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ABSTRACT
This paperdiscusses about self-regulating the reference flux in inductionmotor (IM)direct torque
control (DTC) drive by fuzzy logic. Self-regulation is improved by using “Artificial Neural Network
(ANN)” and “Adaptive Network Based Fuzzy Inference System (ANFIS)” based reference flux esti-
mators. Furthermore, PI speed controller is investigated to develop the performance of the drive.
Two different PI speed controller tuning strategies, manual and Fuzzy Gain Scheduling (FGS), are
compared for load torque disturbance. The results clearly show that themodified DTC of IMwith
“ANFIS-based reference flux estimator and FGS-tuned PI speed controller” is most suitable for
torque ripple reduction and speed control.
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1. Introduction

Inductionmotors (IMs) are extensively used in industry
due to their cost-effectiveness, reliability and robust-
ness to load variations [1–5]. The field-oriented con-
trol (FOC) is applied to regulate the IM like a DC
Motor. FOC became complicated due to the involve-
ment of Concordia transformation, current regulator
and pulse widthmodulation signal generator [5]. In the
late 1980s, M. Depenbrock, Takahashi and T. Noguchi
introduced a new concept of IM mechanism called
direct torque control (DTC) [6,7]. It is simple in struc-
ture and avoids coordinate transformation and cur-
rent regulator. It is robust to the variations of machine
parameters. DTC directly controls the torque and sta-
tor flux of the IM by adjusting the inverter switching
signals. The inverter switching signals are taken from a
predefined look-up table. The look-up table was created
by the output of the three- and two-level comparators
using hysteresis loop, stator flux position [8].

Many researchers have tried to involve artificial
intelligence (AI) techniques to modernize the DTC. In
DTC, the AI techniques have been applied for generat-
ing switching signals to voltage source inverter. The AI
techniques likeANN, fuzzy andneuro-fuzzy can also be
applied to hysteresis comparator, reference flux estima-
tor and PI speed controller [9–12]. Increasing the sector
division in the locus of the flux [13] is also tried.

Control algorithms have been developed by the
authors [14,15] for computing the stator flux reference
by command torque to reduce the ripples in torque.
But these control algorithms are based on mathemat-
ical approximations relating the stator flux reference

value and the command torque. The stator flux refer-
ence value is computed based on command torque by
using fuzzy logic [16]. The estimated flux of stator is
named as the modified reference flux. The fuzzy logic
controller inputs are error in torque, stator flux refer-
ence value and the output is themodified reference flux.
Still, the stator flux reference value and themodified ref-
erence flux membership functions are not distributed
symmetrically and continuously. Hence, the solution
obtained may not be global.

The speed control of IM with DTC is normally by a
PI speed controller [17–18]. A neuro-fuzzy controller
(NFC) based on IM speed control is used [19–22] to
replace the conventional PI speed controller [23]. NFC
uses the benefits of both fuzzy as well as neural net-
work. The PI speed controller can be optimized in
DTC using adaptive heuristic search algorithms like
genetic algorithm (GA) and particle swarm optimiza-
tion (PSO) [24–25]. The constant gain values obtained
may not provide optimum for all changes in system
conditions. Adjusting the PI speed controller gain val-
ues by an adaptive mechanism for fuzzy inference is
presented as Fuzzy Gain Scheduling (FGS) [26–28].
The adaptation is based on error in speed and deriva-
tive of error in speed. The error in speed and derivative
of error in speed membership functions were divided
into seven membership functions but the output has
only two membership functions. This yields almost the
same values of controller gain even for large changes in
speed error [26–27]. Hence, the fine-tuned controller
gain values are not obtained. The reference flux value
is not modified according to loading conditions by the
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researchers [20–27], whereas it is maintained constant
from no load to full load.

In this research work, the major contributions are as
follows

• Fuzzy-based reference flux estimator is proposed for
DTC with suitable symmetrical membership func-
tions in the inputs and output.

• ANNandANFIS-based reference flux estimators are
developed for DTC. These ANN and ANFIS-based
reference flux estimators are attempted which have
not been tried by other researchers so far.

• The adaptive Fuzzy Gain Scheduled PI controller is
proposed for the reference torque estimator (Speed
PI controller) in DTC. This overcomes the disad-
vantage of yielding same gain values even for large
changes in speed.

2. Modelling of inductionmachine and DTC
strategy

The basic theory of DTC, shown in Figure 1, is to con-
trol directly the stator flux and electromagnetic torque
of IM. This is done by applying the suitable voltage
vector from the inverter to the motor. The voltage
vectors are designated from a standard look-up table
(Table 1). The voltage vector rotates the stator flux and
produces the required electromagnetic torque in the IM
[1]. During this operation, stator flux and electromag-
netic torquemagnitude of themotor are confined using
a predefined hysteresis band. The stationary reference
frame modelling of IM is done by converting the three-
phase quantities (Va, Vb and Vc ) into two-phase, dq-
axis quantities (Vds, Vqs) using Clarke’s transformation
[2–5].

The induction machine [4,5], dynamic machine
model developed in stationary reference frame, establishes

Table 1. Look-up table for DTC.

d�s dTe α(1) α(2) α(3) α(4) α(5) α(6)

1 1 V2 V3 V4 V5 V6 V1
1 0 V0 V7 V0 V7 V0 V7
1 −1 V6 V1 V2 V3 V4 V5
0 1 V3 V4 V5 V6 V1 V2
0 0 V7 V0 V7 V0 V7 V0
0 −1 V5 V6 V1 V2 V3 V4

the relation between voltages and currents in matrix
form using equivalent circuit of induction machine as

⎡
⎢⎢⎣
Vqs
Vds
0
0

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣
Rs + sLs 0 sLm 0

0 Rs + sLs 0 sLm
sLm −ωrLm Rr + sLr −ωrLr
ωrLm sLm ωrLr Rr + sLr

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣
iqs
ids
iqr
idr

⎤
⎥⎥⎦ , (1)

where s is the Laplacian operator. Vds and Vqs are the
stator dq-axis voltage components. The stator and rotor
resistances are referred as Rs and Rr respectively. Stator,
rotor and mutual inductances are referred as Ls, Lr and
Lm, respectively. By using Equation (1), the stator and
rotor current components for dq-axis ids, iqs, idr and iqr
can be calculated. The corresponding flux components
�ds,�qs,�dr and�qr are given by Equations (2) to (5)
[5].

�ds =
∫
(Vds − idsRs)dt, (2)

Figure 1. The basic DTC scheme of IM drive.
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Figure 2. Proposed structure of DTC for performance improvement.

�qs =
∫
(Vqs − iqsRs)dt, (3)

�dr = −
∫
(�qrωr + idrRr)dt, (4)

�qr =
∫
(�drωr − iqrRr)dt. (5)

The actual torque (Te), stator flux (�s), stator flux
angle (α) and actual speed (ωr) are developed using
Equations (6) to (9) [5]. The torque component is esti-
mated from

Te = 3
2

∗P
2

∗
(�dsiqs −�qsids). (6)

The IM actual speed (ωr) in Figure 1 is calculated
using

ωr = 1
J

∫
(Te − TL)dt, (7)

where TL is load torque and J represents the inertia.
For the stator flux (�s),

�s =
√
(�2

ds +�2
qs). (8)

The calculated stator flux angle (α) is given by (9),

α = tan−1
(
�qs

�ds

)
. (9)

The reference torque (T*) is calculated by PI speed
controller with input as speed error (ω∗ − ωr). The
difference between reference torque (T*) and actual
electromagnetic torque (Te) is obtained from Equation
(6) and applied to the three-level torque comparator in
Figure 1 [5–7]. Sector number is calculated by using
the stator flux angle (α) [5]. The angle of stator flux
(α) is separated into six sectors as −30° to 30° as sec-
tor 1, 30° to 90° as sector 2 and similarly till sector 6 as
−90° to −30°.

The DTC controls the triggering signals to the volt-
age source inverter by the outputs from the three-level
torque hysteresis comparator (dTe), two-level flux hys-
teresis comparator (dψs) and sector estimator. Based on
the output, the triggering signals to the voltage source
inverter are selected from a standard look-up table [5].
Due to the hysteresis comparators, the triggering sig-
nals not only depend on the amplitude but also on the
direction of flux and torque. In this paper, soft com-
puting techniques are applied to reference flux estima-
tor and PI speed controller for better performance of
DTC. The usual reference flux estimator is replaced by
fuzzy, ANN- and ANFIS-based reference flux estima-
tors. The PI speed controller is tuned using manual and
FGS methods. Thus, by using soft computing methods,
modified reference flux estimator and PI speed con-
troller are established as shown in Figure 2 for DTC of
IM.

3. Reference flux estimator

In general, IMs are always operated at rated flux tomeet
themaximum load torque and also during starting con-
ditions. According to Equations (2) and (3), the stator
flux value will change proportional to voltage vector
applied.

3.1. Fixed reference flux estimator

Normally for DTC, the reference flux is estimated from
the reference flux estimator in Figure 1. From the IM
characteristics [2] for flux, it is perceived that themotor
speed upto rated value operates in constant flux region.
Hence, the reference flux estimator shown in Figure 1
gives constant reference flux till the rated speed and
after that it transfers to field weakening region. Oper-
ating the motor always at constant reference flux is not
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Figure 3. Fuzzy/ANN/ANFIS-based reference flux estimator.

a suitable idea especially under light load and no load
conditions.

In light load conditions, constant flux causes more
core loss and poor efficiency [14]. In DTC, the ampli-
tude of flux in terms of torque is generally given as

ψs
ψsn

=
√

Te
Ten

. (10)

The above equation is simple but it does not include
the power dissipation of the drive.

3.2. Fuzzy-based reference flux estimator

The torque ripple is minimized by optimizing the ref-
erence flux estimator using fuzzy logic controller as
shown in Figure 3. The inputs to the fuzzy logic con-
troller are [16] torque error (T*−Te) and the reference
flux (�∗) from the reference flux estimator. The output
is the correction in reference flux (�ψ∗) required for
modified reference flux (ψ∗

m).
The FLC membership functions for both input and

output are presented in Figures 4(a–c), respectively.
The response of the torque error (T* −Te) of the

system, when tried with three membership functions,
is very slow. The slow response in three membership
functions-based fuzzy is due to the wide range of torque
error (T*−Te). This keeps the slope of themembership
functions smaller and therefore the system response
is very slow. To overcome this issue, in this paper, six
membership functions-based fuzzy is used. The torque
error variation (T*−Te) during starting, load changes
and steady state vary between [−100, 100], [−28, 28]
and [−3, 3], respectively. Due to this reason, the mem-
bership functions are not regular. Though the mem-
bership functions are not regular, the total degree of
membership functions for any input value over the uni-
verse is one (i.e. symmetricalmembership functions are
maintained). Since the range for torque error (T*−Te)
during starting, load changes and steady state are not in
uniform pattern and regular placement of membership
functions cannot be used.

The computation inside fuzzy for a three-member
ship will be faster than six-membership functions, but
it fails to provide required control on all the three stages
namely starting, load changes and steady state.

When the number of membership functions is more
than six, a large change in output is observed for
small change in input. Hence for stable performance,
torque error (T* −Te) and reference flux from refer-
ence flux estimator (�∗) are divided into six and three
fuzzy subsets with linguistic values {NB = negative big,
NM = negative medium, N = negative, P = positive,
PM = positive medium, PB = positive big} and {S =
small, M = medium, B = big}, respectively.

The universe of torque error (T* −Te) and refer-
ence flux (�∗) are [−100, 100] and [0, 1], and these
ranges are decided by system conditions. The fuzzy
inference output is correction in reference flux (�ψ∗),
which is divided into seven fuzzy subsets with linguistic
values {NB = negative big, NM = negative medium,
NS = negative small, O = zero, PS = positive small,
PM = positive medium, PB = positive big} with uni-
verse [−0.2, 0.2]. Since the actual ranges are used in
inputs and output, no scaling factor is used before fuzzi-
fication and after de-fuzzification. By using knowledge
base, the fuzzy rules are developed. The fuzzy rules
used are given in Table 2 and ��∗ is decided by fuzzy
inference [15–16].

The triangular and trapezoidal membership func-
tions are chosen for computational simplicity and
easy overlapping. The solution offered by symmetrical
membership functions is globally applicable, not local.

3.3. ANN-based reference flux estimator

The fuzzy logic-based reference flux estimator provides
better response than the conventional reference flux
estimator. For further improvement, ANN-based refer-
ence flux estimator is developed by collecting data from
Fuzzy-based reference flux estimator and trained using
backpropagation algorithm.
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Figure 4. (a) Inputmembership functions for torque error. (b) Inputmembership functions of reference flux. (c). Outputmembership
functions for correction in reference flux.
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Table 2. Rule base for��∗.

�∗ (T∗ − Te)

NB NM NS PS PM PB
S O PM PB O PM PB
M NS O PS NS PM PS
B NB NM O NB NM O

Like Fuzzy, the proposed ANN has two inputs and
single output. The inputs are torque error (T* −Te) and
reference flux (�∗�∗). The output is correction in ref-
erence flux (��∗). Totally 33,408 input–output data are
collected for supervised learning. The backpropagation
algorithm provides desired convergence characteristics
with required goal for a two-layer architecture with 10
neurons in hidden layer. Log-sigmoid and tan-sigmoid
activation functions are used for the hidden and output
layers, respectively. The Fuzzy-based reference flux esti-
mator explained in Section 3.2 is replaced by the trained
ANN to test its performance.

3.4. ANFIS-based reference flux estimator

ANFIS provides training of data based on a suitable
mixture of ANN and fuzzy logic. Since the fuzzy logic is
not completely adaptive, to optimize the response, the
membership functions and the rule base of the fuzzy
logic have to be tuned. This requires a tedious trial
and error procedure. Therefore, fuzzy logic may not
be enough to give proper results. The initial structure
of ANFIS is built by knowledge base from fuzzy logic
and then that structure is improved by neural network.
The five-layerANFIS structure performs normalization
of inputs, fuzzification, rule base evaluation and de-
fuzzification. It provides a transparent model, in which
a neural network is used to design a fuzzy inference
system.

Hence, if the input–output data, input membership
functions and rule base are available for a fuzzy system,
then neural network training can be used for the adjust-
ment of membership functions and rule base. Due to
this transparency, the effects of various weight values
with torque error (T* −Te) and reference flux (�∗�∗)
are used to find optimal weights for minimal torque
error. ANFIS makes an intelligent choice of antecedent
and consequent parameters for torque error (T*−Te)
and reference flux (�∗�∗) membership functions. The
adaptive nature of ANFIS incorporates various param-
eters over a wide range of operating conditions. There-
fore, in this paper, the hybrid formulation of Fuzzy and
ANN as ANFIS is used to get better system response
when compared to fuzzy and ANN alone [19]. ANFIS
structure with the Sugeno model is trained with 18
rules. Here, ANFIS provides reference flux to the DTC
as given in Figure 3. It is clearly shown that themodified
reference flux (ψ∗

m) is computed based on torque error
(T*−Te) and the flux from reference flux estimator
(�∗) by using ANFIS.

ANFIS structure is composed of a five-layer feed
forward neural network as in Figure 5. The gradi-
ent descent and least squares estimator [19] are com-
bined in the proposed network. The structure consists
of functional blocks as rule base, database, decision-
making unit, an interface for fuzzification and a de-
fuzzification interface by using five network layers
[20–22]. The proposed ANFIS has two variable inputs
namely torque error (T* −Te) and the reference flux
(�∗) from reference flux estimator. The output of the
ANFIS is the correction required in reference flux
(��∗). In the first layer, (T*−Te) and (�∗) are mul-
tiplied by the corresponding weights and are mapped
using membership functions [12]. The second layer is
for estimating the input weights for minimum error
with firing strength of the rules as,

μi = min (μi
A1(T

∗ − Te),μi
A2(ψ

∗)), (11)

where μi
A1(T

∗ − Te) and μi
A2(ψ

∗) are the degree of
membership function for torque error and reference
flux, respectively. The third layer is for normalization
of weights. The normalized value of firing strength is
given as

μi = μi∑
μi

. (12)

The fourth layer is for de-fuzzification. The rela-
tionship between the input membership functions
{μi

A1(T
∗ − Te), μi

A2(ψ
∗)} and the output (O4) can be

defined as,

O4 = μ(fi) = μ(pix + qiy + ri), (13)

where pi, qi and ri are the node consequent parameters
and x = μi

A1(T
∗ − Te) and y = μi

A2(ψ
∗) are inputs.

The fifth layer is the weighted output summation of
layer 4. The output layer is given as

O5 =
∑
i
μifi =

∑
i
μifi

∑
i
μi

. (14)

ANFIS is developed by collecting 10,004 data
from the fuzzy-based reference flux estimator in this
work. Initially, the same membership functions from
Figure 4(a,b) are given as input membership functions
for ANFIS. The data are loaded in the ANFIS editor and
the structure shown in Figure 5 is created.

No clustering methods are used during training of
ANFIS. Instead of clustering method, grid partitioning
method is used for training the ANFIS. The number
of nodes is determined based on fuzzy-based reference
flux estimator. The network is trained for 100 epochs
in the backpropagation algorithm. Then the trained
ANFIS is loaded in the system and tested. Membership
functions of the universe of torque error (T*−Te) and
reference flux (�∗) are self-tuned to provide the better
performance.
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Figure 5. Proposed ANFIS structure.

4. Tuning of PI controller

In DTC, the torque reference is calculated from the
speed PI controller as shown in Figure 1. The speed
PI controller gain values tuned manually by trial and
error method are of fixed values. The values are neither
optimum nor adaptive. Hence, fuzzy logic is applied to
schedule the PI speed controller gain values adaptively.

4.1. Manual tuned PI speed controller

In manual tuning, the proportional gain Kp is acting
as a multiplying factor with speed error (ω*−ωr). If
the gain value is large, the actual speed (ωr) of the sys-
tem will reach the reference speed (ω*) closely. But
for larger values of proportional gain, the oscillations
are more. The speed PI controller integral part deter-
mines the error under the curve. Hence, the integral
part of PI speed controller is eliminated using the steady
state error. Initially, Ki is made equal to zero and Kp
value is increased till the actual speed (ωr) oscillates like
quarter-amplitude decay around the reference speed
(ω*). Then, Ki is increased meticulously to adjust the
steady state error (23). The Kp and Ki values are fine-
tuned together to get optimum response. The system is
subjected to step load disturbance for tuning.

4.2. Fuzzy gain scheduling for speed PI controller

The continuous changes in system parameters and the
non-linear effective circumstances make the PI speed

controller with fixed gain values incapable of offering
essential control. The fuzzy logic approach is capable
of handling the changes in parameter and mathemati-
cal models are not counted [26–27]. The block diagram
of the FGS is given in Figure 6. FGS control schemes
offer interpolation between the tuning tables based on
the instantaneous system conditions.

Equations (15) and (16) give the mathematical con-
cept of FGS, where Kp

1 and Ki
1 are the adaptive gain

values, which are varying as per the system condition.

K1
p = ((ω∗ − ωr) · KPFGS), (15)

Ki
1 = ((ω∗ − ωr) · KIFGS). (16)

KPFGS and KIFGS are the gain values suggested by
FGS. The inputs to the FGS are error in speed (ω*−ωr)
and derivative of error in speed (ω*−ωr)’. The uni-
verse of discourse of speed error is normalized from 0
to 1 and derivative of error in speed is normalized from
−1 to 1. The normalization is performed in FGS using
scaling factor as the largest value and no scaling factor
for the output. The number of fuzzy sets used for speed
error as well as time derivative of speed error is seven.
The (ω*−ωr) and (ω*−ωr)’ are fuzzified using trian-
gular and trapezoidal membership functions as shown
in Figure 7. Linguistic variables of the input and out-
put membership functions are VVL = Very very low,
VL = very low, L = low, M = medium, H = High,
VH = very high and VVH = Very very high. The rule
base is given in Table 3 [28]. The output range for the
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Table 3. Rule base for Kp, Ki.

(ω*−ωr )

KPFGS , KIFGS VVL VL L M H VH VVH

(ω*−ωr )’ VVL VVH VVH VVH VH VH H M
VL VVH VH VH VH H M L
L VVH VH H H M L VL
M VH VH H M L VL VL
H VH H M L L VL VVL
VH H M L VL VL VL VVL
VVH M L VL VL VVL VVL VVL

proportional gain is from 0 to 80 and for integral gain
is from 0 to 0.75.

5. Simulation results

The conventional DTC scheme given in Figure 1 is
established in MATLAB/Simulink® environment. The
developed scheme is computer-generatedwith a 2.2 kW
IM. The parameters of the IM are given in the
Appendix. The starting of the motor is with no load
to a reference speed of 149.67 rad/s from t = 0 s to
t = 0.5 s. The effect of load disturbance is observed
with a sudden load of 3.65Nm applied at 0.5 s to the
motor and then another step load of 10.95Nm applied
at 1.0 s. After that, at 1.5 s, 7.3Nm load is removed from
the motor. The timing diagram for load variations are
chosen based on Uddin [20] and Hafeez [21]. Uddin
has analysed the system for 1.0 swith 3HPmachine and

Hafeez has simulated for 0.7 s with 50–75% load varia-
tion at 0.3 s. The performance of the DTC is upgraded
in the following five control strategies, as shown in
Figure 2.

• Conventional DTC with fixed reference flux estima-
tor and manual tuned speed PI controller (Fixed-
Manual).

• Modified DTC with fuzzy-based reference flux esti-
mator andmanual tuned speed PI controller (Fuzzy-
Manual).

• Modified DTC with ANN-based reference flux esti-
mator and manual tuned speed PI controller (ANN-
Manual).

• Modified DTC with ANFIS-based reference flux
estimator and manual tuned speed PI controller
(ANFIS-Manual).

• Modified DTC with ANFIS-based reference flux
estimator and FGS-tuned speed PI controller
(ANFIS-FGS).

The fixed reference flux value used is 0.8Wb.
The fuzzy-based reference flux estimator explained in
Section 3.2 is developed using MATLAB/Simulink®
environment by fuzzy logic toolbox with FIS edi-
tor. ANN-based reference flux estimator in Section
3.3 is developed using Neural Network/Data Man-
ager (nntool). ANFIS-based reference flux estimator
explained in Section 3.4 is developed in the same

Figure 6. Block diagram of fuzzy gain scheduling.

Figure 7. Membership functions of FGS.
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Table 4. Tuned values of PI speed controller.

Method Kp Ki

Manual 100 0.1

environment using ANFIS editor. When ANN-based
reference flux estimator is comparedwithANFIS-based
reference flux estimator, ANFIS outperforms the ANN-
based reference flux estimator.

The PI speed controller is tuned manually by trial
and error method as given in Section 4.1, and the gain
values are shown in Table 4.

The gain values given in Table 4 are fixed. In order
to make the controller to be adaptive for the system
condition variations, an FGS-tuned PI speed controller
is proposed in Section 4.2. FGS gives variable gain PI
speed controller in order to be robust against parameter
variations and load disturbances.

5.1. Speed response

The DTC drive has started under no load condition for
a reference speed of 149.67 rad/s till t = 0.5 s. Figure 8
shows the speed response of different control strategies
for load disturbance. Figure 8 (a–c) show the zoom-in
view during adding and removal of loads. The com-
bined response for all the control strategies is shown in
Figure 8(d). The responses show that the conventional
DTC with fixed reference flux estimator and modified
DTCwith fuzzy-based reference flux estimator perform
slowly to overcome the disturbance rejection. However,
the “modified DTC with ANFIS-based reference flux
estimator and FGS-tuned PI speed controller” performs
with quick load disturbance rejection than the other
control strategies. Though load disturbance rejection
is fast, still there is a small steady state error even in
ANFIS-based control strategy.

The speed response of DTC IM during starting
and loading conditions are analysed. Figure 9 shows
the speed response of five control strategies for load

variations. In Figure 9, the fixed reference flux estimator
has low settling time during no load whereas the fuzzy,
ANN and ANFIS take some time to adapt to system
conditions. After that (0.32 s), for all other load vari-
ations, the ANFIS performs better for transient as well
as steady-state conditions than fixed and fuzzy control
strategies. This is validated using performance indices.

The starting speed responses alone are given in
Figure 10 from t = 0.15 s to t = 0.4 s. The “conven-
tional DTC with fixed reference flux estimator” and
“modified DTC with fuzzy-based reference flux esti-
mator” reach reference speed faster than the other two
ANFIS-based control strategies. The “modified DTC
with ANN-based reference flux estimator” reaches the
reference speed slower than all the control strategies.

5.2. Torque response

The torque response characteristics for no load, load
disturbance and steady state of DTC drive are given in
Figure 11. The transient period of ANFIS-based con-
trol strategies is slightly larger than fixed and fuzzy-
based control strategies. The transient response of
ANN-based control strategy is poor than ANFIS con-
trol strategy. The similar behaviour is observed for
speed response also as discussed earlier and shown in
Figure 10.

The ANN- and ANFIS-based control strategies
reach the reference torque with less ripples than fixed
and fuzzy-based control strategies. However, when
ANN and ANFIS are compared, ANFIS provides better
performance. It is clearly shown in Figure 11 that the
“modified DTC with ANFIS-based reference flux esti-
mator and FGS-tuned PI speed controller” reduces the
torque ripple than other control strategies.

5.3. Flux response

The reference flux ismaintained at 0.8Wb fromno load
to full load in conventional DTC with fixed reference

Figure 8. Speed responses of all the control strategies for load disturbance rejection.
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Figure 9. Speed responses of all the control strategies.

Figure 10. Starting speed responses of all the control strategies.

Figure 11. Torque responses of all the control strategies.
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Figure 12. Flux responses of all the control strategies.

flux estimator and manual tuned PI speed controller.
The reference flux value should change according to
loading conditions. The flux responses of DTC with
respect to load variations for all the control strategies
is given in Figure 12.

In fuzzy-based reference flux estimator, the reference
flux values are changed using fuzzy logic with respect
to loading conditions. The torque error is taken as an
objective function and for reducing it, the flux value
is varied in consecutive steps. The actual flux changes
from its initial value to final value. The flux optimizes
the transient level and steady state. The transient level
means the speed of convergence and steady state means
ripple.

5.4. Performance indices

The performance of speed, torque and flux responses
are computed using the performance index Integral
Square Error (ISE), Integral time absolute error (ITAE)
and Integral time square error (ITSE) using Equations
(17), (18) and (19). In these equations, the e(t) stands
for error in speed, torque and flux. Control systems
specified to minimize ISE will tend to eliminate the
large errors quickly. For both transient and steady state,
ISE is valid.

Hence, overshoot and rise time are taken into
account while evaluating the performance using the
performance index ISE. The performance indices are

Table 5. Performance indices for various reference flux estimators and speed controllers.

ISE ITAE ITSE

Time Torque Flux Speed Total Torque Flux Speed Total Torque Flux Speed Total

Fixed-Manual
0.5–1 s 3.964 0.000301 0.001038 3.965339 2.963 0.000227 0.000778 2.964004 0.8489 0.008195 0.01668 0.873775
1–1.5 s 9.632 5.66E−05 0.01387 9.645927 11.41 7.06E−05 0.01728 11.42735 2.128 0.004977 0.1032 2.236177
1.5–2 s 5.384 6.81E−05 0.003642 5.38771 9.432 0.000119 0.000638 9.432757 2.349 0.008024 0.07398 2.431004
Total 18.98 0.000426 0.01855 18.99898 23.805 0.000416 0.018695 23.82411 5.3259 0.021196 0.19386 5.540956

Fuzzy-Manual
0.5–1 s 1.532 0.003076 0.000568 1.535644 1.141 0.002317 0.000425 1.143742 0.5064 0.02102 0.01241 0.53983
1–1.5 s 3.016 1.99E−03 0.0109 3.028893 3.638 2.50E−03 0.0136 3.654103 1.183 0.02756 0.09195 1.30251
1.5–2 s 2.129 2.46E−03 0.002851 2.134308 3.725 0.004309 0.004516 3.733825 1.433 0.04434 0.06253 1.53987
Total 6.677 0.007526 0.014319 6.698845 8.504 0.009129 0.018541 8.53167 3.1224 0.09292 0.16689 3.38221

ANN-Manual
0.5–1 s 1.166 0.000257 0.000141 1.166398 0.8658 0.000193 0.000105 0.866099 0.4475 0.00738 0.006042 0.460922
1–1.5 s 2.107 6.42E−05 0.008346 2.11541 2.587 8.03E−05 0.01042 2.5975 0.9858 0.005674 0.08053 1.072004
1.5–2 s 1.477 6.50E−05 0.001428 1.478493 2.581 1.14E−04 0.002498 2.583612 1.178 0.00786 0.04645 1.23231
Total 4.75 0.000386 0.009915 4.760301 6.0338 0.000388 0.013023 6.047211 2.6113 0.020914 0.133022 2.765236

ANFIS-Manual
0.5–1 s 0.8345 0.000276 0.000248 0.835024 0.628 0.000206 0.000187 0.628393 0.3745 0.00775 0.008231 0.390481
1–1.5 s 1.92 6.52E−05 0.009078 1.929143 2.274 8.10E−05 0.01132 2.285401 0.8452 0.005598 0.08387 0.934668
1.5–2 s 1.209 6.80E−05 0.001777 1.210845 2.113 0.000119 0.003108 2.116227 1.04 0.008081 0.0519 1.099981
Total 3.9635 0.000409 0.011103 3.975013 5.015 0.000406 0.014615 5.030021 2.2597 0.021429 0.144001 2.42513

ANFIS-FGS
0.5–1 s 0.7123 0.000325 0.001467 0.714092 0.5326 0.000246 0.001099 0.533945 0.3434 0.008428 0.02024 0.372068
1–1.5 s 1.101 7.09E−05 0.006545 1.107616 1.363 8.86E−05 0.008136 1.371225 0.7018 0.0059 0.07084 0.77854
1.5–2 s 0.9513 6.96E−05 2.06E−05 0.95139 1.664 0.000122 3.57E−05 1.664157 0.9281 0.000806 3.57E−05 0.928942
Total 2.7646 0.000465 0.008033 2.773098 3.5596 0.000456 0.009271 3.569327 1.9733 0.015134 0.091116 2.07955
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Figure 13. Performance indices of torque, flux and speed error in DTC.

tabulated in Table 5.

ISE =
∫ T

0
e(t)2dt, (17)

ITAE =
∫ T

0
t|e(t)|dt, (18)

ITSE =
∫ T

0
te(t)2dt. (19)

Table 5 gives the variation of performance index
values for speed error, torque error and flux error for
five control strategies. The bold values of performance
index in Table 5 show that ANFIS-based reference flux
estimator together with FGS-tuned PI speed controller
yields minimal conditions for speed error as well as for
torque error. The bar chart from Table 5 for ISE alone is
given in Figure 13. ITAE and ITSEwill also be the same
like ISE. The proportional reflections could be verified
clearly for flux error.

The improvement in speed control and torque ripple
reduction is achieved with the reduction of flux for all
the five cases. Also in the fuzzy- and ANFIS-based ref-
erence flux estimator, the modified reference flux (ψ∗

m )
is instantaneous with respect to torque error as well as
reference flux from reference flux estimator (�∗).

The performance indices clearly show that the
“modified DTC with ANFIS-based reference flux esti-
mator and FGS-tuned PI speed controller” is the most
suitable one for speed control and torque ripple reduc-
tion for DTC IM drive.

6. Conclusion

The modified reference value of flux is computed based
on torque error and reference flux from usual reference
flux estimator. Self-regulation of reference stator flux
value is accomplished with the aid of fuzzy-,ANN- and
ANFIS-based reference flux estimators. The control of
speed for IM in DTC is accomplished using a PI speed
controller. The profound assessment between manual

tuning and FGS is performed. The no load and load dis-
turbance rejection characteristics of IM are analysed.
The performance indices and responses clearly prove
that “modified DTC with ANFIS-based reference flux
estimator and FGS-tuned PI speed controller” is most
suitable for torque ripple reduction and speed control
of DTC IM.
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Appendices

Appendix A

IM parameters:

Rs = 3.67 �; Rr = 2.32 �; Lm = 0.235 H; Ls = 0.245 H;
Lr = 0.248 H; J = 0.0126Kg/m2 .

Rated values:

Power = 2.2 kW; Voltage (V) = 400V; Speed (ω∗) =
149.67 rad/s; Torque (T∗) = 14.6 Nm; Poles (P) = 4.

Appendix B

List of symbols

Va, Vb and Vc Supply voltages;
Ia, Ib and Ic Supply currents;
Vds, Vqs dq-axis components of stator voltages;
V0 to V7 Voltage space vectors from look-up table;
Rs, Rr Resistances of Stator, Rotor;
Ls, LrandLm Inductances of Stator, rotor and mutual

inductance;
ids, iqs, idr
and iqr Stator and rotor current components for

dq-axis;
�ds,�qs,�dr
and�qr

dq-axis components for stator and rotor

flux;
Te Electromagnetic (Actual) torque;
α Stator flux angle;
Sa, Sb and Sc Switching states from the inverter;
ωr Actual speed of rotor (rad/s);
P Number of poles;
J Inertia constant;
TL Load torque;
μi, μi Firing strength, Normalized value of fir-

ing strength;
μi
A1(T

∗ − Te)
and μi

A2(ψ
∗) Degree of membership function for tor

que error and reference flux;
fi Input function of the fourth layer;
pi, qi and ri Consequent parameters;
x and y Inputs to the fourth layer;∑

Summation;

O4, O5 Output of the fourth and fifth layer ;
n Subscript for nominal quantities;
Vdc DC Voltage to the inverter;
� Actual Flux;
�s Stator Flux;
�∗ Reference Flux;
T∗ Reference Torque;
ω∗ Reference Speed;
dTe, dψs Outputs of the torque and flux hysteresis

comparators;
�ψ∗ Correction in reference flux;
ψ∗
m Modified reference flux;

Kp, Ki Proportional and Integral gain values of
PI controller;

(ωr*−ωr)
and
(ωr*−ωr)’

Speed error and first derivative of speed

error;
Kp

1,Ki
1 Optimal online tuning gain values.

KPFGS and KIFGS Proportional and integral gain values
from FGS.
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