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Abstract 

The aim of this study was to evaluate the performance, nutrient utilisation and energy 

metabolism of broiler chicks fed eight different wheat samples, supplemented or not 

with xylanase. Seven-hundred sixty eight male broilers (1-day old) were distributed to 

16 experimental treatments (six replicates per treatment). The treatments were in a 

factorial arrangement with eight different wheats and two levels of xylanase (0 or 

16,000 BXU/kg). The predicted apparent metabolisable energy (AME) of the wheat 

samples ranged from 13.0 and 13.9 MJ/kg and all diets were formulated to contain the 

same amount of wheat. Body weight gain (BWG) and feed intake (FI) were measured at

21 d, as was jejunal digesta viscosity, and feed conversion ratio (FCR) calculated. On 

day 24, one representative bird pen was selected to calculate whole body energetics. At 

21 d, three chicks per replicate were randomly allocated to metabolism cages for energy

and nutrient utilisation determinations, and were continued on the experimental diets 

until 24-d-old. No interactions were observed for any performance response variables, 

ileal nutrient utilisation or digesta viscosity. Xylanase improved BWG and reduced FCR

and digesta viscosity (P < 0.05). Wheat influenced dry matter (DM) utilisation and 

xylanase increased ileal digestible energy (P = 0.04). Xylanase also improved (P < 

0.05) DM and nitrogen retention. Apparent metabolisable energy and AME corrected 

for nitrogen (AMEn) were subject to an interaction whereby wheats 2 and 6, which 

returned the lowest AME and AMEn values, responded to xylanase supplementation 

and the remainder did not. Net energy for production and the efficiency of energy use 

for production were not influenced by xylanase, but were affected by wheat (P < 0.05). 

Despite the significant differences between wheats with regards to their nutrient 

utilisation and energy metabolism in birds, xylanase removed this variance and resulted 

in more homogeneous performance. 
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1. Introduction

Variation in the nutritive value of wheat samples is a reflection of genetic and 

environmental effects, and the economic impact of these variations on poultry 

performance highlights the need for improved predictors of wheat quality (Yegani and 

Korver 2012). This is a concern for plant breeders, farmers and animal nutritionists. 

Thus, nutritionists need to know the nutritional requirements of commercial poultry, and

be able to determine or predict the nutritive value of each batch of raw material in an 

accurate and timely manner (van Kempen and Simmins 1997).

 The use of Near-Infrared Spectroscopy (NIRS) provides an opportunity to determine 

the chemical composition of feedstuffs and their nutritive value before inclusion in the 

diet (Olukosi et al., 2011; Owens et al., 2009). The information from NIRS can be used 

to reduce or minimize nutrient imbalances in commercial rations fed to the animals. 

However, there are potential errors associated with NIRS technology such as sample-

related and chosen reference method errors which can lead to high values for coefficient

of variation (Yegani and Korver 2012), and as a result care must be taken in establishing

NIRS calibration to ensure it is robust, precise and accurate. Near-Infrared Spectroscopy

calibrations now exist which can predict non-starch polysaccharide (NSP) and energy 

contents of wheat. In particular xylans, is often considered an anti-nutrient in wheat, and

as a result variation in content of this component between wheat samples may 

contribute to differences in nutritive value. Xylanases are the major enzymes involved 

in arabinoxylan degradation, hydrolysing the 1,4-β-D-xylosidic linkage between xylose 

residues in the backbone in a random manner (Mendis et al. 2016), therefore it is 

hypothesised that their supplementation in poultry feed may balance animal 

performance although differences in the nutritive value of different wheat origins. This 

work was undertaken to determine if such a calibration by NIRS accurately predicts 
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animal performance, and if so whether the application of an NSP-degrading xylanase 

would reduce the performance differences between samples of wheat which differ in 

NSP content (Bedford, 2000). 

2. Materials and Methods

All the experimental procedures received prior approval from the Scotland’s Rural 

College’s Animal Experiment Committee. 

2.1. Birds and experimental design

A total of 768 one-day old male broiler chicks (Ross 308) obtained from a commercial 

hatchery were used in the study for two experiments to determine growth performance 

and whole-body energy metabolism (Exp. 1) and nutrient utilisation (Exp. 2) responses. 

For Exp. 1 (n = 768) and for Exp. 2 (n = 288), birds were allocated to 16 experimental 

treatments in a randomized complete block design with an 8 × 2 factorial arrangements 

of treatments (eight wheat samples and two levels of xylanase), having in both 

experiments six replicates per treatment. Throughout the study, feed and water were 

supplied ad libitum and animals were raised under controlled conditions of light and 

temperature, as breeder recommended. 

2.1.1. Experiment 1
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Birds were reared up to day 24 in floor pens. All broiler chickens and feed were 

weighed on day 0 and 21 to calculate growth performance responses: body weight gain 

(BWG), feed intake (FI) and feed conversion ratio (FCR). On day 21, two chickens 

were randomly selected and euthanized by an overdose of sodium pentobarbital and 

jejunal digesta were collected for viscosity measurement. On day 24, one representative 

bird (on BW basis) per floor pen was selected and fasted prior to euthanasia to calculate 

the whole body energetics.

2.1.2. Experiment 2

On day 21, three chicks were randomly selected from each of the 96 floor pens and 

transferred to 96 metabolism cages (for energy and nutrient utilisation trial) where 

chickens continued to receive the corresponding diets until 24 days of age. Excreta and 

ileal digesta were collected on day 24 and pooled on a cage basis for calculation of 

nutrient utilisation. 

2.2. Diets and wheat selection

Starter experimental diets based on wheat and soybean-meal were formulated to be 

marginally lower in metabolisable energy (ME) than Ross 208 requirements (Table 1). 

Eight wheat samples originating from Germany and United Kingdom were obtained. 

Dry matter (DM), gross energy (GE), fat, nitrogen (N), calcium (Ca) and the 

phosphorous (P) contents of wheat samples were chemically analysed and further NIRS 

analyses were performed (Tables 2 and 3). A fixed amount of each wheat (58.6%) was 

used in the formula regardless of their chemical composition. Diets were predicted to 
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contain 12.8 ME MJ/kg based on assumed average wheat apparent ME (AME) 58.6% 

came from wheat grain. Control diets were supplemented with 16,000 BXU/kg of 

xylanase following supplier recommendations (Econase XT, AB Vista, Marlborough, 

UK; 160,000 BXU/g), resulting in 16 experimental diets in total. All diets contained 

phytase supplemented at 500 FTU/kg (Quantum Blue, AB Vista, Marlborough, UK; 

5000 FTU/g). Activity of xylanase and phytase were determined using the reference 

method of analysis recommended by the supplier. Titanium dioxide (0.3%) was added 

to all the diets as an indigestible marker. Feed samples were taken at the beginning and 

throughout the experimental period for DM, N, fat and GE analysis.

2.3. Jejunal viscosity

Approximately 1.5 g (wet weight) of the fresh jejunal digesta were analysed according 

to Bedford et al. (1991). The viscosity (expressed as centipoise units, cP = 1/100 dyne 

sec/cm2) was determined using a Brookfield DV II digital viscometer.   

2.4. Nutrient utilisation and total tract retention

Total tract retention and ileal nutrient utilisation were calculated using the index method

(Olukosi et al., 2007), with titanium dioxide as the indigestible marker. 

2.5. Net energy and nutrient accretion

Net energy for production (NEp), heat production (HP) and carcass fat and protein 

accretion were determined using the comparative slaughter technique as described by
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Olukosi et al. (2008). Briefly, six birds were euthanized at day 0 without feeding and 

kept frozen prior to processing and chemical analyses. On day 24, following euthanasia 

the carcasses were frozen and ground prior to freeze drying. Gross energy, N and fat 

contents were analysed. All the calculations for NEp, ME intake, HP as well as the 

efficiencies of energy for fat and protein retention (Fat-ER and CP-ER, respectively) are

as described previously (Olukosi et al., 2008a). Net energy for production and HP were 

expressed per kg feed by dividing the total NEp (MJ) or HP (MJ) by kilogram of feed 

intake. 

2.6. Chemical analyses

Ileal digesta and excreta were analysed for DM, N, fat and GE. Dry matter was 

determined by drying the samples in a drying oven (Uniterm, Russel-Lindsey 

Enginering Ltd., Birmingham, England, UK) at 105 ℃ for 24 h (method 934.01; 

AOAC, 2006). Total N content was determined by the combustion method (method 

968.06; AOAC, 2006). Gross energy was determined in an adiabatic oxygen bomb 

calorimeter (model 6200; Parr Instruments, Moline, IL) using benzoic acid as an 

internal standard. Titanium concentration in samples of diets and ileal digesta was 

determined using the method of Short et al. (1996). 

2.7. Statistical analyses

Pen served as the experimental unit for FI, BWG and FCR, and cages as experimental 

unit for nutrient utilisation, jejunal viscosity, net energy and nutrient accretion. Data 

were analysed using the PROC MIXED command of SAS (SAS Inst. Inc., Cary, NC). 
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When effects were found to be significant, treatment means were separated using 

Tukey’s Highly Significant Difference test. Statistical significance was accepted at P < 

0.05 and trends were discussed at P < 0.10. 

3. Results 

3.1. Wheat nutritive value by NIRS and chemical analyses

The chemical analysis of the wheat samples indicates that they are all very similar in 

chemical composition and GE (Table 2). The predicted nutritive values by NIRS 

showed slightly more variability in nutrient composition between wheat varieties (Table

3), but remained close to expected average values. The predicted GE was 

underestimated while the predicted fat content was higher than chemically analysed. 

The predicted AME of wheat varieties ranged from 13.0 to 13.9 MJ/kg (CV < 2%). 

There was a great deal of variability (CV > 10%) in the predicted contents for crude 

protein, acid detergent fibre, β-glucan, lignin and total non-starch polysaccharides, but 

low variability (CV < 8%) in all other analysed chemical components, including amino 

acids.

3.2. Feed enzyme activity, growth performance and jejunal viscosity

Enzyme activities in feed samples were close to expected (16,038 BXU/kg average 

value analysed in all the xylanase-supplemented diets). No interactions were observed 

in any of the performance parameters measured (Table 4). There were no effects of 

wheat on performance or jejunal digesta viscosity. Nevertheless, improvements in 
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performance were observed when xylanase was supplemented, regardless of wheat 

sample. Xylanase application resulted in a near significant 20 g (P = 0.077) increase in 

BWG. Although FI was not influenced by xylanase, FCR was significantly improved by

four points better (1.33 vs. 1.37, xylanase vs. control, respectively; P = 0.003). Xylanase

supplementation also reduced viscosity of jejunal digesta (3.32 vs. 2.34 cP, for control 

and xylanase supplemented diets, respectively; P < 0.001). In the diets without xylanase

supplementation, there were low and non-significant correlations between nutrient 

content of the wheats and bird FCR (Table 5). For the birds receiving xylanase 

supplemented diets, FCR was positively correlated with the analysed P and the 

predicted contents by NIRS of NDF, total and soluble AX as well as insoluble NSP. In 

addition, FCR was positively correlated with the analysed fat content. 

3.3. Nutrient utilisation and total tract retention

No interactions between the main factors were observed for any of the ileal nutrient 

utilisation results (Table 6). The DM utilisation of wheat 3 was significantly lower 

compared with wheats 6, 7 and 8 (P < 0.05), whereas wheats 1, 2, 4 and 5 had 

intermediate values. Wheats 7 and 8 had greater energy utilisation (P < 0.001) compared

with wheats 1, 2, 3 and 5, whereas wheats 4 and 6 where in between. Xylanase 

supplementation increased ileal utilisation of energy (IDE) measured as MJ/kg (P = 

0.04), regardless of wheat. Ileal N utilisation tended to be influenced by wheat (P = 

0.06), and was not influenced by xylanase supplementation. 

There were significant interactions of the main factors for all total tract measurements 

(P < 0.001). Xylanase supplementation improved the retention of DM and N as well as 

AME and AMEn for diets based on wheats 2 and 6. For those diets based on wheats 3, 
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4, 5 and 8 xylanase, inclusion led to no effect or marginally lower results in total tract 

retention of N, AME and AMEn. 

3.4. Net energy and nutrient accretion

There were no interactions between wheat and xylanase for any energy utilisation and 

efficiency responses, except for HP and Kre-protein, and no xylanase effect on any of 

the responses (Table 8). Net energy for production and KRE were greater (P < 0.05) for 

wheat 2 compared with wheats 4, 5 and 7, but similar, although numerically higher, than

the other wheats. Energy retained as protein was greater (P < 0.05) for wheats 3, 4 and 5

compared with wheats 7 and 8. Energy retained as fat and Kre-fat was greater (P < 0.05)

for wheat 2 than wheats 1, 3, 4 and 5. The interaction observed for HP (P = 0.02) was 

explained by xylanase supplementation increasing HP when birds were fed wheats 2 

and 6 (data not shown), but decreased HP for wheat 8, with no effect observed for the 

remaining wheats. The interaction noted for Kre-protein (P = 0.006; data not shown) 

was due to xylanase addition resulting in birds fed wheats 3 and 8 supplemented being 

more efficient in protein accretion, whereas it was reduced for wheats 2 and 6, with no 

effect on the remaining wheats. 

4. Discussion

It is well known that wheats, even of the same variety, can vary in both chemical 

composition and nutritive value (Theander et al., 1989). The current study investigated 

the effect of wheat sample and xylanase supplementation on the performance of broilers

fed starter diets. In spite of the variability found between wheats in both the analysed 
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chemical composition and that predicted by NIRS, performance was not affected. 

Nevertheless, supplementation with xylanase improved BWG, FCR and reduced digesta

viscosity, as has been shown in numerous studies (Olukosi et al., 2007; Wu et al., 2004; 

Zyla et al., 1999). Arabinoxylan is the main NSP in cereals, representing about 60-70% 

in the cell wall endosperm cells an aleurone layer. Although AX from different sources 

differs in their substitution along the xylan backbone, a general structure can be 

assigned for AX: a backbone of β-(1,4)-linked xylose residues, which are substituted 

with arabinose residues on the C(O)-2 and/or C(O)-3 position and phenolic acids can be 

linked on the C(O)-5 position of arabinose. The structure of AX leads to high water 

holding capacity in the gastrointestinal tract resulting in high viscosity, and as a 

consequence animal production process is less efficient. Xyalanases cleave AX by 

internally hydrolysing the β-1,4-β-D-xylosidic linkage between xylose residues giving 

small fragments of oligosaccharides with high or low degree of substitution (Mendis et 

al. 2016).  The successful exposure of xylanase to different wheats with variations in the

level content of soluble NSP makes them a feasible choice to mitigate the negative 

effects of arabinoxylan (AX) in monogastrics (Bedford 2000). 

Feed conversion ratio was not correlated with any of the analysed or predicted 

composition values of wheat without xylanase, but those supplemented with the enzyme

had an unexpected positive correlation with the predicted contents of fat and fibre 

components (NDF, AX, soluble AX and total insoluble NSP). These findings are 

puzzling and suggest that the presence of more fibre (substrate) when the enzyme is 

present resulted in poorer performance but that the presence of this fibre in the absence 

of the enzyme was, if anything, marginally beneficial. Scott et al. (1999) found a 
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significant relationship between predicted AME and FCR in wheat based diets with 

enzymes (r = -0.46), similarly found in this study (r = -0.45). 

Non-starch polysaccharide degrading enzymes reduce digesta viscosity in the animal by

shortening the molecular weight of NSP and also partly remove the nutrient 

encapsulation effect of the cell wall components and, as a consequence, nutrient 

absorption is promoted and growth performance maximized (Masey O’Neill et al., 

2012, 2014a,b; Persia et al., 2002). In this study the measured intestinal viscosity of all 

samples was extremely low in comparison with the literature, which suggests that the 

wheat samples employed were not particularly challenging from a viscosity viewpoint. 

In a similar study, xylanase supplementation improved performance in broilers fed 

different Chinese maize samples varying in chemical composition, improving the 

homogeneity in animal flocks with NSP-ases addition (Masey O’Neill et al., 2012).

Some studies have reported improved performance and energy utilisation when NSP-

enzymes are used in diets based on wheat, rye, barley (Bedford and Morgan, 1996; 

Bedford and Schulze, 1998) or maize (Masey O’Neill et al., 2012), but other studies 

have only shown improvements in animal performance without changes in nutrient 

utilisation (Hong et al., 2002; Wu et al., 2004). Wheat sample influenced ileal DM, N, 

energy utilisation and IDE. In particular, wheats 6, 7 and 8 were particularly good 

samples and this coincided with wheats 7 and 8 having the lowest viscosity. On the 

other hand, wheats 6, 7 and 8 also had lower contents of N (and predicted crude 

protein), acid detergent fiber, AX and NSP compared with the other wheats. Xylanase 

use increased energy utilisation and AME. Aside from the effect of reducing viscosity, 

there may be an additional benefit of increasing the permeability of the aleurone layer. 
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This may enhance contact with digestive enzymes and their substrates, for better 

nutrient utilisation (Parkkonen et al., 1997). 

The interaction of the main factors for all total tract measures of nutrient utilisation was 

significant. This was mostly due to the large responses of wheats 2 and 6 to xylanase 

addition due to their comparatively low nutrient utilisation in the absence of enzyme. 

Feed conversion ratio and measured AME significantly correlated in both wheats, 

suggesting the added benefit (r = -0.65, P = 0.023 and r = -0.49, P = 0.11, respectively; 

data not shown). This observation implies that xylanase may have greater effects in 

poorer quality samples, elevating their nutritive value and thus reducing the variability 

between samples. Nonetheless, none of the results from the chemical analysis or NIRS 

predictions suggested that these two samples may have had a poorer nutritive value than

the others. In this regard, it is noteworthy the low correlation between the predicted 

AME and the measured AME (r = -0.16; P = 0.13) suggesting the limited capacity of 

NIR to predict animal performance (data not shown). Wheats 3, 4, 5 and 8 had higher 

nutrient utilisation in the absence of enzyme, which may be due to the presence of 

endoxylanase in the outer layer of wheat (Cleemput et al., 1997), being responsible for 

part of the degradation of AX (Dornez et al., 2006), or lesser content of xylanase 

inhibitors or both. 

The response of broilers to dietary intervention in general and enzyme supplementation 

in particular is usually measured using growth performance responses or ileal nutrient 

utilisation and total tract nutrient retention. These can be adequate for measuring gross 

efficiency of nutrient utilisation, but to further characterize the efficiency of nutrient 

utilisation it is important to delineate the weight gain into the composition of gain, i.e., 

14

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

27
28



protein or fat, especially because of the differences in the efficiency with which these 

nutrients are deposited (Olukosi and Adeola, 2008). Net energy for production can be 

used as a more sensitive measure of energy utilisation by chickens receiving exogenous 

enzymes because it takes into account the efficiency of utilisation of ME for growth

(Bhuiyan and Iji, 2015; Pirgozliev and Rose, 1999; Olukosi and Adeola, 2008; Olukosi 

et al., 2008a). Net energy for production is not only dependent on body weight but also 

on the amount of energy deposited in the carcass, which is an indication of how 

effectively the enzyme used facilitated energy utilisation. Net energy for production and

KRE were not influenced by xylanase supplementation, but wheat sample did. Wheat 

samples 2, 7 and 8 presented better indices of energy utilisation, which may be related 

to the fact that they have the lowest viscosities compared with the other wheats. Heat 

production and Kre-Protein varied depending on wheat and xylanase inclusion. 

Interestingly, xylanase supplementation of wheats 2 and 6 increased total tract AME 

retention, Nep and HP but reduced KRE, Kre-CP and Kre-Fat and the efficiency of 

energy use for protein and fat accretion, as has been demonstrated previously (Bhuiyan 

and Iji, 2015; Daskiran et al., 2004; Olukosi and Adeola, 2008; Olukosi et al., 2008a). In

the current study, the comparison between animal performance and energy utilisation 

must be considered with caution as only one bird from each replicate was selected. The 

extrapolation of the performance data derived from eight animals per replicate may thus

have some mis-alignment with the energy utilisation results obtained from one 

individual bird. 

The utilisation of ME was more efficient for energy deposition and less for protein and 

fat. Nevertheless the efficiency of protein accretion was almost two-fold that of fat 
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accretion, which was similarly shown by previous authors (Olukosi and Adeola, 2008; 

Olukosi et al., 2008b). The genetics and age of birds are important factors (Leeson and 

Summers, 1997; Lopez and Leeson, 2005). The higher proportion and retention of 

protein than fat is likely because the young broiler chicks were still actively growing 

and have not reached the stage at which fat deposition can overtake protein deposition

(Bregendahl et al., 2002; Sanz et al., 2000). 

5. Conclusion

Under the current experimental conditions xylanase supplementation may compensate 

for the poorer nutritive value of some wheats, enabling more homogenous broiler chick 

performance. Unfortunately the predicted nutrient composition by NIR did not predict 

accurately animal performance, and moreover taken together the predicted nutrient and 

chemically determined contents of the wheats used in this study did not allow for 

accurate ranking of the samples prior to feeding, which may relate to the very low 

viscosity of the wheat samples employed. In this regard, the use of the xylanase as an 

insurance policy is justified.
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Tables

Table 1 Ingredient and calculated composition as-fed of the experimental diets 

Item Control + Xylanase

Ingredient, g/kg
Wheat - feed 585 585
Soybean meal 48 325 325
Soy oil 44.4 44.4
Salt 3.00 3.00
Sodium bicarbonate 1.87 1.87
DL-methionine 2.99 2.99
Lysine HCl 2.46 2.46
Threonine 0.77 0.77
Limestone 7.86 7.86
Dicalcium phosphate 15.5 15.5
Vitamin premix1 4.90 4.90
Phytase2 + +
Xylanase3 - +

Calculated nutrient composition, %

Crude protein 22.4 22.4
Ca 0.90 0.90
P 0.74 0.74
Available phosphorous 0.45 0.45
Fat 5.72 5.72
Fibre 2.55 2.55
Met 0.62 0.62
Cys 0.38 0.38
Met + Cys 1.00 1.00
Lys 1.35 1.35
His 0.55 0.55
Trp 0.28 0.28
Thr 0.88 0.88
Arg 1.45 1.45
Ile 0.92 0.92
Leu 1.64 1.64
Phe 1.05 1.05
Val 1.00 1.00

AME, MJ/kg 12.8 12.8

AME = apparent metabolisable energy.

 1 Vitamin/mineral premix supply per kilogram of diet: vitamin A, 16,000 IU; vitamin 

D3, 3000 IU; vitamin E, 25 IU; vitamin B1, 3 mg; vitamin B2, 10 mg; vitamin B6, 3 mg; 

vitamin B12, 15 µg; nicotinic acid, 60 mg; pantothenic acid, 14.7 mg; folic acid, 1.5 mg; 
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biotin, 125 µg; choline chloride, 25 mg; Fe as iron sulfate, 20 mg; Cu as copper sulfate, 

10 mg; Mn as manganous oxide, 100 mg; Co as cobalt oxide, 1.0 mg; Zn as zinc oxide, 

82.222 mg; I as potassium iodide, 1 mg; Se as sodium selenite, 0.2 mg; and Mo as 

molybdenum oxide, 0.5 mg.

2 Quantum Blue 5G, AB Vista, Marlborough, UK; 5000 FTU/g. 

3 Econase XT 25P, AB Vista, Marlborough, UK; 160,000 BXU/g. 
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Table 2 Analysed nutrient composition and coefficient of variation (CV) of the wheat 

samples

Item Wheat samples

1 2 3 4 5 6 7 8 CV

Gross energy, MJ/kg 18.0 18.1 18.1 18.0 18.2 17.9 18.0 18.1 <1
Viscosity, cP 10.5 8.50 12.8 13.0 11.3 11.2 7.60 7.80 21
Dry matter, % 87.2 87.4 87.8 87.5 87.1 87.2 88.6 87.6 <1
Fat, % 1.49 1.37 1.48 1.37 1.26 1.15 1.24 1.94 17
Nitrogen, % 2.22 1.88 2.37 2.10 2.02 1.79 1.55 1.79 13
Calcium, % 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.05 31
Phosphorous, % 0.28 0.32 0.34 0.33 0.38 0.29 0.27 0.33 11
Phytic acid, % 0.75 0.77 0.64 0.72 0.81 0.92 0.53 0.53 19
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Table 3 Nutrient composition predicted by near-infrared spectroscopy (NIRS) and 

coefficients of variation (CV) of the wheat samples

Item Wheat samples

1 2 3 4 5 6 7 8 CV

Energy, MJ/kg and ether extract, %

GE 16.5 16.5 16.6 16.6 16.6 16.4 16.3 16.4 <1

AME 13.4 13.4 13.2 13.0 13.3 13.6 13.9 13.4 2

Fat 2.10 2.23 2.16 2.40 2.28 2.25 1.95 2.13 6

Fibre

NDF 15.1 16.4 16.1 19.0 17.2 16.1 14.0 16.1 9

ADF 2.44 2.82 2.94 3.94 3.15 2.99 2.11 3.02 18

Lignin 0.72 0.97 0.89 1.15 1.06 1.02 0.95 0.94 13

AX 7.66 8.10 7.97 9.19 8.48 7.83 7.30 8.02 7
Soluble AX 0.56 0.61 0.57 0.62 0.63 0.59 0.58 0.57 4

β-glucan 1.21 1.66 1.66 2.36 1.88 1.63 1.78 1.90 18
Total insoluble NSP 10.2 11.4 11.1 13.2 12.1 11.1 10.4 11.3 8
Total soluble NSP 1.84 2.47 2.36 3.23 2.75 2.43 2.56 2.64 15
Protein,% and amino acid profile, g/100 g CP

CP 13.4 11.44 13.6 11.7 11.9 10.6 8.36 10.2 15

Lysine 3.01 3.35 2.96 3.42 3.26 3.18 3.07 3.19 5

Methionine 1.56 1.68 1.60 1.65 1.69 1.70 1.78 1.67 4

Leucine  7.37 6.64 7.07 6.47 6.43 6.98 7.22 7.10 5

Threonine 3.30 3.42 3.25 3.42 3.34 3.41 3.41 3.42 2

Tryptophan 1.16 1.21 1.16 1.21 1.19 1.22 1.30 1.27 4

Tyrosine 3.21 3.13 3.20 3.09 3.12 3.23 3.28 3.23 2

Valine 4.75 4.91 4.76 4.96 4.86 4.90 4.99 4.95 2

Phenylalanine 4.43 4.39 4.55 4.53 4.47 4.44 4.53 4.50 1

Histidine  2.57 2.62 2.59 2.61 2.63 2.62 2.60 2.58 <1

Isoleucine   3.48 3.43 3.53 3.45 3.46 3.47 3.46 3.46 <1

Arginine 5.18 5.43 5.09 5.52 5.33 5.07 4.54 4.99 6

Alanine 4.28 3.76 4.11 3.89 3.67 4.04 4.33 4.22 6

Asparagine 6.06 6.22 5.79 6.27 5.98 6.04 5.59 6.00 4

Cysteine 2.19 2.34 2.20 2.27 2.34 2.33 2.40 2.32 3

Glutamine 24.9 23.5 26.0 23.2 24.7 24.1 24.0 23.4 4

Glycine 3.99 4.27 3.98 4.19 4.23 4.22 4.19 4.15 3

Proline 9.23 8.99 9.78 9.23 9.39 9.28 9.91 9.40 3

Serine 4.88 4.83 4.83 4.70 4.79 4.84 4.81 4.78 1
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GE= gross energy; AME = apparent metabolisable energy; NDF = neutral detergent 

fibre; ADF = acid detergent fibre; AX = arabinoxylan; NSP = non-starch 

polysaccharides; CP = crude protein.
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Table 4 Animal performance and jejunal digesta viscosity1 

Item
Weight

gain,
g/bird

Feed intake,
g/bird

Feed
conversion

ratio,
 g/g

Jejunal
viscosity,

 cP

Wheat effect

1 824 1105 1.341 2.81

2 816 1103 1.353 3.13

3 820 1087 1.329 2.89

4 817 1097 1.345 3.01

5 781 1087 1.394 2.77

6 791 1079 1.369 2.94

7 787 1049 1.341 2.40

8 791 1065 1.349 2.67

SEM 16 16 0.019 0.06

Xylanase effect

0 BXU/kg 793b 1088 1.373a 3.32a

16,000 BXU/kg 813a 1079 1.331b 2.34b

SEM 8 8 0.010 0.03

P-value

Wheat 0.465 0.192 0.367 0.380

Xylanase 0.072 0.496 0.003 <0.001

Interaction 0.951 0.950 0.894 0.845
a,bMeans in the same column with different letters differ at P < 0.05.

1 Mean values for six replicate cages with eight broilers per replicate cage. 
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Table 5 Correlation of feed conversion ratio (FCR) with the analysed chemical 

composition and the predicted values by near-infrared spectroscopy (NIRS) of wheat in 

diets supplemented with or without xylanase

Pearson’s Correlation 

coefficients with FCR

Item
Without 

xylanase
With xylanase

Analysed composition
GE -0.27 0.38

Fat 0.14 -0.26

Nitrogen -0.47 0.07

Calcium -0.43 0.36

Phosphorous -0.35 0.70*

NIRS predicted composition

CP 0.06 0.07

Fat -0.27 0.68*

GE -0.09 0.49

AME 0.53 -0.45

ADF -0.34 0.63

NDF -0.31 0.69*

Total AX -0.36 0.73*

Soluble AX 0.25 0.85*

β-glucan -0.34 0.55

Lignin 0.07 0.62

Total insoluble NSP -0.26 0.74*

Total soluble NSP -0.23 0.60

GE = gross energy; NIRS = near-infrared spectroscopy; CP = crude protein; AME = 

apparent metabolisable energy; ADF = acid detergent fibre; NDF = neutral detergent 

fibre; AX = arabinoxylan; NSP = non-starch polysaccharides. 

 *P < 0.05
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Table 6 Ileal nutrient utilisation of nutrients1 

Item
Dry

matter, %
Nitrogen, % Energy, % IDE, MJ/kg

Wheat effect

1 68.0bc 78.0        70.8bc           13.2b

2 66.9bc 74.8       70.0c           13.1b

3      65.2c 74.4       69.5c           13.2b

4 68.8bc 78.2 72.0abc     13.7ab

5 66.9bc 75.9      69.6c           13.0b

6 70.2ab 78.1 73.2abc 13.8ab

7 70.4ab 79.4        73.9ab           14.0a

8      73.0a 79.7       76.0a           14.4a

SEM 1.47 1.42 1.47 0.28

Xylanase effect

0 BXU/kg 67.8 76.9 70.9 b 13.35 b

16,000 BXU/kg 69.5 77.8 72.9 a 13.77 a

SEM 0.74 0.71 0.74 0.14

P-value

Wheat 0.012 0.062 0.019 0.004

Xylanase 0.111 0.205 0.057 0.039

Interaction 0.550 0.104 0.571 0.577

IDE = ileal utilization of energy.

a-c Means in the same column with different letters differ at P < 0.05. 

1Mean values for six replicate cages with eight broilers per replicate cage. 
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Table 7 Total tract retention of nutrients1 

Wheat & Xylanase effect Dry
matter, %

Nitrogen, % AME,
MJ/kg

AMEn,
MJ/kg

Wheat
Xylanase,

BXU/kg

1 0            69.4cde 62.9de 13.5ef 13.0e

1 16,000          71.2bc    60.7ab          14.1cde 13.5cd

2 0         65.4g 57.9f 12.9h 12.4g

2 16,000 73.4a 65.7a 14.5ab 14.0ab

3 0 68.6de 58.1cd 13.8fg 13.2e

3 16,000 68.4e 57.4cd 13.8fg 13.2ef

4 0 71.5abc 63.3abc 14.2abc 13.8abc

4 16,000 70.6cd 62.7cd 14.1cd 13.6cd

5 0 69.6cde 64.6e 13.5def 13.0de

5 16,000 66.1fg 57.7ef 13.0gh 12.4fg

6 0 65.2g 55.1ef 13.0h 12.4g

6 16,000 73.1ab 66.9abc 14.4ab 13.9ab

7 0 68.0ef 62.0ef 13.6fg 13.1ef

7 16,000 69.9cde 65.3e 14.1ef 13.7e

8 0 72.8ab 65.8abc 14.5a 14.0a

8 16,000 71.4abc 64.1abc 14.2bc 13.7bc

Pooled SEM 0.73 0.79 0.12 0.12

P-value

Wheat <0.001 <0.001 <0.001 <0.001

Xylanase <0.001 <0.001 <0.001 <0.001

Interaction <0.001 <0.001 <0.001 <0.001

AME = apparent metabolisable energy; AMEn = AME corrected for nitrogen ;

a-e Different letters mean significant differences between treatments, highlighting the 

statistical interaction between main factors wheat x xylanase (P < 0.05).

 1Mean values for six replicate cages with three broilers per replicate cage. 
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Table 8 Energy utilisation, energy retained and efficiencies of energy use1

Item

Energy utilisation, MJ/kg
Energy retained,

MJ/kg 
Efficiencies of energy use for energy,

protein and fat retention accretion

Nep2 HP3 Protein-
ER4 Fat-ER5 KRE

6 Kre-Protein7 Kre-Fat8     

Wheat effect

1 5.59abc 6.84bc 3.92ab  2.20bc 0.45bc 0.275ab 0.154abcd

2 5.94a 6.35d 3.89ab 2.48a 0.48a 0.275ab 0.175a

3 5.53abc 6.54cd 3.94a 2.04c 0.46ab          0.289a 0.149bcd

4 5.53c 7.24a 3.95a 2.04c 0.43c          0.269bc 0.139d

5 5.32c 6.74bc 3.96a   2.05c 0.44bc 0.277ab 0.143cd

6 5.64abc 6.60bcd 3.89ab 2.24abc 0.46ab 0.275ab 0.158abcd

7 5.72bc 6.44bcd 3.83b 2.25abc 0.47b 0.278ab 0.163ab

8 5.77ab 7.22ab 3.84b 2.41ab 0.44bc 0.258c 0.162abc

SEM 0.135 0.155 0.031 0.098 0.011 0.0050 0.0078

Xylanase effect

0 BXU/kg 5.54 6.68 3.92 2.18 0.454 0.275 0.153

16,000 BXU/kg 5.72 6.81 3.89 2.24 0.457 0.274 0.158

SEM 0.068 0.077 0.016 0.049 0.005 0.0025 0.0039

P-value

Wheat 0.029 0.001 0.032 0.008 0.012 0.017 0.029

Xylanase 0.950 0.060 0.135 0.373 0.327 0.869 0.354
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Interaction 0.198 0.018 0.429 0.922 0.284 0.006 0.984
1Mean values for six replicate cages with one broiler per replicate cage. 

2 NEp - net energy for production.

3 HP - heat production.

4 Protein-ER - energy retained as protein.

5 Fat ER - energy retained as fat.

6 KRE - efficiency of energy use for production.

7 Kre-Protein - efficiency of energy use for protein accretion.

8 Kre-Fat - efficiency of energy use for fat accretion. 

a-d Means in the same column with different letters differ at P < 0.05.
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