cost 27 

is a critical factor to viability and potential adoption. We suggest that government and 28 

development partners interested in the sector should consider strategies that could reduce 29 

strategies that could reduce the technology cost e.g., manufacturing low cost balloon digester 30 

locally. 31 
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1. Introduction  41 

Biogas
1
 has a long history, but it was not until the two oil shocks of 1973 and 1979 that energy 42 

production from renewable sources including biogas was considered as an element of energy 43 

policy (OECD, 1984). During the period between 1972 and 1982, international oil prices 44 

increased fivefold and then dropped steadily so that by 1987 they were roughly at the same level 45 

as in 1972.  In Uganda, biogas production dates back to the 1950s, and there have been growing 46 

attempts since 1985 to promote biogas energy technology by government, private initiatives and 47 

non-governmental organizations (NGOs). The NGOs that have spearheaded the promotion of 48 

biogas energy production include Heifer Project International (HPI), Adventist Relief Agencies 49 

(ADRA), African Medical and Research Foundation (AMREF) and Africa 2000 Network 50 

(Walekhwa, 2010). The NGOs’ initiatives have demonstrated the benefits of biogas production 51 

by installing the biogas digesters across Uganda. 52 

 53 

A study by Walekhwa et al. (2009) indicated that Uganda has a potential to generate 1740 Mtoe 54 

of energy from animal waste at a recoverable rate of 30%. If this energy is fully utilized, the 55 

health, economic and environmental outcomes of households would improve (Peipert et al., 56 

2008). However, most efforts aimed at promoting biogas in Uganda have mainly focused on 57 

feasibility of the biogas production from two digester designs i.e., the fixed-dome and floating 58 

drum digesters (Walekhwa et al., 2009; Winrock International, 2007). However, these digester 59 

designs have proved to be too expensive for the average Ugandan to afford (Winrock 60 

International, 2007). Walekhwa (2010) reported that the total cost for the fixed doom plant range 61 

between UGX 6 - 20 million (ca. USD 2000-7000), depending on the size of the plant. This is 62 

beyond the reach of most households in a country where the national level per capita income is 63 

just about USD 770 (World Bank, 2014). 64 

However, the economics and local preferences of alternative cost-effective designs of biogas 65 

digesters
2
 such as flexible balloon designs have not been fully investigated in Uganda. There has 66 

been only limited research in the economics of the flexible balloon digesters, especially on how 67 

the installation and maintenance costs of this cheaper biogas technology compare with the 68 

monetary savings made by households changing from fuelwood to biogas for domestic energy 69 

demand.  70 

The purpose of this study thus was to assess the economic feasibility of a cheaper biogas digester 71 

design, known as ‘flexible balloon’ design among smallholder farmers using a case study from 72 

Uganda. Detailed empirical data on a range of cost and benefit items associated to the ‘flexible 73 

balloon’ biogas digester design have come from an experimental/pilot household records 74 

                                                           
1
Biogas technology is an integrated waste management and clean and renewable energy production system. Biogas is produced 

through an anaerobic biological process using any available organic material such as cow dung, human excreta, and food wastes. 

The gas produced is similar to natural gas and is composed of 50-70% methane, the remainder being composed of carbon dioxide 

and traces of hydrogen sulfide and ammonia. It can be used mainly for heating, cooking, and electricity production. 
2 See appendix A for brief descriptions of the three most common biogas digester designs in use in Sub-Sharan Africa. 
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established in Tiribogo community in central Uganda. As part of the Department for 75 

International Development of the United Kingdom (DFID) funded ‘New and Emerging 76 

Technologies Research Competition (DFID NET-RC)’ grant in Africa, a total of nine flexible 77 

balloon digesters were installed in 2013 in nine smallholder farm households in Tiribogo village 78 

in central Uganda. The biogas digesters with 8 m
3 

volume and made from more robust 850 g m
-2

 79 

grade plastic was used in the study. The digesters were installed of the plug-flow type. This 80 

consist of a bag with an elongated shape, with a length to width ratio of about 5:1. The wet 81 

organic waste is fed into one end of the digester and the effluent material comes out of the other 82 

end. The bag (digester) is mounted in a shallow ditch which supports the digester (bag) with the 83 

feedstock contained within it. The biogas produced bubbles out of the decomposing organic 84 

waste and is stored in the upper part of the bag. The gas is piped from the bag through a gas 85 

connection on top, and from there it is piped into the kitchen. In its least complex form, there are 86 

no systems for stirring or heating up the contents of the digester. 87 

These digesters were monitored for about a year and detailed empirical records on the socio-88 

economics, technical, and operational aspects of the installed digesters were obtained.  The aim 89 

was to obtain empirical data that would help assess the technical (e.g., quantity of gas), social 90 

(e.g., household health impact) and economic (i.e., the costs and benefits) of alternative biogas 91 

design in Uganda in particular and establish decision support evidence for the potential of cost-92 

effective biogas digesters design in Sub-Saharan Africa. It focused on cheaper designs of 93 

digesters to encourage wider uptake of biogas technology amongst the poor members of the 94 

community and to provide a long-term energy supply.  95 

 96 

This paper focuses on addressing two key questions related to the economic aspect of the flexible 97 

balloon design: (i) How do the economic cost of acquiring the technology including maintenance 98 

and operational costs compare to the costs saved and additional benefits accrued in using the 99 

flexible balloon digester? (ii) Do smallholder farm households better off by changing their 100 

domestic energy use from fuelwood to biogas? In order to address these questions, we applied a 101 

cost-benefit analysis. 102 

2. A brief overview of cost-benefit analysis  103 

CBA is an applied economic tool often used to guide the allocation of resource or investment 104 

decisions or policy alternatives or decisions involving the management of natural resources 105 

(OECD, 2006; Park and Oxon, 2012). It is a technique that is used to estimate and sum up (in 106 

present terms) of the future flows of benefits and costs of resource allocation decisions or policy 107 

alternatives to establish the worthiness of undertaking the stipulated alternative and inform the 108 

economic efficiency to the decision maker. The basic rationale for CBA is rooted in the 109 

‘principle of potential compensation’ (Hicks, 1939; Kaldor, 1939). This principle states that an 110 

action is more efficient if those that are made better off could potentially compensate those that 111 

are made worse off. In situations where benefits and costs of an action are spread over time, 112 
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decisions are based on comparing the present value of benefits and costs. With regard to 113 

decisions related to technology adoption, the role of CBA is to measure the benefits and costs of 114 

technology adoption and consequently enables the comparison of the two systems – that with the 115 

proposed change and that of without it. The with-and-without approach is at the heart of the cost-116 

benefit process.  117 

CBA has been applied in the economic assessment of investment in various environmental and 118 

renewable energy technologies including biogas digesters. Kandpal et al (1991) used the CBA 119 

framework to analyze the economics of family-sized floating dome biogas digesters in India. 120 

Gwavuya et al (2012) and Walekhwa et al (2014) have applied the CBA tool to assess the 121 

economic potential of biogas technology as an alternative source of household energy in Ethiopia 122 

and Uganda respectively. Using a case study in Valmiera city in Latvia, Dobraja et al (2016) 123 

applied CBA to evaluate the economic value of environmental aspects of waste-to-energy 124 

process to guide prioritization of investment options. Zhang and Chen (2016) used a modified 125 

version of the traditional CBA and applied emergy-based CBA to conduct a comprehensive 126 

assessment of the economic and ecological performance of urban biogas project. Wresta et al 127 

(2015) implemented the tool of CBA in the economic analysis of cow manure biogas as energy 128 

source in small scale ranch. Most recently, Abbas et al (2017) employed a benefit-cost ratio 129 

decision criteria to estimate the financial benefits of adoption of biogas technology by rural 130 

farmers in Pakistan.   131 

However, applying CBA in adoption decision, particularly on environmental decisions involve 132 

various challenges. One major challenge arises from the fact that many environmental goods and 133 

services are not traded directly in market transactions. Hence, attaching monetary values to them 134 

becomes a difficult task (OECD, 2006). Despite remarkable developments in non-market 135 

valuation methods, attaching accurate values to a large number of environmental goods and 136 

services remains a big challenge. Another major controversy in applying CBA is the choice of 137 

the discount rate for converting future flows of benefits and costs into current terms (called 138 

‘discounting’). From an economic point of view the discount rate should reflect the decision 139 

maker’s time preference. In public projects, choosing a relevant time horizon from the 140 

perspective of various stakeholders is another important consideration in CBA application. 141 

Despite the challenges, CBA remains an important analytical tool in environmental decision 142 

making. 143 

 144 

This study applied the CBA using empirical data on costs and benefits obtained from the 145 

experimental households in Tiribogo community (south-west Uganda) and questionnaire survey 146 

of sampled households in the vicinity of the experimental community in Mpigi district (Uganda). 147 

The method of estimating the cost and benefit items are detailed in section 3.3. 148 

 149 
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3. Materials and Methods  150 

3.1 Description of the Study Area 151 

The study was conducted in Mpigi district, Muduuma Sub-county in Tiribogo community 152 

(Figure 1). Muduuma Sub-county is located on 0°21'5" N and 32°17'56" E and has average 153 

minimum and maximum temperature of 15 
o
C and 28 

o
C respectively. The areas experience a bi-154 

modal rainfall pattern, with the first season starting in March-April and ending in May. The 155 

second rain starts in July and go up to November and are usually more reliable. The annual 156 

rainfall ranges from 800mm and 1200mm. Tiribogo village is bordered by Muduuma forest 157 

reserve with dominant vegetation consisting of savannah woodland.  The Village has a total 158 

population of 4,800 whose main livelihood is agriculture.  159 

 160 
Figure 1. Map showing the study area 161 

 162 

Agriculture in the area is characterized by subsistence mixed crop-livestock farming, with 163 

farmers rearing animals and growing both food and cash crops. The food crops mainly grown in 164 

the Mpigi district where Tiribogo community is located and the respective quantities produced as 165 

per the Uganda Agricultural Census 2008/2009 include banana (87,658 megatons (Mt)), sweet 166 

potatoes (21,478 Mt), maize (19,578 Mt), beans (7,212 Mt) and horticultural crops such as 167 

cabbages and indigenous vegetables e.g., nakati (Solanum aethiopicum) and amaranthus 168 
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(Amaranthus caudatus) while coffee (15,000 Mt) is the main cash crop grown. The animals 169 

reared and their respective population include pigs (108,082), goats (102,828) and cattle 170 

(216,621), and these were reared on small scale with most households keeping at least one of 171 

these animals. Tiribogo village has no grid connection and the main source of energy used for 172 

lighting is kerosene. Most of the household use fuelwood as their main source of energy for 173 

cooking, although some of the households use charcoal for cooking. Fuel wood and charcoal are 174 

the main source of energy for cooking because the village is bordered by the forest where trees 175 

are cut and used for fuelwood and charcoal. Institutions like schools consume a lot of fuelwood 176 

energy for preparing students meals.  177 

The area was purposely selected because it is where the flexible balloon digesters were being 178 

experimented under DFID funded NET-RC project. The project provided flexible balloon 179 

digesters to nine selected households in Tiribogo village to test and document the technical, 180 

social, and economic performance of an alternative cheaper biogas digester design which would 181 

help provide decision support evidence for adoption and long term supply of energy to the 182 

community. 183 

3.2 Sampling and field data collection 184 

The data used in this study have come from the survey of Tiribogo community in central Uganda 185 

where the flexible balloon digesters was being experimented. This area was identified with the 186 

highest concentration of households with livestock that was to provide feedstock for the biogas 187 

digesters. The initial ground work began with identifying the nine households that would be 188 

given the nine flexible balloon digesters. To identify pilot households, all the 54 households in 189 

the community that produce animal manure were visited and interviewed for about 30-minutes 190 

each using a structured questionnaire, consisting of a list of closed questions on how the 191 

household manages its resources, such as farm, manure, water, fuel wood and kitchen residues. 192 

The data collected was used to generate fact sheets and to rank the suitability of households for 193 

installation of a flexible balloon biogas digester. A weighted multi criteria approach consisting of 194 

four factors – availability of feedstock, access to water, household’s current fuelwood 195 

consumption and household labour availability – were used to identify pilot households.  196 

 197 

Once the pilot households identified, farm household data were collected in two different 198 

timelines: (i) Baseline survey (before digester installation): a baseline survey was conducted in 199 

July 2013 to determine the situation before the digesters were installed with the nine households 200 

selected. The sampling frame for the baseline survey included the nine experimental households 201 

and 144 randomly selected other households that were within a close proximity of each of the 202 

nine households i.e., 16 randomly selected households to each pilot household based on  203 

community’s local council register. A face-to-face structured questionnaire interview was 204 

administered by the first author (as part his graduate study research) and supervised by his 205 

advisors. (ii) The second round follow-up survey was conducted six months after the installation 206 
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of biogas digesters. This was to give time for the pilot households to undergo a change in living 207 

as a result of using biogas. The follow-up survey on the nine pilot households was focused on the 208 

use of biogas energy, feedstock supply, changes in the household’s labour demand and other 209 

resources. All the 144 ‘non-biogas’ households included in the baseline were also interviewed in 210 

the follow-up survey to understand neighborhood effects and the likelihood of technology 211 

adoption.     212 
 213 

 3.3 Estimation of the cost and benefit items 214 

The major cost components of the flexible balloon digester include the investment cost incurred 215 

to acquire the digester and operational and maintenance costs. The key part of operational cost is 216 

household labour time on various activities such as water collection, collecting substrate, mixing 217 

feedstock and feeding the digester. The operational costs were obtained by asking the farmers 218 

with digesters how much time they spent on carrying out these activities each time they fed the 219 

digester.  220 

 221 

The benefits gained include biogas for cooking and lighting, use of slurry as a fertilizer, 222 

improvement in health and hygiene, and sale of the biogas produced by the household (if they 223 

manage to produce biogas more than the household demand). Biogas benefits in the form of 224 

‘reduced costs’ due to the substitution of biogas to fuelwood and kerosene are the most important 225 

benefit items. The reduced costs comprises of the reduction in labour for fuelwood collection and 226 

the cost of kerosene saved. There exists rural labor market in Tiribogo area partly due to the 227 

proximity of the area to nearby population centres. The local rural wage daily rate of 5000 228 

Ugandan shillings (UGX
3
) for unskilled workers was used to convert labour time into monetary 229 

value estimates. 230 

 231 

In order to determine the value of the reduced labour cost for fuelwood collection or expenditure 232 

on fuelwood, households were asked the frequency of fuelwood collection each month or the 233 

amount they spend if they would buy fuelwood before and after they installed the digester. These 234 

information were captured in the baseline as well as follow-up surveys. The time saved from 235 

fuelwood collection was determined as the difference between the time spent for fuelwood 236 

collection before and after the installation of the digester.  237 

 238 

Reduced costs on kerosene are costs that would no longer be spent on buying kerosene if light is 239 

provided by biogas. Savings made from replacing kerosene for lighting with biogas were 240 

determined as the difference between the amount spent on kerosene before installation and after 241 

installation of the digesters. 242 

 243 

                                                           
3
This wage rate is for 6 hours of effective work time. 1USD is about 2600 UGX during the survey time.  
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The amount of biogas generated per year in mega joules by each household was recorded and 244 

estimated during the study (Appendix B). To estimate the value, the mega joules were converted 245 

to electricity equivalent using a conversion factor (one Kilowatt hour of electricity is equivalent 246 

to 3.6 mega joules). In Uganda, the price of 1 Kilowatt of electricity in 2013 was 500 Uganda 247 

shillings (UGX
3
). The number of kilowatts were multiplied by the unit cost of the Kilowatt. The 248 

data from the experimental households were collected for six months but the results were 249 

converted into annual equivalent. Some of the benefits from adoption of biogas technology such 250 

as the positive health impacts and clean household environment do not have market values. For 251 

such non-marketed benefit and cost items we used data generated through a contingent valuation 252 

method (non-market valuation approach)
4
 (Singh and Sooch, 2004; Sabah and Jeanty, 2011; 253 

GIZ, 2010) conducted in the study area.  254 

 255 

On the other hand flexible balloon digesters have certain technical difficulties which may 256 

undermine adoption of these technologies. The plastic tube is vulnerable to damage if not 257 

adequately protected from animals and other potential hazards. It can be easily damaged by 258 

animals, humans (children), sharp objects, etc. It can be also degraded by prolonged exposure to 259 

Ultraviolent (UV) light.  Flexible tube digesters have a constant volume, which means that the 260 

biogas produced has a variable pressure, depending on the volume of gas in the digester. After 261 

prolonged periods of cooking, the gas pressure can drop. The gas pressure and activity of the 262 

micro-organisms decomposing the organic waste are also more affected by changes ambient 263 

temperatures than in designs with better insulation, such as fixed dome digesters that are 264 

constructed underground. The pipe that transports the gas from the digester to the kitchen can 265 

bend, leading to possible blockage of the gas line. 266 

 267 

3.4 Analytical approach  268 

The net present value (NPV) and payback period (PBP) criteria were used to evaluate the 269 

financial viability of household’s investment in a flexible balloon digester. NPV is defined as the 270 

difference between the sum total of the present value of benefit streams and that of cost streams 271 

(including the initial investment cost) over the life of the project. Equation (1) presents the 272 

mathematical expression of the NPV computation (GIZ, 2010; Walekhwa et al., 2009). The 273 

future sum of money is discounted back to present to find the present value of the expected 274 

future sum. In this study, 11.5% discount rate was chosen based on the interest rate charged by 275 

Bank of Uganda in disbursing loans to banks in the survey (2013). The study assumed 5 years of 276 

useful economic life for a flexible balloon digester when adequately maintained.  277 

                                                           
4
 As part of the project, a parallel survey on the valuation of biogas technology using a stated preference method 

(contingent valuation) was conducted in the study area. 
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where INV is the initial investment for the flexible balloon digester (UGX) and CFk is the annual 279 

net saving in the k
th

 year (UGX) and d  is the discount rate (%). Under the NPV criterion, 280 

investments with positive NPV are considered to be economically feasible. This implies that the 281 

rate of return on the investment is higher than the discount rate used and is greater than the 282 

opportunity cost of capital used to finance the investment. Projects with a negative NPV should 283 

be rejected while a zero NPV makes the investor indifferent, in which case other factors and 284 

benefits relating the investment should be considered (Walekhwa, 2010). 285 

The PBP refers to the number of years it would take for an investment to return the original cost 286 

of the investment through the annual net cash revenue it generates. The net saving provides a 287 

basis from which payback period can be calculated. Assuming a constant net annual saving or 288 

cash flow (CF) from the digester (Singh and Sooch, 2004), the PBP can be calculated the project 289 

can be obtained by dividing the initial investment cost (IC) by the net annual savings (equ.2): 290 

)2(/  CFICPBP  291 

4. Results and discussion  292 

4.1 Results from the survey of experimental households  293 

The majority of the households (90% and 89%) use fuelwood for cooking and kerosene for 294 

lighting respectively. Fuelwood is affordable and fairly available from the surrounding forest. 295 

Fuelwood is often perceived as the cheapest form of energy available to low income households 296 

(da Silva and Sendegeya, 2006). Similarly use of kerosene for lighting is attributed to limited 297 

access to electricity. The findings are consistent with the statistics reported by MFPED (2002) 298 

where over 80% of households in Uganda use kerosene for lighting. The majority (85%) of the 299 

households reported that they get their fuelwood from the natural forest. This is because the 300 

households are in close proximity to the forest and so could easily access to fuelwood. Similar to 301 

this finding, Shrestha (2010) in a study on the prospects of biogas in terms of socio-economic 302 

and environmental benefits to rural community of Nepal, found that the local people in the study 303 

area depended on the forest resources as the main source of fuelwood.  304 

 305 

The findings furthermore reveal that households reported were willing to pay UGX 135,000 (just 306 

over USD 50 per digester) to purchase a new flexible balloon digester. Considering the actual 307 

cost of a flexible balloon digester (UGX 1,332,630), ca. USD 500, it portrays that the amount 308 

households were willing to pay for a new digester is 10 times less than the actual cost of the 309 

digester. The high actual cost is attributed to importation and the low willingness to pay can be 310 

explained by the low household income. 311 
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Table 1 indicates that cooking with biogas takes more time than using fuelwood for all meals 312 

except breakfast though the latter is not statistically significant. The results show that cooking 313 

using fuelwood takes shorter time than that of biogas. The intensity of the flame obtained with 314 

fuelwood can be increased to produce hotter flame by feeding the fire, whereas the intensity of 315 

flame produced by biogas cannot be increased to suit for a bigger cooking utensils coupled with 316 

small cooking stove. The calorific value of 1m
3 

of biogas is 20 MJ and its burning efficiency is 317 

34% (Gwavuya et al. 2012) but gas production from the plastic digester can be affected by 318 

unfavorable weather condition (Agrahari and Tiwari, 2013) whereas 1 kg of firewood has an 319 

average calorific value of 18 MJ and a use efficiency of about 10% (Gwavuya et al. 2012). This 320 

means that provided fuelwood is dry, addition of more fuelwood to the stove will likely increase 321 

the calorific value which makes cooking faster. With regard to cooking breakfast, surveyed 322 

households claim that school children and household members working off-farm leave the house 323 

early in the morning and they are not served with freshly cooked breakfast. So, cooking breakfast 324 

for the remaining few members of the household using a small saucepan well suited to the small 325 

cooking stoves with biogas energy takes a shorter cooking time than that of fuelwood (Table 1).  326 

 327 

Table 1: Analysis of variance (ANOVA) of cooking time for various meals using biogas and 328 

fuelwood 329 

 Fuelwood Biogas Mean sum of 

square 

Test 

Meal Average 

time 

taken in 

minutes 

per day 

Std. Average 

time taken 

in minutes 

per day 

Std. Between 

group 

Within 

group 

F-observed p-

value 

F-critical 

Breakfa

st 

24 12.2 30 2.6 168.1 

 

82.8 2.029 0.174 4.494 

Lunch 114 4.0 120 2.6 168.1 

 

11.3 14.865 0.001 4.494 

Dinner 124 1.4 118 3.9 168.1 

 

8.6 19.643 0.000 4.494 

Supper 108 11.6 120 2.6 648.0 

 

71.0 9.127 0.008 4.494 

Source: Survey data, 2013; Std= standard deviation 330 

The finding in this study (in relation to cooking time) is in contrast to the findings in a number of 331 

studies. For instance, the study by SNV (2009) in Bangladesh reported that 48.6 minutes were 332 

saved every day by converting to biogas (SNV, 2009). Similarly, Walekhwa (2010), Agrahari 333 

and Tiwari (2013), and Garfi et al., (2011) have shown that cooking using biogas takes shorter 334 

time than cooking using fuelwood. Moreover a study in the Peruvian Andes involving 12 rural 335 

families in a project to substitute biogas for firewood, showed a decrease of firewood 336 

consumption by 50%–60% and cooking time by 1 hour (Garfi et al., 2011). The likely reason for 337 

the divergence is attributed to the digester design and the small size of cook stove used in this 338 
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study area which may necessitate cooking more than once in some households to serve a meal 339 

for a large household size. Fact Foundation (2012) reported that when selecting a stove, it is 340 

important to determine the required power and small stove size could increase cooking time in 341 

comparison to the traditional way of cooking.  342 

 343 

In designing a low cost biogas pressurizing system, similar to the one used in this study but with 344 

slight modification, Geiger and Regan (2014) conducted an experiment to test the time taken 345 

while cooking 0.45 kg of dry beans using the wood burning stove and the biogas digester in 346 

Nicaragua. The results revealed that it took 120 and 105 minutes to cook 0.45 kg of dry beans 347 

using the wood burning stove and biogas digester respectively. The time taken in cooking lunch 348 

and supper using fuelwood in this study is slightly lower than that of the study conducted by 349 

Geiger and Regan (2014), by 6 and 12 minutes respectively (Table 1). Whereas cooking using 350 

biogas in Geiger and Regan (2014) experimental test takes a shorter time than in this study, 351 

because the digester in their experiment was designed to regulate and avoid gas losses and thus 352 

more gas was available and this took less time to cook. Another reason for the discrepancy could 353 

be the inefficiencies of a plastic digester such as failure to maintain gas for a long period. For 354 

instance, Njoroge (2002) observed that with a tubular plastic digester, there could be problems in 355 

maintaining high gas pressure for the extended period of time needed to cook a typical meal, 356 

suggesting that cooking food using biogas from a tubular plastic digester is likely to take a longer 357 

time than using other biogas digester designs. Agrahari and Tiwari (2013) also reported that 358 

fluctuations in gas production, especially in the morning and late evenings, are very inconvenient 359 

and result in a longer cooking hours. The issue of low gas production in the morning and evening 360 

is based on how well the digester is insulated from weather elements, such as sun, rain, and 361 

wind.  362 

 363 

Table 2 shows the costs and net savings by an individual household substituting biogas energy 364 

from flexible balloon digester for both fuelwood (cooking energy) and kerosene (lighting). All 365 

the nine households using the biogas had a positive net annual savings as a result of substituting 366 

biogas for fuelwood and kerosene. 367 

 368 

369 
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Table 2: Costs and savings associated with substituting biogas energy for fuelwood and kerosene 370 
  Experimental Household No. 

HH1 HH2 HH3 HH4 HH5 HH6 HH7 HH8 HH9 

Initial investment (in 

'000 Uganda shillings) 
1,333 1,333 1,333 1,333 1,333 1,333 1,333 1,333 1,333 

Costs associated with biogas digester  operation (in '000 Uganda shillings) per year 

Collecting water  12 36 54 25 12 8 42 67 18 

Collecting substrate 20 24 24 14 16 30 24 56 12 

Mixing of feedstock 30 18 24 14 12 20 48 28 6 

Feeding  the digester 12 18 12 14 8 10 12 42 12 

Total cost (A) 74 96 114 67 48 68 126 193 48 

Amount spent/saved   (in '000 Uganda shillings) per year 

Savings from fuelwood  120 296 268 272 284 208 228 320 212 

Savings from kerosene  50 25 18 23 20 90 29 96 48 

Total saving (B) 170 321 286 295 304 298 257 416 260 

Annual net savings 

(‘000 UGX) (B-A) 
96 225 172 228 256 230 131 223 212 

Source: Survey data, 2013 371 
Exchange rate during the survey period: 1US $ = 2600 UGX 372 
 373 

Collecting water and feeding the substrates to the digester are the two major labour demanding 374 

activities. If water source or collection point is in close proximity to the household, the 375 

household incurs low operational cost. The low biogas cost of HH5 and HH9 (Table 2) are 376 

mainly attributed to close proximity of these households to water sources. In the case of using 377 

hired labor, the seasonal fluctuations in household labour demand and supply affect the cost. 378 

Because, in agrarian village economy, there is high demand for labour during the peak-farm 379 

season whereas excess labour supply is often the norm during off-peak farm season. Technical 380 

capacity of the household to undertake maintenance of the biogas system or availability biogas 381 

technicians at affordable price is another important factor in determining the cost and adoption of 382 

biogas technology (Biocrude Technology Inc., 2008). 383 

 384 

Table 3 shows the PBP and NPV for the nine individual pilot households and to the households 385 

as a group. The results show that the PBP of investment for all the households more than the five 386 

years expected economic life of the digester. This means that all the nine households will take 387 

too long to pay back the start-up costs of investing in the digester. This is attributed to the initial 388 

investment cost for a flexible balloon digester, which although lower than other designs, remains 389 

too high to allow payback within the lifetime of the digester. In a field assessment of the 390 

performance of flexible balloon digesters in Kenya, GIZ (2010) estimated a PBP of 17 months. 391 

This is far lower than the estimates reported in the present study (minimum 5.2 years). The 392 

reason for such a large deviation may be explained by the fact that in this study we accounted for 393 

annual net saving whereas the study by GIZ (2010) used annual gross savings as the denominator 394 

in computing the PBP. 395 
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 396 

Table 3 further shows that all households experienced negative net present values despite a 397 

positive net annual savings. This implies the annual net savings are inefficient to cover the high 398 

initial investment costs of the technology, suggesting that it is not worthwhile to invest in a 399 

flexible balloon digester at the current investment cost. Similarly, the negative net present values 400 

of the households as a group is attributed to the high investment cost that outweigh the total 401 

financial benefits from using the digester. 402 

 403 

Table 3. Net present values (NPV) 404 

 

 

 

HH.No. 

Investment cost and net savings ('000 UGX) - substitution of 

biogas for fuelwood and kerosene 
PV of net 

savings 

NPV= (-) 

investment 

cost + PV net 

savings 

 

PBP 

Investment 

cost  
Yr1 Yr2 Yr3 Yr4 Yr5 ('000 UGX) 

HH1 (1333.00) 96 96 96 96 96 350.39 -982.61 13.9 

HH2 (1333.00) 225 225 225 225 225 821.22 -511.78 5.9 

HH3 (1333.00) 172 172 172 172 172 627.78 -705.22 7.7 

HH4 (1333.00) 228 228 228 228 228 832.17 -500.83 5.8 

HH5 (1333.00) 256 256 256 256 256 934.37 -398.63 5.2 

HH6 (1333.00) 230 230 230 230 230 839.47 -493.53 5.8 

HH7 (1333.00) 131 131 131 131 131 478.13 -854.87 10.2 

HH8 (1333.00) 223 223 223 223 223 813.92 -519.08 6.0 

HH9 (1333.00) 212 212 212 212 212 773.77 -559.23 6.3 

All HHs (11997.00) 1773 1773 1773 1773 1773 6471.23 -5525.77 6.8 

Source: Survey data, 2013. Exchange rate 1 US $ = 2600 UGX 405 

 406 

This is consistent to the findings of Bishop and Shumway (Bishop and Shumway, 2009), who 407 

also looked at the NPV of a tubular digester. White et al. (2011) used hypothetical molecular 408 

biogas digester and found that a biogas digester was financially viable. This was because the 409 

estimated capital for a hypothetical molecular biogas digester was based on the current available 410 

technology. However, Walekhwa (2010) and Winrock International (2007) both reported that 411 

fixed dome digesters were financially viable in Uganda. A fixed dome has a longer lifetime than 412 

a flexible balloon digester, being constructed from robust materials (like cement, sand, and 413 

gravel) and protected underground, rather than the less durable, puncture prone plastics used in 414 

the flexible balloon design.  415 

4.2 Sensitivity analysis  416 

The assumptions and economic variables used in the analysis may change over time. Therefore, a 417 

sensitivity analysis was conducted to test how sensitive the results are for changes in some of the 418 

values of the factors used in the analysis. We considered changes in investment cost and discount 419 

rate. The results of sensitivity analysis show that if the cost of the digester is reduced by 50%, the 420 

flexible balloon digester is financially viable for 67% of the induvial households and fully viable 421 
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if all the study households are considered as a group in the study area (NPV= UGX5,804,730) 422 

(Table 4). However, reducing the discount rate by 50% shows that the digester still remains not 423 

viable financially for all experimental households (Table 4).  424 

 425 
Table 4: Results of sensitivity analysis (Changes in NPV (‘000 UGX)) 426 

HH.No. 

NPV (at Current cost 

of investment) 

NPV (50% reduction 

investment cost) 

NPV (50% reduction 

discount rate) 

 

(UGX 1333000) (UGX 666500) (d=5.75%) 

HH1 -982.61 -316.11 -925.85 

HH2 -511.78 154.72 -378.74 

HH3 -705.22 -38.72 -603.52 

HH4 -500.83 165.67 -366.01 

HH5 -398.63 267.87 -247.26 

HH6 -493.53 172.97 -357.53 

HH7 -854.87 -188.37 -777.41 

HH8 -519.08 147.42 -387.22 

HH9 -559.23 107.27 -433.87 

All HHs -5525.77 5804.73 -4477.41 

Source: Survey data, 2013 427 
Exchange rate 1 US $ = 2600 UGX. 428 

4.3 Results from the survey of ‘non-biogas’ households  429 

To understand the perception, attitudes and ex ante costs and benefits of flexible balloon biogas 430 

technology, 144 households not using the technology, but located in close proximities to the 431 

experimental households, were surveyed before and after the installation of biogas digesters in 432 

the study area. With regard the potential of biogas energy for cooking, 80.7% and 95.5% of the 433 

households, before and after the installation of the digesters respectively, perceived that biogas 434 

could replace fuelwood for cooking (Table 5). The increase in the number of respondents after 435 

the installation of the digesters is attributed to the neighborhood effect that cooking with biogas 436 

is more convenient and clean than fuelwood (Breffle et al., 1997; SNV, 2009). In addition, all the 437 

surveyed households reported they prefer to replace biogas energy for kerosene for lighting 438 

(Tooraj and Rabindra, 2010). This is explained by households’ perceived energy cost reduction 439 

by shifting to biogas, assumed to be a 75% reduction of household lighting energy cost (Winrock 440 

International, 2007). 441 

442 
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Table 5: Perception of non-biogas households on the benefits of flexible balloon digester 443 
Use Perception towards […] Before installation 

(%) 

After installation 

(%) 

Cooking  Use biogas for cooking all meals 

(Replace other sources of energy) 

80.7 95.5 

  Use biogas for cooking some of the 

meals (will not completely replace 

other sources) 

18.0 4.6 

  I would not use biogas for cooking 

meals at all (continue to use other 

energy sources) 

1.3  

Lighting  Replace current sources of lighting 

by biogas energy 

72.3 100 

  Use biogas in addition to other 

sources of lighting 

26.4 - 

  Will not use biogas for lighting at all 1.4 

 

- 

Source: Survey data, 2013 444 

 445 

Table 6 shows the ex-ante analysis of the net present value (NPV) of flexible balloon biogas 446 

digester to non-biogas households. Both ex ante net annual savings and the NPV of substituting 447 

flexible balloon biogas technology to fuelwood energy are negative for an average household,   448 

suggesting that a flexible balloon digester would be not viable financially among the non-biogas 449 

households. Survey data shows that the biggest cost of this technology, about 60%, accounted for 450 

the initial cost of purchasing the technology. 451 

Table 6. Net present value and payback period for non-biogas households 452 

 

Items  
Average amount NPV PBP 

('000 UGX) ('000UGX) 

 

8.6 

Collecting water  249.6 

-1,422.60 

Collecting substrate  275.6 

Mixing feedstock 208 

Feeding the digester  174.2 

          Subtotal   (A) 907.4 

Fuelwood  555.6 

Kerosene  196.8 

        Subtotal (B) 752.4 

Net saving (‘000 UGX) substitution of biogas 

energy for fuelwood and  kerosene (B-A) -155 

Source: Survey data, 2013 453 
Exchange rate 1 US $ = 2600 UGX 454 

 455 

The payback period is 8.6 years is far greater than the economic life of a flexible balloon 456 

digester. This further signals the economic unviability of this technology, especially among the 457 
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rural households with high time preference. Actually, the based on this results the biogas digester 458 

will wear out before the household recoup the investment cost. Overall, the results show 459 

adoption of this technology could worse off the household’s welfare. 460 

 5. Conclusion 461 

As it is the case in the majority of other African rural areas, fuelwood and kerosene are the 462 

dominant sources of cooking and lighting energy respectively in rural Uganda too. But using 463 

fuelwood for cooking has a number of disadvantages to the household and to the environment, 464 

such as poor indoor air quality and the consequent health impacts, labor time for fuelwood 465 

collection, deforestation, and environmental degradation. Similarly, use of kerosene for lighting 466 

is expensive given the meager income level of most rural households. Our findings indicate that 467 

local community have a good understanding of these impacts. This is demonstrated by their 468 

willingness and preferences to change from fuelwood and kerosene to biogas energy for cooking 469 

and lighting respectively. About 95% of survey households reveal their preferences to substitute 470 

clean and cheaper energy sources to their current energy sources. However, even a flexible 471 

balloon biogas digester which is claimed to be cheaper by many proponents of biogas technology 472 

compared other design e.g., fixed-dome design, is still not affordable to the majority of poor 473 

households. About 60% of the total cost of flexible balloon digester is accounted for by initial 474 

investment cost. Due to its high investment costs and relatively short life time and susceptibility 475 

to damage, investing in a flexible balloon digester is not viable financially and economically at 476 

smallholder household level.  477 

 478 

 The findings in this study uncover two major policy implications: (1) Despite the preferences 479 

among rural households to shift to renewable energy sources such as biogas energy, the high 480 

initial capital investment costs prevent access to the technology. Thus, if biogas industry is to 481 

succeed in Uganda and in other African countries with similar socio-economic conditions, any 482 

government agency or development partners promoting biogas energy should pay attention to the 483 

cost of technology and ensure its affordability to poor households through developing low cost 484 

locally manufactured digester and providing affordable financing mechanisms.  (2) Because of 485 

the claim by certain donor organizations and other biogas technology proponents that flexible 486 

balloon digester is relatively cheap, there is an emerging tendency of recommending this 487 

technology to promote in rural Africa. However, the findings in this study shed lights that this 488 

technology is not viable financially and appears to be a risky investment. However, with a 489 

significant reduction in initial cost (up to 50% or above), the digester becomes financially viable 490 

among smallholder farm households. Compared to other biogas digesters such as the fixed dome 491 

model, flexible balloon biogas digester has shorter life time and it can be easily damaged (by 492 

children, domestic animals, pets, bad weather condition etc.). Thus, in addition to the cost aspect, 493 

promotion of biogas technology should take into account various contextual and environmental 494 

factors and whether the technology is viable in both short and long terms. Based on the finding in 495 
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this study, smallholder farm households are not encouraged to invest in flexible balloon biogas 496 

digester at current investment cost unless there is a significant cut in the cost. Otherwise, options 497 

should be sought to finance digester designs, such as the fixed-dome designs, which are durable 498 

and less susceptible to damage by humans, animals, or environmental exposures.   499 
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Appendix A: Designs of small scale biogas digester  593 

The three main types of biogas digester designs available in Sub-Saharan Africa (SSA) are the 594 

flexible balloon, floating drum, and fixed dome (Figure A1). The choice of the design of the 595 

digester is a key determinant in the success of the implementation biogas technology; if it is too 596 

expensive, poor farmers cannot afford and will not be able to risk making the investment; but if it 597 

is not robust and cannot be easily repaired, farmers will not see the long term benefits. The 598 

flexible balloon installations are relatively cheap (30-100 US$), but are liable to damage. 599 

Floating drum and fixed dome digesters are more expensive (700-1200 US$), but are more 600 

robust. Floating drum installations are effective, providing gas with a fixed pressure, which is 601 

good for domestic use, but can be more expensive and less robust than a fixed dome digester. 602 

Fixed dome digesters are more robust as they use no moving parts and can be constructed from 603 

local materials. The different types of designs should be objectively evaluated for each 604 

installation to determine the most appropriate choice. The major factors that that determine the 605 

success of biogas interventions include: (i) Technical factors such as gas production, efficiency, 606 

and water requirements; (ii) economic or financial factors such as capital cost and operational 607 

costs; (iii) user factors and such as consumer satisfaction, time savings, and convenience; and 608 

(iv) institutional factors policy support and quality assurance system.   609 

 610 

Figure A.1. Small scale biogas digester designs available in SSA. 611 

 612 

613 
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 Appendix B. Production of biogas energy production (experimental 614 

households)*615 

HH 1 HH 2 HH 3 HH 4 HH 5 HH 6 HH 7 HH 8 HH 9

Biogas energy produced (in mega 

jolues per year (MJ/yr)
13,398     16,310    13,398    14,172    27,900   13,785     13,195     9,123     15,333      

One kilowatt hour (KWh) of 

electricity is 3.6 megajoules.

 Energy in KWh 3,721.67  4,530.56  3,721.67 3,936.67 7,750.00 3,829.17   3,665.28  2,534.17 4,259.17    

1 unit KWh in Ugandaof electricty 

equal 500 UGX

Energy Vlaue ('000 UGX) 1,861      2,265      1,861     1,968      3,875     1,915       1,833       1,267     2,130        

Experimantal Households (HH)

 616 
 617 

Sources*:  618 
 Electricity costs in Uganda: http://www.monitor.co.ug/News/National/Electricity-tariffs-rise/688334-619 

2480422-11ys7r0z/index.html 620 
 The Potential of Small-Scale Biogas Digesters to Improve Livelihoods and Long Term Sustainability of 621 

Ecosystem Services in Sub-Saharan Africa Final Report – 14/06/13https: 622 
https://assets.publishing.service.gov.uk/media/57a08a1740f0b652dd000566/60928-FinalReport140613.pdf 623 

 624 

http://www.monitor.co.ug/News/National/Electricity-tariffs-rise/688334-2480422-11ys7r0z/index.html
http://www.monitor.co.ug/News/National/Electricity-tariffs-rise/688334-2480422-11ys7r0z/index.html
https://assets.publishing.service.gov.uk/media/57a08a1740f0b652dd000566/60928-FinalReport140613.pdf

