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 47 
ABSTRACT  48 

Combining sweet sorghum (SS) with alfalfa (AF) for ensiling has the potential to 49 

improve the nutritive value and fermentation characteristics of resultant silages. However, the 50 

optimal combination and the associative effects of SS and AF for ensilage have not been 51 

studied. Therefore, the aim of this study was to determine the fermentation characteristic and 52 

nutritive value of silage mixtures with six different SS to AF ratios. The two forages were 53 

ensiled in air free silos for 150 days at room temperature as mixtures containing 0: 100, 20: 80, 54 

40: 60, 60: 40, 80: 20, and 100: 0 of SS : AF on a fresh weight basis. As the proportion of SS 55 

increased in silage, the content of ash, crude protein, saponins, ammonia, acetic acid, propionic 56 

acid and pH decreased, while neutral detergent fiber, acid detergent fiber in organic matter, 57 

acid detergent lignin, water-soluble carbohydrate, starch, total phenolics and condensed 58 

tannins content increased. The silages were evaluated in 24-hour incubations with rumen 59 

liquor. The in-vitro rumen degradability of dry matter and organic matter as well as gas 60 

production, pH, ammonia, total volatile fatty acids and methane decreased as the proportion of 61 

SS increased in the silage mixtures. This study suggests that high quality silages can be made 62 

with SS: AF ratios of 20:80 and 40:60. These silage mixtures offer an opportunity to optimize 63 

the nutrient supply for ruminant production. 64 

Keywords: tannins; saponins; in-vitro methane production; volatile fatty acids; gas production; 65 

pH 66 

 67 

Abbreviations: SS, sweet sorghum; AF, alfalfa; DM, dry matter; OM, organic matter; CP, crude 68 

protein; aNDFom, neutral detergent fibre in OM; ADFom, acid detergent fibre in OM; ADL, 69 

acid detergent lignin; EE, ether extract; IVDMD, in-vitro DM degradability; IVOMD, in-vitro 70 



 3 

OM degradability; tVFA, total volatile fatty acids; WSC, water-soluble carbohydrates; GP, gas 71 

production; CH4, methane; NH3, ammonia; SP, saponins; TP, total phenolics; CT, condensed 72 

tannins. 73 

 74 

1. Introduction 75 

Sweet sorghum (Sorghum bicolor, SS) is a promising forage in the arid, semi-arid and 76 

high salinity areas due to its rapid growth, high biomass yield (Qu et al., 2014), drought tolerance 77 

and high water-use efficiency (Wu et al., 2010). Sweet sorghum can be conserved as ruminant 78 

feed through ensilage (Calabrò et al., 2010a). However, the crude protein (CP) content in SS fresh 79 

and SS silage (~ 100 g CP/kg DM; Colombini et al., 2012) is insufficient to fulfil the 80 

requirement of growing or lactating ruminants (NRC, 2007). In order to meet the CP requirement 81 

of ruminants, forages with a high CP content, such as legume, can be mixed with low CP forages 82 

before or after ensiling. However, silage only making from legume is often challenging, due to 83 

its low water-soluble carbohydrates (WSC) content and high buffering capacity (Fisher and 84 

Burns, 1987) and extensive proteolysis during ensiling (McDonald et al. 1991). Ozturk et al. 85 

(2006) showed that ensiling maize with alfalfa (Medicago sativa, AF) is a feasible strategy to 86 

increase the CP content and improve the nutritive value of silage. Differently to temperate areas, 87 

maize production is low in the arid and high salinity areas around the world (Qu et al., 2014), 88 

and SS is an attractive alternative in these regions (Wu et al., 2010 ). There have been few 89 

studies to provide detailed investigation of the feasibility of mixing SS and legume forages for 90 

silage making. As a widely grown perennial legume with a deep root system and strong 91 

resistance to drought, AF can be grown well in arid, semi-arid areas. Therefore, AF was selected 92 

as a candidate legume for this study as bases for developing optimal silage mixtures for animal 93 

http://en.wikipedia.org/wiki/Legume
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production in arid, semi-arid regions. The aim of this study was to investigate the associative 94 

effects of ensiling mixtures of SS and AF on nutritive value and fermentation characteristics of 95 

resulting silages. It tested the hypothesis that synergies from combining the two forages mean 96 

that the nutritive value and fermentation characteristics of mixed silages are better than would be 97 

predicted from values for silages prepared from the single forages. 98 

 99 

2. Materials and methods 100 

2.1 Forage harvesting and silage making 101 

The cultivars used for SS and AF in this study were Cowley with 22.5% Brix value and 102 

Hetian Big-leaf respectively. Both SS and AF were sown at the Agricultural Research Station of 103 

Tarim University, XinJiang, China. Whole plant of SS and AF were harvested at milky stage and 104 

at early bloom stage (10% flowering rate), respectively, using a grass hook and leaving a stubble 105 

of 5 cm. Forage sample was chopped into 2.5 cm particle size by a multi-function chopper 106 

(9DF53, Yanbei Animal Husbandry Machinery Group Co. Ltd., Beijing, China). About 500 g 107 

sample of each fresh forage of SS and AF was stored directly at -20°C until analysed for 108 

proximate composition. Plastic silos were used to make chopped forages into six silage types, 109 

with different SS to AF ratios (containing 0, 20, 40, 60, 80 and 100% SS based on fresh weight). 110 

The fresh weight of forages in each silo was 1.5 kg and ten replicates of each silage type were 111 

made. The forage mixtures were manually compressed to remove air before the silos were screw 112 

capped. The silos were stored in the dark at room temperature.  113 

 114 

2.2 Quality analysis of silage 115 

2.2.1 Chemical analysis 116 

http://yanbei.en.alibaba.com/
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To mimic the silage based livestock production system in arid and semi-arid regions in the 117 

world, where silages are normally made in summer and fed out in autumn and winter when feed 118 

supply is low; the silos were opened 150 days post ensiling and a 500 g fresh weight sample was 119 

collected per silo for analysis. A 15 g fresh weight sample was blended with 135 mL distilled 120 

water for 1 min followed by filtration through two layers of cheesecloth. The supernatant was 121 

then tested for pH using pH meter (pH209, Hanna Instuments., Edge, USA). Two 15 mL 122 

subsamples of the extract were centrifuged at 2500 rpm for 10 min at 4 °C (MSE Mistral 3000, 123 

Sanyo Gallenkamp, Leicestershire, UK), and then acid extraction (Chaudhry and Khan, 2012) 124 

was performed on supernatant before ammonia (NH3) and organic acids analysis. The 125 

concentration of NH3 was analyzed by Pentra 400 (Horriba Ltd, Kyoto, Japan) according to the 126 

method described by Rhine et al. (1998). Lactic, acetic and propionic acids were determined 127 

using GC (Shimadzu Ltd, Kyoto, Japan) according to Fussell and McCalley (1987). 128 

Subsamples of 500 g per silage type and fresh forage of SS and AF prior to ensiling were 129 

dried at 65 °C in an oven and then ground through a 1 mm sieve using a mill (Christy and Norris 130 

Co. Ltd., Suffolk, UK), and analysed in triplicate for dry matter (DM), ash, ether extract (EE) 131 

according to AOAC (2005) procedures. Ash-free neutral detergent fiber in organic matter with 132 

addition of α-amylase (aNDFom), ash-free acid detergent fiber in organic matter (ADFom) and 133 

acid detergent lignin (ADL) were determined according to the methods of Van Soest (1991). 134 

Crude protein (CP) was calculated by multiplying 6.25 with the content of nitrogen (N), which 135 

was determined using an Elementar Vario Macro Cube (Elementar, Hanau, Germany). Water-136 

soluble carbohydrates were determined by Spectrophotometer (Libra S11, Biochrome, 137 

Cambridge, UK) following the method of Koehler (1952). The starch was tested by the method 138 

of Kent-Jones and Amos (1967) as described by Chaudhry and Khan (2012). Total phenolics 139 
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(TP) of silage samples were measured using the Folin–Ciocalteu method (Singleton and Rossi, 140 

1965). Total condensed tannins (CT) and saponins (SP) of silage samples were measured 141 

according to the method described by Osman (2004) and Khan and Chaudhry (2010), 142 

respectively. 143 

2.2.2 Mineral Analysis 144 

The concentrations of Ca, P, K, Mg, Fe, Zn, Cu, Na, Mn, Mo and Co from each silage type 145 

were determined, in triplicate, using a VISTA-MPX CCD simultaneous ICP-OES (Varian Inc., 146 

Melbourne, Australia). The samples and the standard solutions for mineral analysis were 147 

prepared according to the methods of Chaudhry and Jabeen (2011) and Ramdani et al. (2013).  148 

 149 

2.3 Measurement of in-vitro fermentation parameters 150 

2.3.1 Preparation of rumen fluids and buffered inoculums 151 

 Six Texel × Mule castrated lambs (45 ± 1.2 kg live weight) were fed on nutritionally 152 

balanced perennial ryegrass-concentrate diet prior to slaughter at an abattoir (Linden Food, UK). 153 

The lambs were slaughtered under The Welfare of Animals at the Time of Killing (WATOK) 154 

Regulations of the UK (DEFRA, 2013). Rumen samples were collected immediately post 155 

slaughtering. The rumen fluid was harvested by filtering through double layers of cheesecloth 156 

into pre-warmed (39 °C) thermo bottles and immediately transported to the laboratory. The 157 

rumen fluid was poured into a pre-warmed brown bottle containing artificial saliva (McDougall, 158 

1948) to prepare buffered inoculum. This buffered inoculum was kept anaerobic by flushing it 159 

with anaerobic grade CO2 before aliquots were added using a dispenser pump, and bottles closed 160 

(Chaudhry and Mohamed, 2011). 161 

2.3.2 In-vitro incubations 162 
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A total of 200 mg of each type of dried silage in four replicates were separately weighed into 163 

50 mL graduated glass syringes (KR Analytical Ltd., Sanitex, UK) fitted with plungers. A 164 

mixture of ruminal fluid and buffer (20 mL) was dispensed into each syringe before its 165 

incubation in a shaking water bath (Grant Instruments, Cambridge, UK) at 39 °C for 24 h. At the 166 

same time, incubations without any silage sample of three empty syringes served as the blanks to 167 

correct the final values of respective degradability, gas production (GP) and other fermentation 168 

parameters. The volume of GP in each syringe was recorded at 2, 4, 6, 8, 10, 20, 22 and 24 h of 169 

incubation.  170 

 171 

2.3.3 Determination of pH, ammonia, in-vitro dry matter and organic matter degradability 172 

Fermentation in the syringes was terminated at 24 h by transferring the syringes from the 173 

water bath to an ice-filled container. About 15 mL of headspace gas in each syringe was 174 

transferred into a vacuum tube through a three-way valve (Fisher Scientific, Loughborough, UK) 175 

for methane (CH4) analysis. Each incubated sample was tested for pH and then centrifuged at 176 

2500 rpm for 10 min at 4 °C (MSE Mistral 3000, Sanyo Gallenkamp., Leicestershire, UK). A 177 

total of 2 mL of the supernatant from each centrifuge tube was used for later volatile fatty acid 178 

(VFA) analysis. An additional 2 mL of the supernatant from each sample was used for NH3 179 

analysis. The remaining supernatant, along with all residues in each centrifugal tube were dried 180 

at 65°C and weighed for in-vitro DM degradability (IVDMD). The dried residues were decanted 181 

into crucibles and ashed at 550°C for measuring in-vitro organic matter degradability (IVOMD). 182 

2.3.4 Ammonia, volatile fatty acid and methane analysis  183 

NH3 was analysed by Pentra 400 (Horriba Ltd., Kyoto, Japan) with a calibrated standard of 184 

NH3-N according to Rhine et al. (1998). Volatile fatty acids concentration along with relevant 185 
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standards (Sigma Aldrich, Gillingham UK) was analyzed by a GC (Shimadzu., Kyoto, Japan) as 186 

described by Eun and Beauchemin (2007). Total VFA concentration (mM) was determined by 187 

summing the areas of individual VFA in each sample and each VFA were expressed as % of 188 

total VFA. The CH4 analysis was performed on a Fisons 8060 GC using a split injection linked 189 

to a Fisons MD800 MS as described by Bhatta et al. (2009).  190 

 191 

2.4 Calculations and statistical analysis 192 

The GP data for each silage mixture were fitted to the exponential model Y= a+b (1-e–ct) 193 

as described by Ørskov and McDonald (1979) using the Curve Fit software for the estimated 194 

parameters. Where a = instant GP from rapidly soluble fraction, b = slow GP from insoluble 195 

fraction, c = the rate of GP from slowly insoluble fraction (b), t = incubation time and Y = GP at 196 

time t. The SPSS statistical package (SPSS Inc., Chicago, USA) was used for statistical analysis 197 

of all data. One-way ANOVA was used to examine the linear and quadratic effects of silage 198 

types on chemical composition, mineral profile, GP, GP parameters (a, b and c), IVDMD, 199 

IVOMD, CH4, pH, NH3 and VFA adopting a significance level of P<0.05. The statistical model 200 

included silage type as treatment effect. The Tukey’s post-hoc test was used for multiple 201 

comparisons of means across the monocultures and the mixtures with different ratios of SS and 202 

AF. Treatment differences were considered to be significant when P < 0.05.  203 

 204 

3. Results 205 

3.1 Chemical composition of AF and SS prior to ensiling 206 
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The chemical composition of AF and SS forages is presented in Table 1. AF was 207 

significantly (P<0.001) higher in DM, Ash, CP and EE than SS, whereas SS was significantly 208 

(P<0.05) higher in WSC, Starch, aNDFom, ADFom and ADL than AF. 209 

3.2 Chemical composition of SS-AF silage mixtures 210 

The chemical composition of the silages is given in Table 2. The concentrations of DM, Ash, 211 

CP, EE, SP in the SS-AF silage mixture significantly (P<0.05) decreased, whereas aNDFom, 212 

ADFom, ADL, WSC, starch, TP and CT significantly (P<0.05) increased as the proportion of SS 213 

increased in the silage. The CP and WSC content in 0% SS silage was 3.6 times higher and 4.4 214 

times lower than in 100% SS silage, respectively (Table 2). The ash content in 0% SS silage (116 215 

g/kgDM) was about 50% higher than that of 100% SS silage (i.e., 100 % SS silage; 73 g/kg). 216 

 217 

3.3 Fermentation characteristics of SS-AF silage mixtures 218 

The fermentation characteristics of the silage mixtures are shown in Table 2. The pH, NH3, 219 

acetic acid and propionic acid content significantly (P<0.05) decreased, while lactic acid content 220 

significantly (P<0.001) increased as the proportion of SS in the silage mixtures increased from 221 

0% to 100%.  222 

 223 

3.4 Mineral profile of SS-AF silage mixtures 224 

Mineral profile of the silage mixtures are presented in Table 4.  The content of K, Ca, P, 225 

Mg, Na, Fe and Zn significantly (P<0.001) decreased as more SS was included in the silage 226 

mixtures. No significant differences in the content of Mn, Cu, Mo and Co were observed in the 227 

silage mixtures. 228 

 229 
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3.5 In-vitro fermentation profiles of SS-AF silage mixtures 230 

The pH, NH3, IVDMD, IVOMD, tVFA and individual VFA except butyrate decreased as the 231 

proportion of SS in silage mixtures was significantly (P<0.05) increased. IVDMD and IVOMD 232 

in the silage mixtures with SS at 0%, 20% and 40% inclusion were significantly (P<0.05) higher 233 

than those with SS at 80% and 100% level (Table 5).  234 

 235 

3.5 In-vitro gas production, kinetic parameters and methane of SS-AF silage mixtures 236 

Methane, GP and values for GP kinetics model of in-vitro fermentation are given in Table 6.  237 

In-vitro cumulative GP between 2 and 24 h of incubation differed among the silage types. The 238 

AF silage and the silage mixtures containing 20% and 40% of SS produced more gas than the 239 

other silage mixtures. The silage made with 100% SS had the significantly (P<0.05) lowest GP 240 

and CH4  among all silages used in this study.  241 

There were significant (P<0.05) differences between silages in terms of the estimated 242 

parameters from the GP kinetics models. The intercept value (a) for different treatments 243 

representing GP from soluble fractions ranged from -12.75 to 7.09, and the silages with 80% and 244 

100% SS has significantly (P<0.001) higher instant GP from rapidly soluble fraction than other 245 

silages. The GP from the insoluble fraction (b) had a significant (P<0.05) linear increase, 246 

whereas, the rates of GP for the insoluble fraction (c) had a significant (P<0.001) linear decrease 247 

as the proportion of SS increased in the mixture silages. 248 

 249 

4.  Discussion 250 

4.1 Chemical compositions of raw materials and SS-AF silage mixtures 251 
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 The content of DM and CP in the silage mixtures is a reflection of the proportions of 252 

the original forages included in each mixture. Alfalfa is a legume and it generally contains higher 253 

level of CP than sorghum (Table 1), because of nitrogen fixation from atmosphere (Ozturk et al., 254 

2006；Amer et al., 2012). Likewise, many authors showed that the CP content increased in 255 

maize-legume silage mixture when the proportion of legume increased (Titterton and Maasdorp, 256 

1997; Contreras-Govea et al., 2009).  257 

 The high levels of residual WSC in the silage mixtures with more SS may be caused by 258 

the high brix and WSC in the initial SS material (Table 1), which had positive correlation with 259 

the residual WSC (Yang et al., 2006). The residual WSC was similar in 0% and 20% SS silages; 260 

this may be because the 20% SS silage provides adequate, but not excessive WSC for 261 

fermentation during ensilage. On the other hand, the increased residual WSC observed from 40% 262 

SS silage to 100% SS silage, despite the decreasing DM content, indicates that these forage 263 

mixtures supplied at least enough WSC for an effective fermentation. The content of starch in 264 

silage mixtures from this study (9 to 80 g/kg DM) is within the wide range observed from other 265 

reports. Though the forage were harvested at similar stages (milk stage for SS and early bloom 266 

stage for AF) as in the current study, Amer et al. (2012) showed lower (51 g/kg DM and 5 g/kg 267 

DM) starch content in SS silage and AF silage than in this study. This may be related to the 268 

starch content of the specific crop prior to ensilage (Table 1), which can be influenced by type of 269 

forages, culture system employed, method for ensilage, and ensilage material. For example, 270 

Colombini et al. (2012) reported a starch content of 34 g/kg DM in forage sorghum silage and 271 

208 g/kg DM in grain sorghum silage. This is in agreement with results showed by Sang et al. 272 

(2008), who suggested that starch is a main chemical component in sorghum grain (~700 g/kg 273 

DM). 274 
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The fiber content of these silages was in agreement with those reported by other researchers 275 

(Anil et al., 2000; Qu et al., 2013). The higher fiber fractions (i.e., aNDFom, ADFom and ADL) 276 

in the SS and 100% SS silage compared with the AF and 0% SS silage may be because SS is a 277 

C4 plant and the photosynthetic cells are arranged in Kranz structures and often contain girder 278 

structures, which collectively increases fiber content. Similar anatomical features are lacking in 279 

AF (Wilson, 1994). The higher fiber fractions (Table 1) may be necessary for SS to grow tall and 280 

to produce more biomass. The lower content of fiber in AF silage was also exaggerated by 281 

harvesting at the early-bloom stage. The quadratic effects of SS inclusion on aNDFom and 282 

ADFom indicate that up to 60% of SS can be included in the silage mixtures without increasing 283 

major fiber fractions in the silage mixtures.  284 

The multiple phenolic hydroxyl groups in TP and CT lead to the formation of complexes 285 

with proteins, metal ions and other macromolecules like polysaccharides. These effects lead to 286 

the protection of forage proteins from degradation by inhibiting plant and microbial enzymes, 287 

resulting in better quality silages with lower NH3 levels (Makkar, 2003). SP is a steroid or 288 

triterpene glycoside compound found in different plants. It is the main anti-nutritional 289 

components in AF plant, and their unfavourable effects on ruminant performance (such as bloat 290 

caused by production of slime from AF saponins) can restrict the optimum use of AF as an 291 

animal feed (Sen et al., 1998).  292 

 293 

4.2 Fermentation characteristics of SS-AF silage mixtures 294 

The fermentation characteristics indicate that adding SS in this study improved overall silage 295 

quality, with a lower pH, higher lactic acid and lower NH3 concentration (Muck, 1988; Heron et 296 

al., 1989). These effects can be explained by the higher concentration of WSC and starch in the 297 
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mixtures with a higher proportion of SS. Mono- or disaccharides that are broken down from 298 

starch can also be used as readily fermentable carbohydrate, which help to reduce pH and 299 

increase lactic acid production during the ensiling process (McDonald et al. 2002). On the other 300 

hand, the lower WSC content in silage is related to higher buffering capacity (Fisher and Burns, 301 

1987) and extensive proteolysis during ensiling (Heron et al., 1989) may be attributed to the 302 

higher pH and NH3 concentration with higher proportions of AF in the silage mixtures. Some 303 

research work showed a higher NH3 concentration in maize-legume or sorghum-soybean 304 

mixtures than the maize- or sorghum- only silages (Titterton and Maasdorp, 1997; Contreras-305 

Govea et al., 2009; Lima et al., 2010) and lower pH in Bermuda grass silages prepared from 306 

crops with higher WSC concentrations  (Adesogan et al., 2004).  307 

The higher content of acetic and propionic acids in AF silage than SS silage indicate that the 308 

legume forage was not well fermented. This was probably due to the comparatively low WSC 309 

and starch concentration in AF. Despite the lower pH was observed in silages containing 80 and 310 

100% SS, little change was found in lactic, acetic and propionic acids. This indicates no benefit 311 

in organic acid production was obtained with more than 60% of SS in the silage mixtures. A 312 

similar change of organic acids in silage mixtures containing maize and legume have been 313 

observed (Sun et al., 2009; Zhu et al., 2011).  314 

 315 

4.3 Ash and minerals of SS-AF silage mixtures 316 

The higher contents of ash and the minerals such as K, Ca, P, Mg, Na, Fe and Zn in the AF 317 

silage than the SS silage were likely due to the differences that existed between SS and AF in 318 

their ability to absorb and accumulate different minerals during growing. Variation in ash and 319 

mineral concentration among crops are dependent on plant type and environmental factors (Wu 320 

http://onlinelibrary.wiley.com/doi/10.1111/j.1740-0929.2007.00481.x/full%23b20
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et al., 2007), as well as physiological and morphological differences among plants (Hoenig et al., 321 

1998). Interestingly, Kume (2001) found that CP in AF had a positive correlation with Ca, P, Mg 322 

and K.  323 

 324 

4.4 In-vitro rumen degradability and fermentation of SS-AF silage mixtures 325 

The higher IVDMD and IVOMD of silage mixtures with lower SS content may be due to 326 

their lower fiber fractions, which are known to reduce the degradability of feed (Mustafa et al., 327 

2000; Sebata et al., 2011; Qu et al., 2013; Calabrò et al., 2010b). Moreover, the presence of 328 

higher content of phenolic compounds and tannins in sorghum silage has been found to be 329 

related to the protection of dietary protein, structural carbohydrates and starch against 330 

degradation by ruminal microorganisms (Tabacco et al., 2006; Oliveira et al., 2007). In this 331 

study, no significant difference was observed in IVDMD and IVOMD for the silage mixtures 332 

containing 0, 20 and 40% of SS. However, they all had higher degradability than 80% SS silage. 333 

This suggests that if a high degradability needs to be achieved, less than 60% SS should be added 334 

into the SS-AF silage mixtures.  335 

The higher pH and NH3 concentrations following the in-vitro incubation of low SS 336 

containing silage mixtures were expected. The higher pH and NH3 from 100% AF silage reflects 337 

that a greater proteolysis occurred during its in-vitro incubation than in 100% SS silage. This is 338 

in agreement with Dhiman (1997), who reported that the ruminal NH3 concentration was higher 339 

in cows fed AF silage than cows fed maize silage. Decreased rumen pH and NH3 concentration 340 

have been shown in sucrose-supplemented cows (Broderick et al., 2008) and in fructose-341 

supplemented heifers (Golder et al., 2012).  342 

http://www.sciencedirect.com/science/article/pii/S0022030212001609%23bib0030
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The observed increase in VFA of ruminal liquid with more AF in silage mixtures may be 343 

related to the ruminal microbe species. For example, Fibrobacter succinogenes mainly produces 344 

succinate, the major precursor of propionate in the rumen, while Ruminococcus albus mostly 345 

produces acetate (Vinh et al., 2011). The increased concentration of acetate and propionate in 346 

silage mixtures containing high level of AF may be due to the higher CP content which leads to a 347 

more favorable fermentation environment (pH, NH3) for growth of cellulolytic bacteria. Other 348 

researchers have showed that cellulolytic bacterial population could significantly increased by 349 

higher ruminal NH3 (Khampa et al., 2006; Vinh et al., 2011) and the cellulolytic activity of 350 

rumen contents could be markedly inhibited by a fall of pH (Terry et al., 1969; Stewart, 1977) 351 

because of their influences on the rumen ecology. Higher ruminal NH3 level may serve as N 352 

source to improve rumen ecology (Wanapat and Pimpa, 1999). The strong positive relationship 353 

between the number of ruminal cellulolytic bacterial species and the concentration of propionate 354 

and acetate had been observed (Vinh et al., 2011). Therefore, the increase in propionate and 355 

acetate concentration that occurred in the in-vitro fermentation with higher AF silage might have 356 

been a consequence of the increase in number of cellulolytic bacterial, such as Fibrobacter 357 

succinogenes, Ruminococcus albus. In addition, the higher concentration of minerals in mixted 358 

silages with more AF might have contribution to the cellolytic bacterial growth (Kang et al., 359 

2014). Similar to the findings from the current study, Lettat et al. (2013) also reported that 360 

greater ruminal pH and concentration of acetate in the rumen fluid of cows fed diet with high 361 

level of AF silage. The present finding of lower acetate production from more SS inclusion in the 362 

silages is similar to the findings from Kaplan (2011). This was likely due to the fibre type in SS 363 

that was less fermentable than that in AF. 364 
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Branched-chain VFA can be derived from the fermentation of branched-chain amino acids 365 

(Saro et al., 2014), so the higher iso-butyrate and iso-valerate concentration for AF silage in this 366 

study could be due to higher CP content and its great degradation. Hassanat et al. (2014) found 367 

the ruminal concentration of branched-chain VFA increased as cows were fed higher proportions 368 

of AF silage in the diet. Also, in agreement with our results, other researchers (Haddad, 2000; 369 

Saro et al., 2014) have reported that the rumen total VFA were increased as proportions of AF 370 

were increased in diets. 371 

 372 

4.5 Methane and gas production of SS-AF silage mixtures 373 

CH4 is an end-product of rumen carbohydrates fermentation and it has been recognized as a 374 

potent greenhouse gas (Moss et al., 1994). The higher CH4 production from silages containing 375 

less SS may have resulted from more digestible portions and lower fiber content. Blaxter and 376 

Clapperton (1965) reported that CH4 emission was positively correlated with the amount of 377 

digestible OM. Chaudhry and Khan (2012) proved less CH4 production for the high fibrous 378 

substrates during in-vitro rumen fermentation. In addition, other researchers (Tavendale et al., 379 

2005; Bhatta et al., 2009) confirmed that tannins could suppress methanogenesis by reducing the 380 

protozoa population, which had inhibitory effects on methanogens. Methane production is higher 381 

when protozoa are present in greater numbers in the rumen than when they are present in low 382 

numbers (Bhatta et al., 2009). Thus, the lower CH4 production in silage mixtures with lower SS 383 

had likely contributed to the stronger anti-methanogenic activity from the presence of more CT 384 

content in SS. 385 

Over 24 hours of incubation, a higher GP was observed from the AF silage than the SS 386 

silage, this mostly likely reflected that AF had lower aNDFom, ADFom and ADL 387 
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concentrations, as the negative correlation between fiber and GP was observed by Zerbini et al. 388 

(2002) and Sebata et al. (2011). Higher structural carbohydrates content can inhibit GP by 389 

limiting microbial fermentation or enzymatic hydrolysis of forage polysaccharides (Jung and 390 

Allen, 1995; Sebata et al., 2011). Sebata et al. (2011) also observed that GP was positively 391 

correlated with IVDMD and negatively correlated with CT. The trend of gas production in 392 

current study was opposite to the report from Kaplan (2011). It is likely that the AF used in this 393 

study was higher in CP content that resulted in more NH3 production, which contributed to the 394 

total gas production. On the other hand, AF was low in fibre which might have caused a higher 395 

production in CH4 production compared with SS. It is important to note that the GP were not 396 

different among 0%, 20%, and 40% SS silage mixtures at all times measured in this study. The 397 

shift from higher to lower GP was observed between 40% and 60% SS silage mixtures at the end 398 

of 24 hours incubation.  399 

The higher (P<0.001) instant GP from rapidly soluble fraction (a) in 80% and 100% SS 400 

might reflect the more soluble fraction in SS, such as WSC. However, the negative “a” values, 401 

which are difficult to interpret in biological terms, might due to no gas production recordings 402 

between 10 to 20 hours of incubations or possible delays in the onset of fermentation due to slow 403 

microbial colonization (Kang and Wanapat, 2013). The greater GP rate constants (c) from the 404 

insoluble but slowly degradable fraction could be a subsequence of the greater availability to the 405 

microorganisms of fermentable nutrients in the silages with more AF. The greater insoluble 406 

fractions (b) in the silages with 80% and 100% SS may be related to their higher contents of 407 

more slowly fermented fibres, such as aNDFom and ADFom, which could produce more GP 408 

with longer incubation times. 409 

 410 

http://www.sciencedirect.com/science/article/pii/S0377840102000184%23BIB13
http://www.sciencedirect.com/science/article/pii/S0377840102000184%23BIB13
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5. Conclusions 411 

Ensiling AF alone is not practical due to its high buffer capacity, pH and low WSC 412 

concentration, which make it unsuitable for producing high-quality silage. On the other hand, 413 

ensiling SS alone results in low IVDMD and IVOMD, and it indicates that the overall quality of 414 

SS-AF silage mixtures were better than would be predicted on the basis of proportional 415 

combinations of the silages prepared from SS or AF alone. Our results have demonstrated the 416 

interesting effect of mixing SS and AF for silage making on nutritive value and fermentation 417 

characteristics; it indicates that the overall quality of SS-AF silage mixtures was better than the 418 

silages prepared from SS or AF alone. The silage mixtures with SS to AF ratios of 20:80 and 419 

40:60 have the potential to be used for ruminant production. However, additional research is 420 

needed to study the effect of feeding such silage mixtures to ruminants on their voluntary feed 421 

intake and production performance.  422 
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 557 
Table 1 558 
Chemical composition (g/kg DM) of SS (sweet sorghum) and AF (alfalfa) prior to ensiling. 559 

DM, dry matter; CP, crude protein; WSC, water-soluble carbohydrates; EE, ether extract; OM, 560 
organic matter; aNDFom, neutral detergent fibre in OM; ADFom, acid detergent fibre in OM; 561 
ADL, acid detergent lignin. 562 
 563 
 564 
 565 
 566 
 567 
 568 
 569 
 570 
 571 
 572 
 573 
 574 
 575 
 576 
 577 
 578 
 579 
 580 
 581 
 582 
 583 
 584 
 585 
 586 
 587 
 588 
 589 
 590 
 591 
 592 
 593 
 594 
 595 
 596 
 597 

Crop DM Ash CP WSC EE Starch aNDFom ADFom ADL 
AF 385.93 95.83 227.05 81.63 28.14 14.95 215.82 207.24 38.58 
SS 282.06 67.10 72.47 186.69 17.76 93.35 481.37 287.59 57.45 
SME 23.269 6.433 34.671 23.711 5.84 17.639 59.67 18.474 4.762 
P-value <0.001 <0.001 <0.001 <0.001 0.001 0.001 0.001 <0.001 0.019 
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 598 
Table 2 599 
Chemical composition (g/kg DM) of SS-AF (sweet sorghum-alfalfa) silage mixtures*. 600 
 601 
 
Items 
 

0%SS 20%SS 40%SS 60%SS 80%SS 100%SS SEM linear quadratic 

DM 393.06a 386.83a 354.70b 333.9c 305.90d 286.67e 9.527 <0.001 0.036 
Ash 115.66a 108.29b 96.67c 85.51d 78.79e 72.75f 3.748 <0.001 <0.001 
CP 222.77a 191.35b 149.79c 125.20d 84.88e 62.32f 13.628 <0.001 0.048 
WSC 18.34e 17.66e 42.35d 46.62c 55.63b 80.92a 5.309 <0.001 <0.001 
Starch 9.19f 17.56e 27.49d 34.06c 48.83b 79.69a 5.617 <0.001 <0.001 
EE 33.25a 29.74b 27.87b 24.73c 21.26d 20.34d 1.138 <0.001 0.341 
aNDFom 228.33f 275.44e 320.92d 337.80c 445.57b 504.08a 23.101 <0.001 <0.001 
ADFom 211.58c 221.46c 226.57c 221.25c 273.10b 305.44a 8.475 <0.001 <0.001 
ADL 39.94d 42.56cd 47.25bc 46.03bc 49.14b 55.72a 1.264 <0.001 0.175 
SP 91.29a 88.43a 89.85a 90.12a 65.73ab 54.84b 3.994 0.001 0.019 
TP 10.62c 14.64bc 20.39a 18.11ab 21.10a 20.47a 0.971 <0.001 0.002 
CT 11.34b 12.01ab 12.38ab 12.72ab 14.75ab 16.06a 0.519 0.034 0.286 

* Values within rows with different superscripts (a, b, c, d, e and f) are significantly different (P<0.05). 602 
DM, dry matter; CP, crude protein; WSC, water-soluble carbohydrates; EE, ether extract; OM, 603 
organic matter; aNDFom, neutral detergent fibre in OM; ADFom, acid detergent fibre in OM; 604 
ADL, acid detergent lignin; SP, saponins; TP, total phenolics; CT, condensed tannins.  605 

 606 
 607 
 608 
 609 
 610 
 611 
 612 
 613 
 614 
 615 
 616 
 617 
 618 
 619 
 620 
 621 
 622 
 623 
 624 
 625 
 626 
 627 
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Table 3 628 
Fermentation characteristics (g/kg DM) of SS-AF (sweet sorghum-alfalfa) silage mixtures*. 629 
 630 
 
Items 
 

0%SS 20%SS 40%SS 60%SS 80%SS 100%SS SEM linear quadratic 

pH 5.03a 4.92b 4.75c 4.62d 4.51e 4.16f 0.069 <0.001 <0.001 
NH3 108.49a 78.17b 62.73c 50.49d 24.89e 7.66f 0.952 <0.001 0.109 
Lactic acid 58.83c 66.65c 59.95c 92.81b 132.06a 137.27a 7.949 <0.001 <0.001 
Acetic acid 65.57a 68.59a 67.10a 66.86a 63.26ab 57.06b 1.027 <0.001 0.001 
Propionic 
acid 0.65a 0.63ab 0.56bc 0.49c 0.57bc 0.52c 0.015 <0.001 0.013 

* Values within rows with different superscripts (a, b, c, d, e and f) are significantly different (P<0.05).  631 
 632 
 633 
 634 
 635 
 636 
 637 
 638 
 639 
 640 
 641 
 642 
 643 
 644 
 645 
 646 
 647 
 648 
 649 
 650 
 651 
 652 
 653 
 654 
 655 
 656 
 657 
 658 
 659 
 660 
 661 
 662 
 663 
 664 
 665 
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Table 4 666 
Mineral profile (mg/kg DM) of SS-AF (sweet sorghum-alfalfa) silage mixtures*. 667 
 668 
 
Items 
 

0%SS 20%SS 40%SS 60%SS 80%SS 100%SS SEM linear quadratic 

K 25908.21a 22412.23b 16066.18c 16688.41c 14155.02cd 12106.15d 1173.507 <0.001 0.001 
Ca 14340.46a 12807.43b 11824.76c 6590.70d 5324.94e 3572.38f 989.563 <0.001 0.051 
P 2967.30a 2598.49b 1910.01c 1831.19cd 1672.83de 1491.05e 128.316 <0.001 <0.001 
Mg 3940.92a 3945.68a 4064.72a 3194.58b 3100.73bc 2969.69c 111.118 <0.001 0.002 
Na 1679.69b 2015.40a 1782.78ab 903.41c 736.41cd 527.59d 139.571 <0.001 <0.001 
Fe 717.12a 696.82b 622.01c 505.18d 444.17e 423.78f 28.330 <0.001 0.004 
Zn 36.61a 35.74a 25.33b 14.20c 13.97cd 10.54d 2.569 <0.001 0.001 
Mn 31.84 30.46 30.59 29.94 31.94 30.48 0.291 0.602 0.265 
Cu 10.13 9.75 9.33 8.71 8.38 8.49 0.233 0.141 0.552 
Mo 1.48 0.91 0.98 0.91 0.59 0.53 0.101 0.060 0.597 
Co 0.25 0.25 0.23 0.22 0.19 0.19 0.008 0.081 0.874 

* Values within rows with different superscripts (a, b, c, d, e and f) are significantly different (P<0.05). 669 
 670 
 671 
 672 
 673 
 674 
 675 
 676 
 677 
 678 
 679 
 680 
 681 
 682 
 683 
 684 
 685 
 686 
 687 
 688 
 689 
 690 
 691 
 692 
 693 
 694 
 695 
 696 
 697 
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 698 
Table 5 699 
In-vitro degradability (g/kg DM), ammonia (g/kg DM), pH, total volatile fatty acids (mM) and 700 
volatile fatty acids (mol/100mol) after 24 h incubation of SS-AF (sweet sorghum-alfalfa) silage 701 
mixtures*. 702 
 703 
 
 
Items 

0%SS 20%SS 40%SS 60%SS 80%SS 100%SS SEM linear quadratic 

pH 6.81a 6.81a 6.80a 6.76ab 6.74b 6.73b 0.009 0.009 0.596 
NH3 98.46a 89.31a 59.65b 43.79c 38.90c 18.39d 5.972 <0.001 0.152 
IVDMD 666.56a 665.44a 603.75ab 520.69bc 494.25c 457.89c 18.559 <0.001 0.850 

IVOMD 719.91a 749.03a 676.10ab 580.23bc 552.23c 498.01c 21.346 <0.001 0.341 
tVFA 49.79a 46.89ab 45.79ab 45.24ab 44.82ab 42.43b 0.793 0.003 0.840 
Acetate 66.48a 66.75a 66.17ab 66.09ab 66.04ab 64.58b 0.853 0.014 0.925 
Propionate 17.68a 17.69a 17.18ab 16.87ab 16.85ab 16.50b 0.259 0.039 0.420 
Butyrate 9.38 9.94 10.57 11.18 11.89 12.01 0.417 0.410 0.885 
iso-Butyrate 1.83a 1.73a 1.51ab 1.48ab 1.45ab 1.51b 0.053 0.008 0.219 
Valerate 3.90a 3.48ab 2.99b 2.76b 2.79b 2.90b 0.119 0.007 0.148 
iso-Valerate 3.00a 2.77ab 2.29b 2.21b 2.23b 2.33b 0.092 0.007 0.127 
* Values within rows with different superscripts (a, b, c and d) are significantly different (P<0.05). 704 
DM, dry matter; IVDMD, in-vitro DM degradability; OM, organic matter; IVOMD, in-vitro OM 705 
degradability; tVFA, total volatile fatty acids. 706 
 707 
 708 
 709 
 710 
 711 
 712 
 713 
 714 
 715 
 716 
 717 
 718 
 719 
 720 
 721 
 722 
 723 
 724 
 725 
 726 
 727 
 728 
 729 
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 730 
Table 6 731 
In-vitro gas production, estimated parameters of gas production and methane production (mL/g 732 
DM) of SS-AF (sweet sorghum-alfalfa) silage mixtures over 24 hours incubation*. 733 
 734 

 
Items 

 
0%SS 20%SS 40%SS 60%SS 80%SS 100%SS SEM linear quadratic 

CH4 25.7a 24.3a 23.3a 24.0a 20.5b 21.1b 0.44 <0.001 0.949 
2h 23.13ab 26.87a 24.37ab 22.50ab 20.00b 19.37b 0.736 0.015 0.108 
4h 48.75a 46.88a 43.75ab 40.63ab 37.50b 35.63b 1.216 0.001 0.993 
6h 69.37a 68.75a 62.50ab 59.38b 50.63c 40.00d 2.256 <0.001 <0.001 
8h 90.00a 90.00a 83.75a 73.75b 60.00c 48.75d 3.123 <0.001 0.001 

10h 107.50a 103.75a 98.13a 88.13b 68.75c 58.75d 3.848 <0.001 0.001 
20h 146.87a 145.63a 140.63ab 133.13b 122.50c 109.38d 2.889 <0.001 <0.001 
22h 148.75a 149.36a 148.75a 136.88b 131.87b 116.87c 2.549 <0.001 0.001 
24h 151.25a 154.38a 153.75a 141.88b 130.00c 121.25d 2.716 <0.001 0.021 

Estimated parameters﹟ 
a -12.75c -5.35c -3.84b -1.48b 5.92a 7.09a 1.618 <0.001 0.708 
b 179.12b 179.69b 188.23ab 179.29b 231.46a 233.42a 8.928 0.003 0.062 
c 0.107a 0.092a 0.077ab 0.070ab 0.034b 0.026b 0.0063 <0.001 0.298 

* Values within rows with different superscripts (a, b, c and d) are significantly different (P<0.05). 735 
# a= instant gas production from rapidly soluble fraction (mL/g DM), b = slow gas production 736 
from insoluble fraction (mL/g DM), c = the rate of gas production from slowly insoluble fraction 737 
(mL/h).  738 
 739 


