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ABSTRACT 

All existing methods regarding time series forecasting have always been 

challenged by the continuous climatic change taking place in the world. These 

climatic changes influence many unpredictable indefinite factors. This alarming 

situation requires a robust forecasting method that could efficiently work with 

incomplete and multivariate data. Most of the existing methods tend to trap into local 

minimum or encounter over fitting problems that mostly lead to an inappropriate 

outcome. The complexity of data regarding time series forecasting does not allow 

any one single method to yield results suitable in all situations as claimed by most 

researchers. To deal with the problem, a technique that uses hybrid models has also 

been devised and tested. The applied hybrid methods did bring some improvement 

compared to the individual model performance. However, most of these available 

hybrid models exploit univariate data that requires huge historical data to achieve 

precise forecasting results. Therefore, this study introduces a new hybrid model 

based on three layered architecture: Least Square Support Vector Machine 

(LSSVM), Discrete Wavelet Transform (DWT), correlation (R) and Kernel Principle 

Components Analyses (KPCA). The three-staged architecture of the proposed hybrid 

model includes Wavelet-LSSVM and Wavelet-KPCA-LSSVM enabling the model to 

present itself as a well-established alternative application to predict the future of river 

flow. The proposed model has been applied to four different data sets of time series, 

taking into account different time series behavior and data scale. The performance of 

the proposed model is compared against the existing individual models and then a 

comparison is also drawn with the existing hybrid models. The results of WKP-

LSSVM obtained from Coefficient of Efficiency (CE) performance measuring 

methods confirmed that proposed model has encouraging data of 0.98%, 0.99%, 

0.94% and 0.99% for Jhelum River, Chenab River, Bernam River and Tualang River, 

respectively. It is more robust for all datasets regardless of the sample sizes and data 

behavior. These results are further verified using diverse data sets in order to check 

the stability and adaptability. The results have demonstrated that the proposed hybrid 

model is a better alternative tool for time series forecasting. The proposed hybrid 

model proves to be one of the best available solutions considering the time series 

forecasting issues. 
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ABSTRAK 

Semua kaedah ramalan siri masa yang sedia ada sentiasa dicabar oleh 

perubahan iklim berterusan yang berlaku di dunia. Perubahan iklim yang berlaku ini 

dipengaruhi oleh banyak faktor yang tidak menentu. Keadaan yang membimbangkan 

ini memerlukan satu kaedah ramalan yang teguh yang boleh disesuaikan dengan data 

tak lengkap dan multivariat. Kebanyakan kaedah-kaedah yang sedia ada cenderung 

untuk terjebak dalam masalah minimum tempatan atau terlebih suaian yang 

membawa kepada hasil yang tidak sesuai. Kerumitan data siri masa ramalan tidak 

membolehkan satu kaedah tunggal untuk menghasilkan keputusan yang sesuai dalam 

semua keadaan seperti yang didakwa oleh kebanyakan penyelidik. Untuk mengatasi 

masalah ini, satu teknik berdasarkan model hibrid telah dicipta dan diuji. Kaedah 

hibrid yang digunakan telah membawa beberapa penambahbaikan berbanding 

dengan prestasi model tunggal. Walau bagaimanapun, kebanyakan model hibrid 

didapati mengeksploitasi data univariat yang memerlukan data sejarah yang besar 

untuk mencapai keputusan ramalan yang tepat. Oleh itu, kajian ini memperkenalkan 

model hibrid baharu yang berdasarkan seni bina tiga lapis: kuasa dua terkecil mesin 

vektor sokongan (LSSVM), transformasi Wavelet diskrit (DWT), korelasi (R) dan 

analisis komponen inti prinsipal (KPCA). Seni bina tiga lapisan model hibrid yang 

dicadangkan termasuk model Wavelet-LSSVM dan Wavelet-KPCA-LSSVM sebagai 

model alternatif yang mantap untuk meramalkan masa depan aliran sungai. Model 

yang dicadangkan ini telah digunakan ke atas empat set data siri masa yang berbeza, 

dengan mengambil kira ciri-ciri siri masa dan skala data yang berbeza. Prestasi 

model yang dicadangkan dibandingkan dengan model tunggal yang sedia ada dan 

kemudian perbandingan juga dilakukan dengan model hibrid yang sedia ada. 

Keputusan WKP-LSSVM yang diperoleh daripada kaedah pengukuran prestasi 

kecekapan pekali (CE) mengesahkan bahawa model yang dicadangkan mempunyai 

data yang menggalakkan iaitu masing-masing 0.98%, 0.99%, 0.94% dan 0.99% bagi 

Sungai Jhelum, Sungai Chenab, Sungai Bernam dan Sungai Tualang. Ia adalah lebih 

kukuh untuk semua set data tanpa mengira saiz sampel dan tingkah laku data. 

Keputusan ini selanjutnya disahkan menggunakan pelbagai set data untuk memeriksa 

kestabilan dan penyesuaian. Keputusan telah menunjukkan bahawa model hibrid 

yang dicadangkan adalah satu model alternatif yang lebih baik untuk ramalan siri 

masa. Model hibrid yang dicadangkan membuktikannya sebagai salah satu 

penyelesaian terbaik yang ada dalam mempertimbangkan isu ramalan siri masa.



vii 

 

TABLE OF CONTENTS 

CHAPTER    TITLE         PAGE 

DECLARATION                ii 

DEDICATION                iii 

ACKNOWLEDGEMENT               iv 

ABSTRACT                 v 

ABSTRAK                 vi 

TABLE OF CONTENTS               vii 

LIST OF TABLES                x 

LIST OF FIGURES                xii 

LIST OF ABBREVIATION               xiv 

 LIST OF APPENDICES               xv 

1  INTRODUCTION        1 

1.1 Overview        1 

1.2 Problem Statement       5 

1.3 Objectives        8 

1.4 Scope of Study       8 

1.5 Significances of the Study      9 

1.6 Thesis Contribution       10 

1.7 Thesis Structure and Organization     10 

2  LITERATURE REVIEW       13 

2.1 Introduction        13 

2.2 Existing Methods       14 

2.2.1 Artificial Neural Network Model (ANN)   15 

 2.2.1.1    Advantages and disadvantages  17 



viii 

 

2.2.2 Adaptive Neuro Fuzzy Inference System (ANFIS)  17 

 2.2.2.1    Advantages and disadvantages  18 

2.2.3 Autoregressive Moving Averages Models (ARMA)  20 

 2.2.3.1    Advantages and disadvantages  21 

2.2.4 The Autoregressive Integrated Moving Average 

(ARIMA) Models      22 

 2.2.4.1    Advantages and disadvantages  23 

2.2.5 Support Vector Machines (SVMs)    23 

 2.2.5.1    Advantages and disadvanctages  24 

2.2.6 The Hybrid Models      25 

2.2.7 The Disadvantages Found with A.I Based 

Techniques       30 

2.3 Hybrid Methodology Models    31 

2.4 Measuring Performance of Forecasting Model   51 

2.5 Summary        52 

3  METHODOLOGY        53 

3.1 Introduction        53 

3.2 Data Description       54 

3.3 Description of Schematics Diagram     54 

3.3.1 Least Square Vector Machine (LSSVM)   55 

 3.3.1.1    Construction of LSSVM Model  58 

3.3.2 Decomposing the Input Data through DWT   62 

 3.3.2.1    Advantages of Wavelet Analysis  66 

3.3.3 Kernel Principal Component Analysis   66 

3.3.4 Fitting Hybrid Model      71 

3.4 The Framework of Study     72 

3.5 Accuracy        77 

3.6 Summary        79 

4 SINGLE LSSVM AND PROPOSED HYBRID 

WAVELET_LSSVM MODELS      80 

4.1 Introduction        80 



ix 

 

4.2 Study Area and Data       83 

 4.2.1 Non-stationary and non-linearity   89 

4.3 Appropriateness and Meaningfulness of the Data   93 

4.3.1 Relevance and Meaningfulness of LSSVM 

to the Data       94 

4.3.2 Appropriateness of DWT and LSSVM to the Data  97 

4.4 Comparison of Results and Discussion             111 

4.5 Summary                 113 

5  PROPOSED HYBRID MODELS WAVELET- 

KPCA-LSSVM                115 

5.1 Introduction                 115 

5.2 Relevance and Meaningfulness of Wavelet, KPCA and 

LSSVM to the Data (WKPLSSVM)            117 

5.3 Summary                127 

6  COMPARSION AND DISCUSSION             128 

6.1 Introduction                128 

6.2 Comparison                128 

6.3 Discussions                138 

6.3.1 Discussion on Single Model (LSSVM)           138 

6.3.2 Discussion on Wavelet-LSSVM (WLSSVM)         139 

6.3.3 Discussion on Wavlet-Bassed Model Combined 

with Feature Extraction Technique 

KPCA-LSSVM WKPLSSVM)            141 

6.4 Comparison of Models and Measures of Evaluation for 

Streamflow River Data              143 

6.5 Conclusions                146 

6.6 Contributions                146 

6.7 Recommendations for Future Study             149 

REFERENCES                  150 

Appendices A1-C         174 - 204 



x 

 

LIST OF TABLES 

TABLE NO.      TITLE                    PAGE 

2.1  AI models and wavelet transform review papers used in 

hydrology         33 

2.2  Hybrid model surveyed papers for Continous and Discrete 

wavelet-AI methods were used to predict hydrological variable  34 

2.3  Details of the surveyed papers, including year of publication, 

authors, where hybrid wavelet–AI methods were used to 

predict hydrological variables      50 

4.1  Pertinent information for four watersheds data   88 

4.2  ADF test for four watersheds data      92 

4.3  BDS test for four watersheds data      92 

4.4  The Input structure of the Models for Forecasting    93 

4.5  Forecasting Performance indicators of LSSVM for Pakistan 

and Malaysia Rivers        96 

4.6  The correlation coefficients between each of sub-time series 

and original monthly streamflow data              103 

4.7  Forecasting Performance Indicators for Wavelet (db1) 

decomposition 3 + LSSVM (WLSSVM) for Pakistan and 

Malaysia Rivers                 104 

4.8  Forecasting Performance Indicators for Wavelet (db2) 

decomposition 3 + LSSVM (WLSSVM) for Pakistan and 

Malaysia Rivers                 105 

4.9  Forecasting Performance Indicators for Wavelet (db3) 

decomposition 3 + LSSVM (WLSSVM) for Pakistan and 

Malaysia Rivers                 107 

 



xi 

 

4.10  Forecasting Performance Indicators for Wavelet (db4) 

decomposition 3 + LSSVM (WLSSVM) for Pakistan and 

Malaysia Rivers                 108 

4.11  Forecasting Performance Indicates for Wavelet (db5) 

decomposition 3 + LSSVM (WLSSVM) for Pakistan and 

Malaysia Rivers                 110 

4.12  The performance results LSSVM and WLSSVM approach 

during training period                112 

5.1 Forecasting Performance indicators of WKPLSSVM for 

 Jehlum River of Pakistan  1000               119 

5.2  Forecasting Performance indicators of WKPLSSVM for 

  Chanab River of Pakistan  1000              121 

5.3  Forecasting Performance indicators of WKPLSSVM for 

  Bernam River of Malaysia  1000              123 

5.4 Forecasting Performance indicators of WKPLSSVM for 

 Tualang River of Malaysia  1000              125 

6.1  Comparative Perfomances of All Models for Jehlum Rivers          130 

6.2  Comparative Perfomances of All Models for Chanab River           132 

6.3  Comparative Perfomances of All Models for Bernam River           134 

6.4 Comparative Perfomances of All Models for Tualang River          136 



xii 

 

LIST OF FIGURES 

FIGURE NO.       TITLE                      PAGE 

2.1  General Structure of the ANN Model     16 

2.2  General Structure of GRNN Model      16 

2.3  The General Structure of the Fuzzy Inference System   18 

2.4  General Structure of ANFIS       20 

3.1  Schematic Diagrams for Goodness of Fit for Each Model   53 

3.2  Flow Chart of Predict Method with LSSVM     58 

3.3  Schematic Diagram for Analysis      65 

3.4  Schematic Diagram for Synthesis      65 

3.5  Structure KPCA from PCA       67 

3.6  The structure of the WKPLSSVM      72 

3.7  The Framwork Structure for WAVELET-LSSVM   73 

3.8  The Framwork Structure for WAVELET-KPCA-LSSVM  74 

3.9  The Framework of Study      76 

4.1  Location map of the study area Pakistan Rivers 

(Jhelam and Chanab Rivers)       84 

4.2  Location map of the study area Malaysia River (Bernam River)  85 

4.3  Location map of the study area Malaysia River (Tualang River)  85 

4.4  Monthly River Flow for Jehlum River     86 

4.5  Monthly River Flow for Chanab River     86 

4.6  Monthly River Flow for Bernam River     87 

4.7  Monthly River Flow for Tualang River     87 

4.8  Decomposed wavelet sub-series components (Ds) of 

streamflow data of Jhelum River      99 

4.9  Decomposed wavelet sub-series components (Ds) of 

streamflow data of Chenab River               100 



xiii 

 

4.10  Decomposed wavelet sub-series components (Ds) of 

streamflow data of Bernam River               101 

4.11  Decomposed wavelet sub-series components (Ds) of 

streamflow data of Tualang River               102 

6.1  Compariosn Hydrograph for LSSVM-WLSSVM for 

Jehlum River                  130 

6.2  Compariosn Hydrograph for LSSVM-WKPLSSVM for 

Jehlum River                  131 

6.3  Compariosn Hydrograph for 

LSSVM-WLSSVM-WKPLSSVM for Jehlum River            131 

6.4  Compariosn Hydrograph for LSSVM-WLSSVM for 

Chanab River                 132 

6.5  Compariosn Hydrograph for LSSVM-WKPLSSVM for 

Chanab River                 133 

6.6  Compariosn Hydrograph for 

LSSVM-WLSSVM-WKPLSSVM for Chanab River           133 

6.7  Compariosn Hydrograph for LSSVM-WLSSVM for 

Bernam River                 134 

6.8  Compariosn Hydrograph for LSSVM-WKPLSSVM for 

Bernam River                 135 

6.9  Compariosn Hydrograph for 

LSSVM-WLSSVM-WKPLSSVM for Bernam Riv            135 

6.10  Compariosn Hydrograph for LSSVM-WLSSVM for 

Tualang River                            136 

6.11  Compariosn Hydrograph for LSSVM-WKPLSSVM for 

Tualang River                 137 

6.12  Compariosn Hydrograph for 

LSSVM-WLSSVM-WKPLSSVM for Tualang River           137 

6.13  Accuracy data of Jhelum River, Chanab River, 

Bernam River and Tualang River using CE             144 



xiv 

 

LIST OF ABBREVATIONS 

ACF   -- Autocorrelation Function 

AIC   -- Akaike Information Criterion 

ANN   -- Artificial Neural Networks  

ARMA -- Autoregressive Moving Average 

ARIMA  -- Autoregressive Integrated Moving Average 

DWT  -- Discrete Wavelet Transform 

FT  -- Fourier Transform  

FFT   -- Fast Fourier Transform 

LSSVM -- Least Square Support Vector Machine 

WLSSVM -- Wavelet-Least Square Support Vector Machine 

WPLSSVM -- Wavelet-Principle Component Analysis - Least Square  

   Support Vector Machine 

WKPLSSVM -- Wavelet-Kernel Principle Component Analysis - Least Square 

   Support Vector Machine 

MAE   -- Mean Absolute Error 

MSE   -- Mean Squared Errors 

RMSE  -- Root Mean Square Error 

PACF    -- Partial Autocorrelation Function 

PCA   -- Principal Components Analysis 

CE   -- Coefficient of Efficiency 

RMSE   -- Root Mean Squared Error 

SOM  -- Self Organizing Map 

SSE   -- Sum of Squared Error 

SVM   -- Support Vector Machine  

WA  -- Wavelets Analsysis 

WT  -- Wavelet Transform



xv 

 

LIST OF APPENDICES 

APPENDIX    TITLE                    PAGE 

A1  WKPLSSVM for Jehlum River (  = 2000)            174  

A2   WKPLSSVM for Jehlum River (  = 3000)            175  

A3   WKPLSSVM for Chanab River (  = 2000)            176  

A4   WKPLSSVM for Chanab River (  = 3000)            177  

A5   WKPLSSVM for Bernam River (  = 2000)            178  

A6   WKPLSSVM for Bernam River (  = 3000)           179  

A7   WKPLSSVM for Tualang River (  = 2000)           180  

A8   WKPLSSVM for Tualang River (  = 3000)           181  

B1   Graphs for WLSSVM with db1, db2, db3, db4 and db5          182  

B2   Graphs for WKPLSSVM with db1, db2, db3, db4 and db5          193  

C   Research Articles               204 



    

 

CHAPTER 1 

INTRODUCTION 

1.1 Overview 

River flow forecasting is unarguably considered crucial in providing the 

information required for the design and operation of river systems. While rivers are 

essentially related with the streams, there is a dire demand to have reliable 

mechanisms in place that can deliver a unswerving estimate of the water coming into 

a stream. This estimation is likely to contribute significantly in resolving a number of 

hydraulic issues such as the depth of flow, flow velocity, and forces from flowing 

water on a surface or at hydraulic structures. This could also help in planning for 

dams in order to balance natural flow of water or for streamlining many other 

hydraulic structures. Thereby, the availability of comprehensive records of rainfall 

and other climatic data, which could be used to obtain stream flow data, initiated the 

practice of rainfall-runoff modeling. Understandably, reliable information on current 

and future water availability is essential to properly manage the limited water 

resources and flood moderation. Authorities in water sector cannot allocate water 

resources optimally for water demands like agricultural, industrial, domestic, 

hydropower generation and environmental maintenance, unless they are equipped 

with a reliable forecasting of river flow.  

Researchers are keen to develop and investigate various types of hydrological 

models to attain better management of water scarcity and also to minimize the risk of 

any potential flooding. Water resources planning and management requires output 

from these hydrological studies. This output is mainly available in the form of 
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estimation or forecasting of the magnitude of hydrological variables like 

precipitation, stream flow and groundwater levels using historical data. This data 

then is used by water management authorities in many of their activities such as 

designing flood protection works for urban areas and agricultural land and assessing 

how much water may be extracted from a river for water supply or irrigation. 

Referring back to these hydrological models, it has been observed that they can be 

classified as follows:  Knowledge-Driven Modeling and Data-Driven Modeling. The 

knowledge-driven modeling ( also known as physically based model )  draws heavily 

on mathematics (differential equations and finite- difference approximations) in 

order to calculate the catchment characteristics variables  such as severity & period 

of rainfall events, size, shape, slope and storage of the catchment, etc.  The 

proponents of this method generally hypothesize that more accurate forecasts could 

be achieved if catchment characteristics variables are also included and combined 

with water flow data in order to reach a more precise and accurate water estimation. 

While it may be likely that different combinations of flow and catchment 

characteristics variables would better the forecast results,  in practice especially in 

developing countries like Malaysia and Pakistan, such information is often either 

unavailable or difficult to acquire. Besides, it could be an extremely complicated 

physical process mainly due to ‗... the data collection of multiple inputs and 

parameters, which vary in space and time ...‘ (Akhtar et al., 2009).  The mathematical 

models used under this approach include   rainfall-runoff models and stream flow 

models. The former uses both climatic and hydrological data and the latter relies only 

on hydrological data. 

The second approach is the data-driven modeling which is largely based on 

pulling out and re-using information that is subliminally present in the hydrological 

data without having to consider the physical laws that lie beneath the rainfall - runoff 

processes. In river flow forecasting applications, data driven modeling uses historical 

river flow time series data and this method has increasingly become more popular 

due to its ‗… rapid development times and minimum information requirements…‘ 

(Kisi, 2009). Although it may not have the ability to provide physical analysis and 

discernment of the catchment processes but it is able to provide relatively accurate 

flow forecasts. Computer science and statistics have improved the data driven 

modeling approaches for discovering patterns found in water resources time series 
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data. Much effort has been devoted over the past several decades to the development 

and improvement of time series prediction models. In general, the stochastic models 

such as Autoregressive Integrated Moving Average (ARIMA) have been widely used 

for hydrologic time series forecasting. The popularity of ARIMA mainly relies on 

Jenkins methodology, forecasting capabilities and richness of information on time-

related changes.  

Another example data driven model are Adaptive Neuro-Fuzzy Inference 

System (ANFIS), Artificial Neural Network (ANN) and Fuzzy Logic (FL) have been 

known as potentially useful methods in modeling time-series hydrologic problems. 

What distinguishes these models from any of the ones based on knowledge – driven 

approach is their ability to address flood forecasting problems more precisely and 

accurately where usually the main concern is to minimize the flood damage (Lim and 

Young, 2008). 

However models like ARIMA are essentially linear models that use 

stationary data with little or no capacity to capture non-stationary and non-linear data 

(Otache et al., 2011). 

Then there are some models like Artificial Neural Network (ANN) and 

Support Vector Machine (SVM) that has the capacity to capture non-linear data. 

Both methods are machine-learning methods that find a wide range of applications 

both in the field of engineering and social sciences. For the SVM a large amount of 

computation time will be involved when SVM is applied for solving large-size 

problem (Cao & Tay, 2003).  

 The network structure of ANN is hard to determine and usually done by 

using a trial and error approach. Though ANN and SVM methods were good and 

produced encouraging results, but this combination is computationally expensive and 

depends on complex quadric programing (QP) (Mellit et al., 2013; Ismail al et., 

2010). 
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Also for both methods, large amount of computational time will be involved 

when these methods are applied for large-size problem. These deficiencies have been 

overcome by the Least Square Support Vector Machine (LSSVM), which solves 

linear equation instead of a quadratic programming problem. Therefore, the LSSVM 

has this computational advantage over the other AI methods (Wang and Hu, 2005). 

Then there is this method called Discrete Wavelet Analysis (DWT), best 

known tool for  data analysis. The contribution of modeling hydrological resources 

can be seen in the last few years (Kisi, 2010). These include meteorological pollution 

simulation, open channel wake flows analysis and ground water level time series 

modeling (Sowski et al., 2007). Recently, wavelet theory have been introduced in the 

field of hydrology, wavelet models, mainly due to their natural ability to analyze a 

signal in time and frequency domains, are becoming a general choice for researchers 

addressing issues related to hydrological models.  

Kernel Principal Component Analysis (KPCA) is another important 

component was found, which uses a kernel function to map the data in the input 

space and compute the principle components in a feature space. Due to the wide 

range of research in kernel methods, KPCA is gradually assuming an important 

position for modeling non-linear data. KPCA is a non-linear version of PCA, which 

uses a kernel function to map the data in the input space and compute the principal 

components in a feature space. KPCA is acknowledged for its ability to produce 

nonlinear PCs but at the same time, the method is unable to directly reconstruct the 

data in feature space. Now it is being frequently relied upon for integrating nonlinear 

transformations.  

Therefore, in order to account for the deficiencies found in various models 

especially in the above mentioned three methods, a hybrid approach, which is hereby 

referred to as WKPLSSVM, has been adopted in this study for the monthly river 

flow data in Pakistan and Malaysia. In this proposed three – staged structure, it has 

also been shown that Wavelet, Kernel Principle Components Analysis (KPCA) and 

Least Square Support Vector Machine (LSSVM) are highly compatible with each. 
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For the purpose, the above methods have been used in combination with each other 

at different stages of the research to obtain more accurate and reliable results.  

1.2 Problem Statement 

The forecasting arguable remains somewhat a troublesome task for 

hydrologists who distinguish its crucial part in environmental, water assets 

management and in water-related disaster control. This process remains highly 

complex for non-stationary, hydrological and hydro-climatologic features. In the 

recent times the huge rise in the amount of scientific approaches have been observed. 

They have applied ‗data-based‘ or ‗data-driven‘ approaches to hydrologic modelling 

and forecasting.  These modelling methods include the mathematical equation, which 

were taken from analysis of parallel inputs and output time series (Solomatine and 

Ostfeld, 2008). The connection between the system states could be defined by such 

models with variables (i.e. input, internal and output variables), where only a few 

number of assumptions are considered with respect to the physical performance of 

the system. The more suited examples of data-driven models are the rating curves, 

the unit hydrograph, the various statistical (i.e. Linear Regression; LR, multi-linear 

regression models, Auto Regressive Integrated Moving Average; ARIMA) and the 

machine learning models (Solomatine and Ostfeld, 2008).  

The orthodox black box time series models such as ARIMA, ARIMA with 

exogenous input (ARIMAX) and Multiple Linear Regression (MLR) are linear in 

nature and assume stationary dataset. These models remain incapable to handle the 

non-stationarity and non-linearity for hydrological processes. Which forced the 

researchers to use the soft-computing models (AI). The AI based models possess a 

slight edge over statistical-based models such as ANN.   

The broader applications of AI methods include Fuzzy, NNs, and SVM 

models, which are mostly used in different areas of hydrology. Since the appearance 

of AI based models remain very active in hydrology, the efficient performance of 

these techniques such as data-driven models has been observed and respectively 
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published over a wide range of hydrological processes (e.g., precipitation, stream-

flow, rainfall–runoff, sediment load, groundwater, drought, snowmelt, 

evapotranspiration, water quality, etc.). The prominent researchers involved in this 

research area for the last decade and so with the number of publications significantly. 

The success of these application can be observed by these successful applications for 

hydrological process modeling (e.g., stream-flow, rainfall–runoff, sediment, 

groundwater, water quality). All these applications use ANN, Fuzzy, and SVM. 

Notwithstanding the flexibility and usefulness of AI-based methods in modeling 

hydrological processes. These AI-based models do possess some drawbacks with 

highly non-stationary responses, which may differ at wide scale of frequencies. In 

such cases the ‗seasonality‘, a lack of input/output data preprocessing, may not count 

the AI models to handle non-stationary data with suitability.  

Hence, these AI models in all their different application forms also have their 

own shortcomings and disadvantages. For example, ANN often suffers from local 

minima and over-fitting, while other soft-computing models, such as SVM, including 

ANN, are sensitive to parameter selection (Wang al et., 2008). As a result, 

researchers made an attempt to move away from the application of one stage 

mathematical or computational models and turned to various hybrid approaches (two 

stage or three stage structures). It was believed and assumed that hybrid models 

which combine data preprocessing schemes with AI techniques can play an 

important role. For example, (Kisi, 2009) and (Sang, 2013) combined wavelets with 

ANNs to predict the stream flow time series. Their underlying assumption was to use 

wavelets as a preprocessing technique in order to decompose data so that the issue of 

non-linearity can be addressed. Wavelet change joined with ANN as information 

preprocessing strategy can be seen to accomplish higher demonstrating exactness and 

consistency in various lead time ahead. The wavelet changed information help in 

enhancing the model execution by catching supportive data on different 

determination levels. Due to the aforementioned favorable circumstances of wavelet 

change, it has been found that the hybridization of wavelet change with other AI 

models like SVM, ANN, ANFIS, straight models, and so forth., enhanced the 

outcomes altogether than the single consistent model (Prahlada and Deka, 2011). To 

a large extent, the technique was successful, but unfortunately the effectiveness of 

wavelets was affected because hydrological time series has noises and show complex 
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characteristics due to uncertainty of the environment (Sang et al. 2009). Similarly, 

the wavelet MLR model is not facilitated with automatic updating and hence is not 

able to adapt to the changing river discharge patterns effectively (Kisi, 2008). In 

addition, a major drawback of wavelet transform for direction prediction is that the 

input variables lie in a high-dimensional feature space depending on the number of 

sub-time series components.  

To account for the deficiencies in the all the above mentioned one stage or 

multi stage hybrid models, this research proposes wavelets based three stage 

(Wavelets+KPCA+LSSVM) forecasting structure for modeling river flow in 

Pakistan and Malaysia. First, it is proposed to decompose data using wavelets and 

then use KPCA for reduced dimensionality, and de-noising of data. ( Lee et al., 

2004). Once the data is ready to be trained after the sequential application of these 

two methods, it is preferred to use LSSVM instead of ANN and LR in the present 

study. ANN and LR has shown some modeling errors like over fitting. On the other 

hand, LSSVM is considered to be a better data trainer for non- linear data (Ismail al 

et., 2010). Therefore, the proposed 3-stage model is expected to show more accurate 

and precise modeling.  

Given the afore mentioned  limitations of one stage and two stage models, the 

present study aims to address the following issues related with hydrological time 

series. 

i. How to design a three-layer architecture model based on wavelet as the 

decomposition method with KPCA technique for dimensional reduction or 

feature extraction and combined with LSSVM? 

ii. Will the proposed Wavelet-KPCA-LSSVM improve the modeling accuracy 

and at the same time outperform other models? 

iii. As the Benchmark LSSVM and Wavelet-LSSVM are employed in other 

modeling area, can Benchmark LSSVM and Wavelet-LSSVM be employed 

in the river flow modeling? 
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1.3 Objectives 

In view of the above-mentioned problems, this study intended to propose the 

three-stage-architecture model based on Wavelet, KPCA and LSSVM to predict 

monthly stream flow data in Pakistan and Malaysia.  

The objectives of the proposed hybrid model are: 

i. To develop a hybrid model this is the combination of two independent 

techniques, i.e. Discrete Wavelets Transform (DWT) with Least Squared 

Support Vector Machine (LSSVM) for river flow. 

ii. To design and develop a model based on Wavelet-KPCA-LSSVM, which 

combines decomposition, data pre-processing and forecasting techniques for 

river flow forecasting. 

iii. To compare the performance of the hybrid models LSSVM with WLSSVM 

and WKPLSSVM and the benchmarked individual model LSSVM. 

1.4 Scope of Study 

The scope of this study covers the procedure of data-driven modelling, which 

involves analysis of problem, data collection, data pre-processing, model selection, 

model identification, and evaluation. Which includes:  

i. The research focused on proposing a new method for time series forecasting 

of WAVELT-KPCA-LSSVM, which combines the decomposition technique 

with KPCA as the data pre-processing technique and LSSVM as a forecasting 

tool. 

ii. Real time series data of monthly river flows  are taken from Pakistan and  

Malaysia from four different rivers that are selected as the case studies. 

iii. Radial basis function is selected as the kernel function for LSSVM models. 
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iv. The newly obtained data set from KPCA are set within two-cut-off values, 

which are from 70% to 95%. 

v. The performance measurement for accuracy prediction is based on the 

standard statistical performance evaluation such as mean percentage error 

(MAE), root mean squared error (RMSE) and Nash-Sutcliffe coefficient 

efficiency (CE). RMSE and MAE are the most widely used performance 

evaluation criteria and the same will be used in this research. 

1.5 Significance of the Study 

Model building for the river flow is very significant because the heavy river 

flow can become the reason to problems (i.e. flooding and erosion). On other end the 

low river flow restricts the supply of water even for domestic use. In the regard the 

industrial and hydroelectric power are required to generate more. This study reviews 

the effectiveness of the proposed model as an alternative tool for model building. 

The designed research method attempts the decomposition technique with Wavelet 

and the data pre-processing technique with the help of KPCA model. As the original 

data are decomposed into numerous signals. In the regards the KPCA is apply to 

dimensional reduction, and the newly obtained data are then used to know the river 

flow. 

As this study is to provide the accuracy with precision of time with respect to 

stream flow value based on past time series data. The proposed model requires the 

Wavelet-KPCA-LSSVM to understand the monthly river flow in Pakistan and 

Malaysia in order to produce a better result. This helps to provide a better 

understanding of the trend of the river flow in Pakistan and Malaysia. 
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1.6 Thesis Contribution 

The present research proposed a model that can use non-linear set of data and 

produce an estimated value. In real life situation the collected data is the result of 

some non-linear process. The conventional models for addressing hydrological 

modelling problem were found to be good in estimating values when the input data is 

linear. Whereas, there performance and credibility comes under question when the 

input data is non-linear.  

In this regard a hybrid model will be proposed for meeting this objective. 

This hybrid model is prepared by combining three independent techniques, i.e. 

Discrete Wavelets Transform (DWT), Kernel Principal Component analysis (KPCA) 

and Least Squared Support Vector Machine (LSSVM). The role of DWT is to 

decompose the original data at three levels, given as input of KPCA. Then KPCA is 

used to minimize the dimensionality of high dimensional input vectors and finally 

the predicted values are obtained by LSSVM. The significance of the hybrid model is 

that it is time efficient and readily suits for the environments which are time critical. 

The proposed model is regarded as a prototype for an early warning model. The 

prime purpose of proposed work is to generate warnings well before time in order to 

help and create opportunities to save valuable human lives and assets as well.  

1.7 Thesis Structure and Organization 

This section gives a brief outline of this thesis. Its contexts principally 

comprise six chapters, each of which is summarized as follows: 

Chapter 1: Introduction 

This chapter present the research background, identifies research problems, 

defines the aim and scope of study, describe research methodology, and outlines 

chapters in the thesis. 
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Chapter 2: Literature Review  

This chapter presents past and current studies in the research area pertaining 

time series and forecasting models including individual and hybrid models, and 

evaluating the advantages and disadvantages of the existing solutions. The selected 

techniques used in the proposed hybrid nonlinear-linear models are discussed. 

Chapter 3: Research Methodology 

This chapter describes the operational framework of the study detailing of 

each step in this research i.e, design and development, and also testing and validation 

of the models. 

Chapter 4: Single LSSVM and Proposed Hybrid Wavelet_LSSVM Models 

The chapter begins with an overview of hydrological modelling more 

generally and then focuses on univariate forecasting for monthly streamflow series 

using data-driven models coupled with data pre-processing techniques. The main 

focus of this chapter to investigate model performance of single model LSSVM and 

hybrid model WLSSVM. In the end of the chapter to compare LSSVM and 

WLSSVM models with each other. Their comparative performance are evaluated 

using three statistical test; MAE, RMSE, and CE.  

Chapter 5: Proposed Hybrid Models Wavelet-KPCA-LSSVM 

Chapter 5 details out the explanation on development and integration of the 

hybrid models Wavelet-LSSVM using KPCA. In the first part of chapter is proposed 

three-stage-architecture of WKPLSSVM model for river flow forecasting. The 

statistical performances used in the study are also described in details.  
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