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 9 

ABSTRACT  10 

During 2009-2013, 302 single-spore isolates of Botrytis cinerea were collected from vineyards located in the most 11 

important site of table grape production in Sicily, recognized by the European Community as Protected Geographical 12 

Indication (PGI) 'Mazzarrone grape'. In preliminary studies, all isolates were tested in vitro for their sensitivity to six 13 

fungicides belonging to the following groups: benzimidazoles, dicarboximides, anilinopyrimidines, succinate 14 

dehydrogenase inhibitors, hydroxyanilides and phenylpyrroles. In these tests, 45.7% of the isolates were found to be 15 

resistant to at least one fungicide. Specific resistance to pyrimethanil was found in 30.8% of the isolates, whereas 16 

13.9, 10.3 and 7.6% of the isolates exhibited resistance to carbendazim, iprodione and boscalid, respectively. No 17 

isolates resistant to fenhexamid and fludioxonil were detected within our dataset of B. cinerea isolates. However, 30 18 

B. cinerea isolates possessed multiple resistance to two or more fungicides. In detail, 8 isolates were simultaneously 19 

resistant to four fungicides, whereas 5 and 17 isolates were resistant to three and two fungicides, respectively. For 20 

boscalid, 11/23 of isolates showing in vitro resistance possessed a mutation at the SdhB gene, whereas all isolates 21 

resistant to carbendazim and iprodione possessed mutations at β-tubulin and BcOS1 histidine kinase genes, 22 

respectively. Accordingly, these fungicides failed to control grey mould infections caused by resistant or reduced 23 

sensitivity isolates on grape berries and grapevine leaves whereas the sensitive isolates were effectively managed by 24 

all fungicides applied at label rates. This study represents the first report of B. cinerea field isolates resistant and/or 25 

with simultaneous resistance to several botryticides from table grape vineyards in Sicily. Therefore, current strategies 26 

for fungicide resistance management of B. cinerea could be negatively affected in future. 27 
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 38 

1. Introduction 39 

 40 

Grey mould, caused by Botrytis cinerea Pers.: Fr., is a major fungal disease of table grape 41 

(Vitis vinifera L.) worldwide. This pathogen is responsible for heavy losses in one of the most 42 

important Italian areas of table grape production known as 'Mazzarrone grape', an area that is 43 

recognized by the European Community with the label 'Protected Geographical Indication' (PGI, 44 

Reg. CE 617/2003). Grey mould represents the most serious threat for this typical production 45 

since the grape harvesting is usually performed up to late December when the climatic conditions 46 

occurring in vineyards are favourable for disease development. Although cultural practices which 47 

increase air movement and decrease humidity levels can help to manage botrytis bunch rot in 48 

vineyards, effective strategies rely mainly on preventive treatments of different botryticides. Grey 49 

mould symptoms generally become prominent in vineyards after bunch closure (Holz and 50 

Volkmann, 2002); thus two-to-five spray applications of site-specific compounds are usually 51 

performed at the bunch pre-closure stage, at the beginning of and during berry ripening. Over the 52 

last 35 years, several molecules belonging to methyl benzimidazole carbammates (MBCs), 53 

dicarboximides, anilinopyrimidines (APs), hydroxyanilides, phenylpyrroles and more recently, 54 

succinate dehydrogenase inhibitors (SDHIs), have been used in this area. Unfortunately, the 55 

selective pressure exerted by chemical control against this 'high risk' pathogen induces 56 

development of fungicide-resistant isolates. The major mechanism of resistance in B. cinerea is 57 
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mutation in the genes encoding the target site protein causing reduced fungicide binding. These 58 

modifications, often determining the 'specific resistance' towards a single or one class of 59 

fungicide, were first detected for anti-microtubule fungicides (e.g. MBCs), and successively 60 

verified for dicarboximides, hydroxyanilides, strobilurins, and SDHIs (Fillinger et al., 2008; 61 

Leroux et al., 2002, 2010). Besides specific resistances, multiple fungicide resistance has also 62 

been recently detected in French and German vineyards, but it usually exhibits considerable 63 

resistance levels towards several classes of botryticides that are mediated by a single gene 64 

(Kretschmer et al., 2009). In the past, fungicide resistance within some B. cinerea populations 65 

was reported on several crops (Amiri et al., 2013; Baroffio et al., 2003; Brent and Hollomon, 66 

2007a; Myresiotis et al., 2007; Weber, 2011). Field resistance of B. cinerea to various fungicides 67 

has also been detected in vineyards worldwide, resulting in poor fungicide efficacy (Beever et al., 68 

1989; Latorre et al., 2002; Latorre and Torres, 2012; Leroux, 2007; Sergeeva et al., 2002). The 69 

use of site-specific fungicides to control high resistance risk pathogens, such as B. cinerea, may 70 

further increase the development of field resistance (Brent and Hollomon, 2007b). Therefore, 71 

continuous monitoring of fungicide resistance is crucial following the first detection of resistant 72 

genotypes in vineyards to ensure that adequate anti-resistance strategies are implemented to 73 

prevent or delay breakdown of fungicide efficacy.  74 

For these reasons, and related to the lack of information on resistance of B. cinerea to these 75 

fungicides in Sicily, the aim of this research was to provide the first data on sensitivity to MBCs, 76 

dicarboximides, APs, hydroxyanilides, phenylpyrroles and SDHIs within a population of B. 77 

cinerea isolates, obtained from table grape vineyards within the production area of 'Mazzarrone 78 

grape'. Specifically, the objectives of this study were (i) to determine in vitro sensitivity to 79 

boscalid, carbendazim, fenhexamid, fludioxonil, iprodione and pyrimethanil and their relative in 80 

vivo performance using detached grape berry and grapevine leaf assays, (ii) to identify point 81 

mutations in field isolates resistant to different fungicides, and (iii) to investigate the presence of 82 

isolates with multiple fungicide resistance within a population of B. cinerea. 83 
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 84 

2. Materials and methods 85 

 86 

2.1. Fungal isolates 87 

 88 

In total, 302 isolates of B. cinerea were collected over the five-year period between 2009 and 89 

2013 from 15 commercial table grape vineyards located in Ragusa (Acate, Comiso and 90 

Chiaramonte Gulfi) and Catania (Caltagirone, Licodia Eubea, Mazzarrone) provinces, 91 

constituting the entire 'Mazzarrone district' (recently surveyed for other phytopathological 92 

studies) (Vitale et al., 2012).  The entire table grape production district has a history of severe 93 

infections of botrytis bunch rot. Therefore, treatments with a range of fungicides, including 94 

MBCs, dicarboximides, phenylpyrroles, hydroxyanilides, APs, the SDHI-boscalid and other 95 

botryticides have been used. In the last ten years, the most frequently used fungicides in this area 96 

were Scala® [active ingredient (a.i.) pyrimethanil] and Switch® (a.i. cyprodinil + fludioxonil) (up 97 

to two applications per season), Cantus® (a.i. boscalid) and Teldor Plus® (a.i. fenhexamid) (one 98 

application per season). Thiophanate-methyl (Enovit Metil®) and iprodione (Rovral Plus®) have 99 

only occasionally been included in fungicide programme against grey mould of grape of the 100 

surveyed vineyards.  101 

Isolations were made from single infected grapes taken at different places of each vineyard by 102 

transferring a small amount of mycelium and/or spores from an infected berry (i.e. one isolate per 103 

grape) with a sterile needle onto Petri dishes containing potato dextrose agar (PDA; Oxoid, 104 

Basingstoke, UK). Single-conidial isolates were obtained on water agar (WA; Oxoid,  UK) at 105 

25°C for 8–16 h. Isolates thus obtained were stored on PDA slants at 4°C.  106 

 107 

2.2. Fungicides  108 

 109 
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All isolates were tested for their sensitivity to six active ingredients [a.i.(s)] belonging to 110 

different chemical groups (Table 1). Since thiophanate-methyl showed a lesser persistence than 111 

carbendazim on artificial media (PPDB Pesticide Property DataBase: 112 

http://sitem.herts.ac.uk/aeru/ppdb/en/atoz.htm), carbendazim was used in in vitro assays whereas 113 

thiophanate-methyl was employed for grape bioassays. All a.i.(s) were prepared from their 114 

commercial formulations. Stock solutions of fungicides were prepared in sterilized distilled water 115 

(SDW).  116 

 117 

Table 1  118 

Chemical features, trade names, rates and FRAC code (http://www.frac.info) of fungicides used in the 119 

Botrytis cinerea experiments.  120 

FRAC 

Code 

Active 

Ingredient 

Trade name 

(Formulation) 
Chemical Group Field Rate  Manufacturer 

7 Boscalid Cantus (WG)c Pyridine-carboxamides 1.0 kg ha-1 
BASF SE, Ludwigshafen, 

Germany 

1 Carbendazima Bavistin (SC) Benzimidazoles (MBC) - 
BASF SE, Ludwigshafen, 

Germany 

1 Thiop-methylb  Enovit Metil (WG) Thiophanates (MBC) 1.5 kg ha-1 
SIPCAM SpA, Salerano 

on Lambro, Italy 

12 Fludioxonil  Geoxe (WG) Phenylpyrroles 1.0 kg ha-1 
Syngenta Crop Protection, 

Monthey, Switzerland 

17 Fenhexamid Teldor Plus (SC) Hydroxyanilides 1.5 L ha-1 
Bayer Crop Science AG, 

Dormagen, Germany 

2 Iprodione Rovral Plus (SC) Dicarboximides 1.5 L ha-1 
BASF Agri-Production, 

Genay Cedex, France 

9 Pyrimethanil Scala (SC) Anilino-pyrimidines 2.0 L ha-1 
Bayer Crop Science, 

Wolfenbüttel, Germany 

a Used in in vitro assays. Bavistin is not registered for the use on grape.  121 
b Used in bioassays. 122 
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c WG, water dispersible granule;  SC, suspension concentrate. 123 

 124 

2.3. Fungicide sensitivity 125 

 126 

The sensitivity of B. cinerea isolates to fungicides was assessed by measuring radial growth on 127 

agar plates amended with different concentrations of a.i.(s). All fungicides were tested on PDA 128 

except for pyrimethanil and boscalid, which were tested on a minimal medium containing 10 g of 129 

glucose, 1.5 g of K2HPO4, 2 g of KH2PO4, 1 g of (NH4)2SO4, 0.5 g of MgSO4·7H2O, 2 g yeast 130 

extract and 12.5 g of agar (Oxoid) per liter of distilled H2O (Hu et al., 2011; Myresiotis et al., 131 

2007, 2008). Yeast extract was not added in the sensitivity assay for pyrimethanil (Myresiotis et 132 

al., 2007). Autoclaved agar media were cooled to about 45°C and amended with appropriate 133 

volumes of the fungicide stock solutions to obtain the following a.i. concentrations: 0.05, 0.5, 1, 134 

5, 10, 20 and 50 µg mL–1 for boscalid; 0.01, 0.1, 1, 10 and 100 µg mL–1 for carbendazim; 0.001, 135 

0.005, 0.01, 0.05, 0.1 and 1 µg mL–1 for fenhexamid and fludioxonil; 0.1, 1, 5, 10 and 20 µg mL–1 136 

for iprodione and 0.01, 0.05, 0.1, 1, 5, 10 and 50 µg mL–1 for pyrimethanil. Unamended media 137 

plates served as controls. Mycelium plugs, cut from the edge of an actively growing culture on 138 

agar media, were placed upside down on the centre of each fungicide-amended or control dish. 139 

Dishes were incubated at 20 °C in darkness for 3–5 days. For each concentration, three plates 140 

were used and colony diameter was measured in two perpendicular directions, subtracting the 141 

original diameter of the mycelium plug (6 mm) for the calculated value. These assays were 142 

performed twice. Radial growth on each plate was measured and the raw data from three 143 

replicates used to calculate growth reduction (GR) = [1 – (radius in amended plates/radius of 144 

control plates)] × 100. The effective fungicide concentration to inhibit 50% of mycelial growth 145 

(EC50) was calculated for each isolate by linear regressions of the mycelial growth reductions 146 

versus the log10 transformation of the fungicide concentrations. Frequency distributions of the 147 

isolates between the intervals of EC50 values were established. 148 
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On the basis of the literature, pathogen sensitivity to the fungicides was initially related to 149 

discriminatory doses as follows: 1 µg mL–1 for carbendazim, iprodione, boscalid and 150 

pyrimethanil, and 0.1 µg mL–1 for fenhexamid and fludioxonil (Baroffio et al., 2003; De Miccolis 151 

Angelini et al., 2010; Faretra and Pollastro, 1991; Latorre and Torres, 2012; Leroux et al., 1999; 152 

Myresiotis et al., 2007; Yourman and Jeffers, 1999; Zhang et al., 2007). Only for boscalid, the 153 

authors subsequently considered a Resistance Factor (RF) = 5 (the ratio of the EC50 value for a 154 

boscalid-resistant isolate relative to the EC50 value for a highly boscalid-sensitive isolate) as 155 

distinguishing sensitive from resistant isolates.  156 

 157 

2.4. Molecular analysis  158 

 159 

To identify the mutations correlated with resistance to boscalid, the complete coding sequence 160 

of the sdhB subunit (complete succinate dehydrogenase iron sulphur protein gene) of 161 

representative B. cinerea isolates, selected on the basis of phenotypic sensitivity to the fungicide 162 

(sensitive or resistant) in in vitro assays, was compared to the corresponding gene sequence of the 163 

reference sensitive strain T4 of Botryotinia fuckeliana (GenBank accession no. AY726618.1). 164 

The resistance to the MBC "carbendazim" was identified by comparing the coding sequences of 165 

β-tubulin of the tested B. cinerea strains to the corresponding gene sequence of the reference 166 

sensitive strain SAS56 (GenBank accession no. Z69263.2). The same approach was also used to 167 

identify mutations correlated to resistance to iprodione; here, the coding sequences of BcOS1 168 

genes (coding for histidine kinase) of the B. cinerea strains were compared to reference sensitive 169 

strain Bc56 (GenBank accession no. AB064962.1). Genomic DNA was extracted and purified 170 

from mycelia of B. cinerea isolates grown on PDA for 5 days in darkness. Mycelia were 171 

harvested and washed in SDW, frozen in liquid nitrogen and lyophilized. DNA from each isolate 172 

was extracted using the kit Wizard® Magnetic DNA Purification System for Food (Promega, 173 

Madison, USA). The purified DNA was eluted in a final volume of 100 μL and checked by 174 
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electrophoresis on 0.8% agarose gel. The concentration and purity of DNA extracted was 175 

determined using a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Thermo 176 

Scientific Instruments). Based on the known complete sequence of the β-tubulin gene in B. 177 

cinerea (GenBank accession no. U27198), the PCR primer pair Bcb-F (5'-178 

CACTGAGGGTGCTGAGCTTGT-3') and Bcb-R (5'-AGCGGCCATCATGTTCTTA-3') was 179 

designed to amplify the β-tubulin gene fragment containing codons 198 and 200 relevant to 180 

identifying the isolates resistant to benzimidazoles (Zhang et al., 2010). The primers 181 

B1189/2346F (5'-CCCACTACCCCACACCTATG-3') and B1189/2346R (5'-182 

ACAAGCATCGGTTTTGGAAC-3') were used to amplify the sdhB sequence and to determine 183 

the resistance of isolates to boscalid (De Miccolis Angelini et al., 2010). Two specific primers 184 

were designed (Banno et al., 2008), Dicarb 1082_F (5'-CCCAGGGTGAGATACTCCAA-3') and 185 

Dicarb 1828_R (5'-AGTTTCTGGCCATGGTGTTC-3'), suitable to amplify 747 bp that includes 186 

the possible mutations found among codons 365–369. The PCR products were purified with 187 

Exosap-it (Affimetrix, CA), a mixture of exonuclease I and alkaline phosphatase used to remove 188 

unincorporated dNTPs and primers present in the PCR products, and then they were sequenced 189 

using BigDye Terminator V3.1 Cycle Sequencing Ready Reaction Kit (Applera, USA). Only for 190 

the BcOS1 the amplicon of expected size was purified by agarose gel electrophoresis and excised 191 

from agarose gel using spin columns (NucleoSpin®
 Gel and PCR Clean-up - Macherey Nagel). 192 

Sequencing was performed on an ABI PRISM 3730 Genetic Analyzer (Applera) and the 193 

amplicon sequences were aligned using BioNumerics 5.1 (Applied Maths, Belgium) software to 194 

locate and identify the base changes. 195 

 196 

2.5. Assays on grape berries 197 

 198 

The efficacy of the fungicides used in this study for the control of B. cinerea was determined 199 

on detached grape berries cv. 'Italia' as previously reported (Parafati et al., 2015; Vitale et al., 200 
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submitted). At least two sensitive and four to five resistant isolates or isolates with reduced 201 

sensitivity to each fungicide were selected according to both in vitro and molecular data. Single 202 

detached berries with pedicel were surface disinfected with 2% of NaOCl for 2 min and rinsed 203 

twice in SDW. After drying, four wounds (1-2 mm deep) were made with a sterile hypodermic 204 

needle before being sprayed with a fungicide suspension. Boscalid, fenhexamid and fludioxonil 205 

a.i.(s) were used at 500 mg L–1, iprodione at 750 mg L–1, pyrimethanil at 800 mg L–1, and 206 

thiophanate-methyl at 1 g L–1, respectively. These dosages reflect the rates recommended for 207 

botrytis bunch rot of table grape for six commercial formulations registered in Italy (Table 1). 208 

Thirty berries were used for each treatment (10 berries/replicate) and placed in a cage containing 209 

an aluminum tray at the bottom of which a thin layer of water was poured to maintain high 210 

relative humidity (RH). Treatments were applied with a hand-pump until berries were thoroughly 211 

wet. After 6 h, the berries were inoculated by placing a 20 µL drop of the conidial suspension (1-212 

2 × 105 conidia mL–1) obtained by flooding 10 day-old sporulating cultures on PDA plates with 213 

SDW at the surface of the wounds. Berries were placed in separate rows (40 mm apart) on 214 

expanded metal sheets in clear plastic-covered cages. The same number of berries sprayed with 215 

SDW served as control. For each isolate, lesion diameter (severity of decay) on each berry and 216 

the number of infected berries per treatment (disease incidence) were recovered after 6 days of 217 

incubation at 24–25 °C. Severity of grey mould decay was calculated both on treated and control 218 

grape berries determining its relative reduction of botrytis rot (control efficacy %). The 219 

experiment was performed twice. 220 

 221 

2.6. Assays on grapevine leaves  222 

 223 

As above reported, the same B. cinerea isolates were inoculated on potted 3-week-old 224 

grapevine cuttings (Vitis vinifera L.) cv. Italia to evaluate the fungicide efficacy in controlling 225 

grey mould leaf decay. The grapevine cuttings were previously grown in a chamber at 25 °C and 226 
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70% RH with a photoperiod of 16 h. Subsequently, the plants were sprayed to run-off with the 227 

fungicide suspensions at the same rates used in the previous assay. After two hours, the leaves of 228 

these plants were inoculated with selected B. cinerea isolates. Six mycelial plugs removed from 229 

the margin of the colonies growing on PDA were placed on the upper surface of each leaf. Three 230 

leaves (i.e. three replicates) were used for each isolate. The control plants were sprayed with 231 

SDW and then inoculated with PDA plugs containing B. cinerea mycelium. To create favorable 232 

conditions for infection, inoculated plants were covered with plastic bags and incubated in the 233 

growth chamber at 25 °C with a photoperiod of 16 h and high RH (90–95%). The disease 234 

incidence and diameters of the developing lesions were measured 4 days after inoculation. 235 

Severity of grey mould infections was compared between treated and control grape leaves and 236 

relative reductions were determined for each isolate. The experiment was carried out twice.  237 

 238 

2.7. Data analysis 239 

 240 

Data from in vitro and in vivo sensitivity tests from repeated experiments were combined; one-241 

way analyses of variance (ANOVA) of EC50 and grey mould decay values from two experiments 242 

showed that they did not differ statistically (P > 0.05).  243 

All in vivo data were subjected to ANOVA according to parametric or nonparametric 244 

approaches (Statistica 10, Statsoft Inc., Tulsa, OK). All percentage data were transformed using 245 

arcsine (sin–1 square root x) prior to statistical analysis. The percentage of infected sites caused by 246 

pathogen on fungicide-treated grape berries and grapevine leaves are shown and compared 247 

among different isolates of B. cinerea isolates according to Fisher’s least significant difference 248 

test (P < 0.05 and 0.01). Data on reduction of lesion diameter caused by B. cinerea on grape 249 

berries and grapevine leaves were analyzed within each tested isolate for pairwise combinations 250 

(treated and control) using the non-parametric Mann-Whitney test.     251 

 252 
10 

 



3. Results 253 

 254 

3.1. Pathogen sensitivity to fungicides  255 

 256 

The EC50 range and frequency of resistant isolates for all fungicides are reported in Table 2. 257 

The 302 isolates of B. cinerea tested showed a roughly normal distribution of EC50 values to 258 

boscalid. Among them, 254 (84.1%) were classified as highly sensitive to boscalid (HS), since 259 

their EC50 < 1 µg mL–1, whereas 25 isolates (8.3%) had EC50 values between 1 and 4.99 µg mL–1 260 

and were considered as sensitive (S) isolates. The values for most of these isolates fell within 261 

0.1–0.49 µg mL–1 range (Fig. 1–A). The remaining 23 isolates (7.6%) grew on media 262 

supplemented with boscalid concentrations of 5 µg mL–1 or more (Table 2). In detail, 12 isolates 263 

(4%) had EC50 values ranging from 5 to 19.99 µg mL–1 (RF values within 5–20 range) and were 264 

considered as reduced sensitivity (RS) phenotypes, three (1%) had EC50 between 20 and 49.99 265 

µg mL–1 and eight (2.6%) isolates had EC50 values higher than 50 µg mL–1 (Fig. 1–A). Isolates 266 

with EC50 falling within the 20–50 µg mL–1 range and having EC50 > 50 µg mL–1 were 267 

considered resistant (R) and highly resistant (HR) isolates, respectively.  268 

Similarly, 260 isolates (86.1%) were found to be sensitive to carbendazim, having EC50 values 269 

less than 1 µg mL–1 (Table 2). The remaining 42 isolates (13.9%), having EC50 higher than 100 270 

µg mL–1, were considered resistant (Fig. 1–B).  271 

Most of B. cinerea isolates tested (89.7%) were found to be sensitive to iprodione with a 272 

roughly normal distribution (Fig. 1–C). The EC50 values for these isolates ranged from 0.1 to 273 

0.69 µg mL–1 with the highest frequency of values falling within 0.2–0.29 µg mL–1. Otherwise, 274 

31 isolates (10.3%) showed resistance to iprodione and grew on media amended with fungicide 275 

concentrations higher than 1 µg mL–1 (Table 2, Fig. 1–C). 276 

About 69.2% of the isolates were found sensitive to pyrimethanil (Fig. 1–D), with EC50 values 277 

between 0.03 and 0.86 µg mL–1. For this fungicide, a high frequency of resistant  isolates (30.8%) 278 
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was detected within the B. cinerea population since they grew on media amended with 279 

pyrimethanil at concentrations higher than 1 µg mL–1 (Table 2). Overall, 15.2% of isolates 280 

exhibited an EC50 value within the 1.0–1.99 µg mL–1 range, 7.0% showed EC50 values between 281 

2.0 and 4.99 µg mL–1 and 8.6% had an EC50 value higher than 5 µg mL–1 (Fig. 1–D).  282 

No isolates resistant to fenhexamid and fludioxonil were found within the B. cinerea 283 

population. The frequency distributions of their EC50 values were roughly unimodal curves and 284 

these data are shown in Fig. 1–E and Fig. 1–F, respectively.  285 

 286 

Table 2  287 

Sensitivity of Botrytis cinerea isolates from table grape to different tested fungicides. 288 

Fungicide            EC50 (µg mL–1)          No. of isolates Resistance  

frequency (%) a Sensitive Resistant Sensitive Resistant 

Boscalid 0.01 – 1.81 5.05 – > 50 279 23 7.6 

Carbendazim 0.02 – 0.30 > 100 260 42 13.9 

Fludioxonil 0.0001 – 0.04 – 302 – – 

Fenhexamid 0.0002 – 0.09 – 302 – – 

Iprodione 0.10 – 0.69 1.16 – 9.27 271 31 10.3 

Pyrimethanil 0.03 – 0.86 1.09 – 41.42 209 93 30.8 

a Resistance frequency values were determined based on discriminatory concentrations of 0.1 µg mL–1 for 289 

fenhexamid and fludioxonil, and 1 µg mL–1 for boscalid, carbendazim, iprodione and pyrimethanil. 290 

 291 

 292 
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 293 

Fig. 1. Frequency distribution of EC50 values for boscalid, carbendazim, iprodione, pyrimethanil, 294 

fenhexamid and fludioxonil among 302 isolates of Botrytis cinerea collected from different vineyards in 295 

Sicily.  296 
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 297 

3.2. Multiple resistance among fungicides 298 

 299 

A Venn diagram of  sensitivity and resistance to fungicides showed that, among all isolates, 30 300 

isolates exhibited simultaneous in vitro resistance to two or more fungicides (Fig. 2). In detail, 301 

five isolates were simultaneously resistant to both boscalid and pyrimethanil and twelve to both 302 

carbendazim and iprodione. Three isolates were simultaneously resistant to boscalid, 303 

carbendazim and pyrimethanil, two were simultaneously resistant to carbendazim, iprodione and 304 

pyrimethanil, whereas eight isolates were simultaneously resistant to boscalid, carbendazim, 305 

iprodione and pyrimethanil (Fig. 2, Table 3).  306 

 307 

 308 
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 309 

Fig. 2. Venn diagram indicating simultaneous resistance to boscalid, carbendazim, iprodione and 310 

pyrimethanil among 302 Botrytis cinerea isolates collected from table grape vineyards during 2009-2013. 311 

EC50 values higher than 1 µg mL–1 (carbendazim, iprodione and pyrimethanil) and 5 µg mL–1 (boscalid, 312 

RF = 5) classified isolates as resistant and/or with reduced sensitivity to fungicides. The large circle 313 

represents the full set of 302 isolates tested for fungicide sensitivity. Each of four smaller circles 314 

represents the set of isolates with reduced sensitivity to the corresponding active ingredients. The 315 
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intersections among different circles indicates 4 subgroups that were simultaneously resistant to more than 316 

one fungicide. 317 

 318 

Table 3  319 

    Isolate Municipality Province Boscalid Carbendazim Iprodione Pyrimethanil 

2010       

    SR1, SR5 Licodia Eubea Catania  R a  S a S R 

    MZ2.1, MZ2.2 Chiaramonte G. Ragusa S R R S 

    MZ2.11 Chiaramonte G Ragusa R R S R 

    MZ4.1, MZ4.2, MZ4.3 Chiaramonte G. Ragusa R R R R 

2011       

    DB1.7 Caltagirone Catania R S S R 

    MA6.5, MA6.9 Mazzarrone Catania S R R S 
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Botrytis cinerea isolates with multiple fungicide-resistance obtained from  'Mazzarrone grape PGI ' 320 

district. 321 

a R and S indicate in vitro resistant and sensitive isolates, respectively.  322 

 323 

3.3. Molecular data  324 

 325 

Nucleotide sequences from isolates resistant or with reduced sensitivity to boscalid were 326 

compared with the corresponding nucleotide sequences of the sensitive isolates, with the 327 

reference wild-type sensitive strain (T4), and a complete SDH gene sequence (GenBank 328 

accession no. AY726618.1) was used for alignment. A single-nucleotide substitution in the SdhB 329 

gene coding the Fe-S protein sub-unit (Ip) of succinate dehydrogenase was detected in 11/23 of 330 

boscalid-resistant isolates tested. In detail, 8 boscalid-HR (EC50 > 50 µg mL–1) isolates showed a 331 

mutation at codon 272 with codon TAC instead of CAC. The nucleotide change from C to T led 332 

to the substitution of tyrosine with histidine (H272R) within the third cysteine-rich cluster-Ip sub-333 

unit. The other 3 boscalid-R (EC50 between 20 and 50 µg mL–1) isolates showed a mutation at 334 

codon 272 of CGC instead of CAC with the substitution of histidine with arginine (H272R). The 335 

    MA7.2 Mazzarrone Catania S R R R 

    LC3.6 Licodia Eubea Catania R R S R 

    FG7.2 Chiaramonte G. Ragusa R R R R 

2012       

    SP5.6, SP5.9, MA9.2 Mazzarrone Catania S R R S 

    SV3.9 Licodia Eubea Catania S R R R 

    MT6.4 Chiaramonte G. Ragusa S R R S 

    DC3.9 Chiaramonte G Ragusa R R S R 

    MT5.2 Chiaramonte G. Ragusa R R R R 

2013       

    SR7.3 Licodia Eubea Catania R S S R 

    NC4.12 Caltagirone Catania R S S R 

    FN2.9 Mazzarrone Catania S R R S 

    FN2.1 Mazzarrone Catania R R R R 

    PT2.4, PT2.7, PT2.8 Chiaramonte G. Ragusa S R R S 

    PD3.1, PD3.9 Chiaramonte G. Ragusa R R R R 
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nucleotide sequences of SdhB were identical in the boscalid-sensitive isolates and in the reference 336 

isolate (Fig. 3). No isolate was found to possess a mutation at codon 225, responsible for proline 337 

with leucine substitution. The remaining 12 isolates, found to be phenotypically resistant to 338 

boscalid (EC50 values within 5–19.99 µg mL–1) in in vitro assays, showed no mutation in SdhB.  339 

Mutations in the nucleotide sequences were observed in all isolates showing in vitro resistance 340 

to carbendazim. In this case, the resistance was correlated with a point mutation at codon 198 in 341 

the β-tubulin gene in comparison with the reference sensitive isolate SAS56 (Fig. 3). At this 342 

codon, these isolates had the codon GCG rather than GAG, which resulted in the substitution of 343 

glutamic acid by alanine (BenA E198A). Molecular analysis of the sensitive isolates did not 344 

reveal any mutations in this β-tubulin gene fragment.  345 

The well-known mutation (Banno et al., 2008) in the sequence of BcOS1 gene that confers 346 

resistance to dicarboximide iprodione was detected in 20 isolates at codon 365 (ATC→AGC - 347 

I365S), while a change in the remaining 11 isolates was detected at codon 369 (CAG→CCG - 348 

Q369P) encoding proline rather than glutamine, and codon 373 (AAC→AGC - N373S) encoding 349 

serine instead of asparagine (Fig. 3). Moreover, some isolates showing the first type mutation (at 350 

codon 365) also showed a mutation at codon 361, which was not significant because it encoded 351 

the same amino acid (glycine) (see black box in Fig. 3) 352 

 353 
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 354 

 355 

Fig. 3. Different mutations detected in partial nucleotide sequences for SdhB (at codon 272), β-tubulin (at 356 

codon 198), and BcOS1 (at codons 365, 369 and 373) genes respectively involved into boscalid, 357 

carbendazim and iprodione resistance in Botrytis cinerea.  358 

 359 

3.4. Assays on grape berries  360 

 361 

The data regarding fungicide sensitivity in vivo are reported in Table 4. Boscalid fungicide 362 

always provided a significant reduction (higher than 63%) of grey mould decay on grape berries 363 

caused by S isolates, whereas the lesion size reductions induced by R and HR B. cinerea isolates 364 

were not significant. The resulting percentages of sites infected by S isolates were significantly 365 

lower than those detected for R and HR pathogen isolates. 366 

Similar data on fungicide efficacy were detected for both thiophanate-methyl and iprodione. 367 

Indeed, the percentages of sites fungicide-treated and infected by S isolates were always 368 

Fungicide Gene Mutation type
sensitivity

SdhB
Boscalid-S GATAACAGCATGAGTTTGTACAGATGTCACACTATTCTCAACTGCTCGAGG  
Boscalid-R (1) GATAACAGCATGAGTTTGTACAGATGTTACACTATTCTCAACTGCTCGAGG  
Boscalid-R (2) GATAACAGCATGAGTTTGTACAGATGTCGCACTATTCTCAACTGCTCGAGG  
Reference-S GATAACAGCATGAGTTTGTACAGATGTCACACTATTCTCAACTGCTCGAGG  

β-tubulin
Carbendazim-S CTCTCTCTGTCCATCAATTGGTTGAGAACTCTGACGAGACCTTCTGTATCG
Carbendazim-R (1) CTCTCTCTGTCCATCAATTGGTTGAGAACTCTGACGCGACCTTCTGTATCG
Reference-S CTCTCTCTGTCCATCAATTGGTTGAGAACTCTGACGAGACCTTCTGTATCG

BcOS1                                    
Iprodione-S TCTTGGGGGTCAAGCAGAAATCGAAGGCGTCCAGGGCATGTGGAACACATT
Iprodione-R (1) TCTTGGGGGCCAAGCAGAAAGCGAAGGCGTCCAGGGCATGTGGAACACATT
Iprodione-R (2) TCTTGGGGGTCAAGCAGAAATCGAAGGCGTCCCGGGCATGTGGAGCACATT
Reference-S TCTTGGGGGTCAAGCAGAAATCGAAGGCGTCCAGGGCATGTGGAACACATT
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significantly lower than those detected for R isolates of B. cinerea. Moreover, the reductions in 369 

lesion size caused by S isolates on fungicide treated grape berries were significant, whereas 370 

reductions were not significant for R isolates with the exception of iprodione against isolate 371 

MZ4.2 (Table 4).   372 

No lesions were observed on pyrimethanil-treated grape berries when S isolates of B. cinerea 373 

were used for the inoculation. In contrast, pyrimethanil partially failed to control grey mould 374 

decay caused by R isolates of B. cinerea. Indeed, these latter isolates were able to cause heavy 375 

decays on fungicide treated berries (Table 4). 376 

Fenhexamid and fludioxonil provided reductions of grey mould decay always higher than 87% 377 

and 83%, respectively and no significant differences for percentages of infected sites were 378 

detected among tested isolates (data not shown).  379 

 380 

3.5. Assays on grapevine leaves  381 

 382 

The R and HR boscalid isolates caused visible lesions on grapevine leaves previously treated 383 

with the fungicide (Table 4). Indeed, these isolates  produced lesions on fungicide-treated leaves 384 

which did not significantly differ in diameter from those on control leaves. A low fungicide 385 

efficacy in controlling grey mould decay (20.8–41.0% disease reduction) was detected in the RS 386 

boscalid isolates. The greatest reductions in disease severity (63.1–100%) were detected in all S 387 

isolates.  388 

Regarding thiophanate-methyl and pyrimethanil, all isolates considered resistant in previous 389 

assays infected fungicide-treated grapevine leaves, producing extensive lesions which were 390 

comparable to those observed on untreated controls. No sensitive isolate caused severe symptoms 391 

of decay on leaves (disease reduction of 59.6–95.7%). 392 

Grapevine leaves treated with iprodione at label rate and then inoculated with sensitive isolates 393 

were protected from infection (0.0% of infected sites on treated leaves), whereas those inoculated 394 
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with resistant isolates were not protected and showed heavy disease symptoms on leaves (66.7–395 

100% of infected sites). However, for isolates MZ2.1 and MZ2.2, iprodione weakly reduced their 396 

development (44.7–72.4% disease reduction) and lesion diameters were significantly less than for 397 

controls; thus, these isolates were considered weakly resistant to iprodione.  398 

Fenhexamid and fludioxonil markedly controlled infection caused by B. cinerea strains tested 399 

on grapevine leaves (disease reduction of 92.8–100%) and no significant differences were 400 

detected among tested isolates. The diameter of lesions on leaves treated with fungicides and 401 

subsequently inoculated with pathogen isolates were significantly lower than those of untreated 402 

leaves (data not shown). 403 

 404 

Table 4  405 

Infected sites (%) and lesion diameter (mm) on grape berries and grapevine leaves treated with different 406 

fungicides and inoculated with Botrytis cinerea isolates sensitive or resistant to active ingredients. 407 

  Detached grape berries b Grapevine leaves on seedlings b 

Fungicide              

   Phenotypea 

Isolates  Infected 

sites (%)c 

Lesion (mm) d Reduction 

(%) 

Infected 

sites (%)c 

Lesion (mm) d Reduction 

(%) Control Treated Control Treated 

Boscalid 
         

S BN5 66.7 a 25.5 * 7.8 * 69.4 55.6 b 20.6 * 7.6 * 63.1 

S  CR6 56.7 a 12.2 * 4.5 * 63.1 0.0 a 9.7 * 0.0 * 100.0 

RS SR1 100.0 b 21.0 ns 24.8 ns – 100.0 c 24.0 * 19.0 * 20.8 

RS SR5 100.0 b 28.6 ns 26.8 ns 6.3 100.0 c 25.1 * 14.8 * 41.0 

R MZ2.11 96.7 b 15.0 ns 16.6 ns – 100.0 c 23.1 ns 22.8 ns 1.3 

HR MZ4.2 100.0 b 27.1 ns 25.7 ns 5.2 100.0 c 18.3 ns 17.6 ns 3.8 

HR MZ4.3 100.0 b 26.2 ns 19.5 ns 25.6 100.0 c 19.4 ns 16.0 ns 17.5 

Iprodione          

S CR5 30.0 a 8.3 * 2.9 * 65.1 0.0 a 10.0 * 0.0 * 100.0 

S DN1 50.0 b 20.0 * 5.7 * 71.5 0.0 a 23.2 * 0.0 * 100.0 

R MZ2.1 100.0 c 18.4 ns 20.1 ns – 88.9 b 21.9 * 12.1 * 44.7 

R MZ2.2 100.0 c 21.7 ns 26.1 ns – 66.7 b 21.0 * 5.8 * 72.4 

R MZ4.2 100.0 c 27.1 * 19.7 * 27.3 100.0 b 18.3 ns 15.7 ns 14.2 

R MZ4.3 100.0 c 26.2 ns 20.2 ns 22.9 100.0 b 19.4 * 15.7 * 19.1 

Thiophanate-methyl         

S MTK4 30.0 a  23.8 * 5.4 * 77.3 11.1 a 23.3 * 1.0 * 95.7 

S MTR6 33.3 a 23.6 * 3.6 * 84.7 11.1 a 20.3 * 1.0 * 95.1 
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R MZ2.1 100.0 b 18.4 ns 12.4 ns 32.6 100.0 b 21.9 ns 21.2 ns 3.2 

R MZ2.2 100.0 b 18.1 ns 22.7 ns – 100.0 b 21.0 ns 20.9 ns 0.5 

R MZ2.11 93.3 b 13.6 ns 16.7 ns – 100.0 b 23.1 ns 21.2 ns 8.2 

R MZ4.2 100.0 b  27.1 ns 26.9 ns 0.7 100.0 b 18.3 ns 18.9 ns – 

R MZ4.3 100.0 b 26.2 ns 26.4 ns – 100.0 b 19.4 ns 18.0 ns 7.2 

Pyrimethanil         

S BN1 0.0 a 17.6 * 0.0 * 100.0 55.6 a 14.1 * 5.7 * 59.6 

S MZ3.1 0.0 a 9.5 * 0.0 * 100.0 44.4 a 12.3 * 4.2 * 65.8 

R FG4 53.3 b 11.7 ns 5.2 ns 55.5 100.0 b 22.0 ns 22.4 ns – 

R SR5 40.0 b 24.5 * 15.1 * 38.4 100.0 b 25.1 * 18.4 * 26.7 

R MZ4.2 100.0 c 27.1 * 19.9 * 26.6 100.0 b 18.3 ns 18.7 ns – 

R MZ4.3 100.0 c 26.2 * 20.7 * 21.0 100.0 b 19.4 ns 15.8 ns 18.6 

a S = sensitive isolate; RS = isolates with reduced sensitivity, and R = resistant isolates based on in vitro and molecular tests. 408 
b Each data point represents the mean of 30 values (10 berries per 3 replicates) for detached grape berry assay and 18 (6 plugs per 409 

3 leaves) for grapevine leaf assays respectively corresponding to the same number of wounded sites.  410 
c Sites where infection starts have been percentage calculated only in fungicide-treated leaves after 6 and 4 days for grape berries 411 

and grapevine leaves, respectively. These data were compared within each column among examined isolates according to Fisher’s 412 

least significance difference test (P = 0.01).  413 
d Mean data followed by *, within each row between control and treated leaves, denote significant differences at P < 0.01 414 

according to Mann Whitney non parametric rank test (z > 2.58); ns: not significant. 415 

 416 

4. Discussion 417 

 418 

This paper provides first data on resistance and/or sensitivity of B. cinerea isolates collected 419 

from main table grape production in Sicily to six fungicides belonging to chemical groups with 420 

different modes of action.  421 

Overall, this study documents the field occurrence B. cinerea isolates with multiple resistance 422 

to different botryticides (benzimidazoles, dicarboximides, anilinopyrimidines and SDHIs). 423 

Multiple fungicide resistance of grey mould was previously reported in German, Chilean, and 424 

Italian (Piedmont and Apulia) vineyards (De Miccolis Angelini et al., 2014; Gullino et al., 2000; 425 

Latorre and Torres, 2012; Leroch et al., 2011) and in other crops worldwide (Bardas et al., 2010; 426 

Fernández-Ortuño et al., 2014; Moyano et al., 2004; Myresiotis et al., 2007; Sun et al., 2010). 427 

Isolates resistant to both old and new botryticides have emerged over time in many crops 428 
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worldwide (Amiri et al., 2014; Grabke et al., 2013; Leroux, 2007; Saito et al., 2014; Yin et al., 429 

2014). However, the resistant isolates detected in some studies have only been characterized 430 

phenotypically.  431 

Fungicide resistance of B. cinerea isolates, detected in our in vitro assays, was confirmed by 432 

breakdown in efficacy detected in in vivo experiments. Additionally, molecular analysis has 433 

revealed point mutations directly involved in the nucleotide sequences of β-tubulin, SdhB and 434 

BcOS1 histidine kinase genes that conferred resistance to carbendazim, boscalid (SDHI) and 435 

iprodione (dicarboximide), respectively.  436 

Currently, field resistant isolates of B. cinerea to boscalid have been reported in a limited 437 

number of hosts (Amiri et al., 2014; Bardas et al., 2010; Fernández-Ortuño et al., 2014; Veloukas 438 

et al., 2011; Yin et al., 2011) including grape in Germany (Wine Road region), France 439 

(Champagne region) and, more recently, in Italy (Apulia region) (De Miccolis Angelini et al., 440 

2014; Leroch et al., 2011; Leroux et al., 2010). The low frequency of boscalid-resistant genotypes 441 

of B. cinerea detected in Sicilian vineyards and conferred by the SdhBH272R/Y mutation, could be 442 

due both to its relatively recent introduction (2006 in Italy) and after the product launch farmers 443 

did not use the fungicide frequently,  performing a maximum of one application per growing 444 

season in recent years. Boscalid–R isolates were detected from all municipalities within the 445 

Catania province (Licodia Eubea, Caltagirone and Mazzarrone) although with a very low number 446 

per municipality, whereas boscalid-R isolates were collected exclusively in one municipality in 447 

Ragusa (i.e. Chiaramonte Gulfi), which incidentally is the most representative for typical grape 448 

production in this province. This suggests that the fungicide may yet be included in integrated 449 

management programs for control of botrytis bunch rot of 'Mazzarrone grape PGI'. However, the 450 

field application of this botryticide should be approached with caution since some pathogen 451 

isolates possessed boscalid-resistance while other isolates showed an in vitro and in vivo 452 

decreased sensitivity to the fungicide.  453 
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The frequency of benzimidazole-resistant genotypes of B. cinerea was found to be relatively 454 

low in the detected area and it was associated with the most common worldwide E198V mutation 455 

in the β-tubulin gene as reported in other papers (Banno et al., 2008; Ma and Michailides, 2005). 456 

This could be partially explained by no or irrelevant use of benzimidazoles in the last decade and, 457 

therefore, the almost lack of selection pressure exerted by the fungicide may have induced an 458 

increase in wild type (sensitive) isolates having a higher fitness and, consequently, higher 459 

competitive activity than resistant isolates. However, the latter isolates could persist within 460 

population for a long time also in absence of benzimidazole applications (Brent and Hollomon, 461 

2007a).  462 

Regarding the dicarboximides, few isolates exhibited resistance to iprodione, showing both the 463 

well-known point mutation (type I) at amino acid position 365 (I365S) and amino acid 464 

substitutions of type III at position 369 (Q369P) and 373 (N373S) in the histidine kinase genes 465 

(BcOS1) (Banno et al., 2008). The most dicarboximides-resistant isolates also showed resistance 466 

to benzimidazoles, confirming previous data that reported this double resistance in B. cinerea 467 

populations occurring in a variety of crops (Beever et al., 1989; Brent and Hollomon, 2007a; 468 

Yourman and Jeffers, 1999).  469 

The high frequency of pyrimethanil-resistant isolates detected in this survey could be related 470 

to the widespread use of this fungicide. Resistance to pyrimethanil has developed worldwide and 471 

a high percentage of anilinopyrimidine-resistant isolates has been reported in Italy, France, 472 

Switzerland, Greece, China and Australia, suggesting that there is a high risk for the occurrence 473 

of anilinopyrimidine resistance in B. cinerea populations (Baroffio et al., 2003; Chapeland et al., 474 

1999; Gullino et al., 2000; Latorre et al., 2002; Leroux et al., 1999; Myresiotis et al., 2007; 475 

Sergeeva et al., 2002; Sun et al., 2010).   476 

Regarding fenhexamid and fludioxonil, no fungicide-resistant field isolate was found within 477 

our B. cinerea population although these compounds have been widely used in Sicilian vineyards. 478 

These findings contrast with the data on reduced sensitivity of B. cinerea field strains to 479 
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fenhexamid detected in Chilean, French and Swiss vineyards (Baroffio et al., 2003; Esterio et al., 480 

2007; Billard et al., 2012) and on other crops worldwide (Myresiotis et al., 2007; Leroux, 2007; 481 

Ma and Michailides, 2005). Thus, this molecule is classified as a low risk for the resistance 482 

development by FRAC (Brent and Hollomon, 2007b; FRAC Code List) and its use for 483 

controlling of grey mould of grape should be encouraged since it also shows a low persistence in 484 

the environment (Abbate et al., 2007) On the contrary, for fludioxonil, our data are in accordance 485 

with previous reports worldwide in several hosts, where the occurrence of fludioxonil resistance 486 

was not observed, or rarely observed, in B. cinerea populations (Baroffio et al., 2003; De 487 

Miccolis Angelini et al., 2014; Ferñandez-Ortuño et al., 2013; Grabke et al., 2014; Latorre and 488 

Torres, 2012; Leroch et al., 2012; Yin et al., 2014; Zhao et al., 2010). Some of these resistant 489 

isolates could have fitness penalties (Zhao et al., 2010), which may at least partly explain the 490 

absence and/or low frequency of fungicide-resistant isolates within fungal populations in the field 491 

detected here and in other studies (Ferñandez-Ortuño et al., 2013; Leroch et al., 2012). 492 

Comparative data regarding sensitivity/resistance of Botrytis cinerea to fluodioxonil and 493 

iprodione confirmed past study, according to which dicarboximide-resistant field isolates proved 494 

to be sensitive to fludioxonil, but the latter did not select for dicarboximide resistance in field 495 

experiments (Hilber et al., 1994, Brent and Hollomon, 2007a). 496 

 This finding indicates that fenhexamid and fludioxonil also have great potential for control of 497 

grey mould on table grape in the PGI 'Mazzarrone grape' district. 498 

Our isolates showing multiple fungicide resistance displayed a considerable ability to infect 499 

grape berries and leaves pre-treated with the tested fungicides at their label rates. Therefore, a 500 

shift towards reduced sensitivity in B. cinerea to the above-mentioned compounds could be 501 

predictive of the breakdown of fungicide efficacy for this important table grape area production. 502 

The detection of B. cinerea isolates with multiple resistance to these botryticides in the field, 503 

although with low frequency, actually could represent a serious threat for typical 'Mazzarrone 504 

grape PGI ' since the pathogen is classified at 'high risk' for resistance development (EPPO, 2002; 505 
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Russel, 2004) – due to its polycyclic nature, abundant inoculum production, efficient 506 

dissemination mechanisms and wide host range (Myresiotis et al., 2007). Recently, Kretschmer et 507 

al. (2009) showed that the mechanism of multiple fungicide resistance for plant pathogens could 508 

be additionally due to decreased accumulation of compounds in the mycelium caused by 509 

increased fungicide efflux.  510 

An effective anti-resistance strategy can best be achieved by preventing large-scale field 511 

resistance in vineyards and cannot rely on a single or few fungicides. In light of these findings, 512 

the use of benzimidazoles, dicarboximides, anilinopyrimidines and the SDHI boscalid within 513 

Sicilian districts should be performed in alternation or in mixtures with botryticides having 514 

different modes of action and showing a low risk of resistance development such as 515 

phenylpyrroles and hydroxyanilides. The results of the present study indicate that, by continuous 516 

selection of multi-resistant isolates, chemical control of grey mould in vineyards will become 517 

increasingly difficult in this important Italian area of table grape production. Thus, careful 518 

monitoring of sensitivity and multiple resistance among botryticides over time will be crucial 519 

point in managing fungicide resistance.  520 
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 685 

Fig. 1. Frequency distribution of EC50 values for boscalid, carbendazim, iprodione, pyrimethanil, 686 

fenhexamid and fludioxonil among 302 isolates of Botrytis cinerea collected from different 687 

vineyards in Sicily. 688 

Fig. 2. Venn diagram indicating simultaneous resistance to boscalid, carbendazim, iprodione and 689 

pyrimethanil among 302 Botrytis cinerea isolates collected from table grape vineyards during 690 

2009-2013. EC50 values higher than 1 µg ml–1 (carbendazim, iprodione and pyrimethanil) and  5 691 

µg ml–1 (boscalid) classified isolates as resistant and/or with reduced sensitivity to fungicides. 692 

The large circle represents the full set of 302 isolates tested for fungicide sensitivity. Each of four 693 

smaller circles represents the set of isolates with reduced sensitivity to the corresponding active 694 

ingredients. The intersections among different circles indicates 4 subgroups that were 695 

simultaneously resistant to more than one fungicide. 696 

Fig. 3. Different mutations detected in partial nucleotide sequences for SdhB (at codon 272), β-697 

tubulin (at codon 198), and BcOS1 (at codons 365, 369 and 373) genes respectively involved into 698 

boscalid, carbendazim and iprodione resistance in Botrytis cinerea. 699 
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