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Abstract
Background/Objectives Plasma lipoprotein composition, especially in the postprandial state, could be relevant for cardio-
vascular risk and could be influenced by eating habits. This study evaluated the effects of a polyphenol-rich diet on
postprandial lipoprotein composition in individuals at high cardiometabolic risk.
Subjects/Methods Seventy-eight individuals with high waist circumference and at least another component of the metabolic
syndrome were randomized to either a high-polyphenol (HighP) or low-polyphenol (LowP) diet. Before and after the 8-week
intervention, chylomicrons, VLDL1, VLDL2, IDL, LDL, HDL particles, and their lipid concentrations were determined over
a 6-h high-fat test meal with high or low-polyphenol content, according to the diet assigned.
Results VLDL1 postprandial areas under the curve (AUCs) were lower for cholesterol (Chol) (1.48 ± 0.98 vs. 1.91 ±
1.13 mmol/L × 6 h, M ± SD, p= 0.014) and triglycerides (Tg) (4.70 ± 2.70 vs. 6.02 ± 3.07 mmol/L × 6 h, p= 0.005) after the
HighP than after the LowP diet, with no changes in Chol/Tg ratio. IDL Chol AUCs were higher after the HighP than after the
LowP diet (1.29 ± 0.77 vs. 1.01 ± 0.51 mmol/L × 6 h, p= 0.037). LDL Tg AUCs were higher after the HighP than after the
LowP diet (1.15 ± 0.33 vs. 1.02 ± 0.35 mmol/L × 6 h, p < 0.001), with a lower Chol/Tg ratio (14.6 ± 4.0 vs. 16.0 ± 3.8, p=
0.007). HDL Tg AUCs were lower after the HighP than after the LowP diet (1.20 ± 0.41 vs. 1.34 ± 0.37 mmol/L × 6 h, p=
0.013).
Conclusions A high-polyphenol diet reduces the postprandial lipid content of large VLDL and increases IDL cholesterol; it
modifies the composition of LDL particles—which become richer in triglycerides, and of HDL—which become instead
triglyceride poor. The overall changes in atherogenicity by these effects warrant further investigation on clinical cardio-
vascular outcomes.

Introduction

The postprandial state is a transient and dynamic condition
characterized by different metabolic changes [1]. Among
these, the modifications involving lipoprotein concentration
and composition are of great relevance [2, 3]. These mod-
ifications, mainly after a fatty meal, are characterized by an
increment in triglyceride-rich lipoprotein concentrations—
chylomicrons, very low-density lipoproteins (VLDL)—and
a slight decrease in low-density lipoproteins (LDL) and
high-density lipoproteins (HDL) [4–6].

Mainly through the modulation of abdominal adiposity
and insulin resistance [6], dietary habits—in particular,
the increasingly more widespread high-fat/high-calorie
western diets, characterized by short fasting intervals—
are the major contributors to the quantitative/qualitative
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alterations of postprandial lipoprotein composition [7].
Consequently, dietary modifications may represent a
useful approach for modulating lipoprotein metabolism in
the postprandial state.

Among the dietary components, polyphenols have
gained growing interest over the last few years. Polyphenols
represent a great variety of plant metabolites, and are
powerful antioxidants; in addition, they have several other
properties involved in immunomodulatory, anti-mutagenic,
and anti-inflammatory activities [8]. There is epidemiolo-
gical evidence of an inverse correlation between high-
polyphenol consumption and incidence of many chronic
metabolic diseases [9]. Clinical trials investigating the
effects of polyphenol intake on fasting lipid profile have
reported conflicting results with respect to total cholesterol,
triglycerides, or lipoprotein composition. This discrepancy
could be related to trial duration, sample size, amount and,
importantly, specific types of polyphenol supplementation
[10–12]. Only few clinical trials have evaluated the effects
of polyphenol intake on postprandial lipoproteins [13].
These studies generally focused only on the cholesterol
content of LDL and HDL, while triglyceride content was
not evaluated [13]. In a randomized controlled trial, we
observed that diets rich in polyphenols of variable origin
induced a significant reduction in plasma triglyceride and
cholesterol concentrations in the VLDL1 fraction, in both
the fasting and postprandial state [14].

The purpose of this study—an ancillary analysis of the
above trial [14]—was to investigate in individuals with
abdominal adiposity, and therefore at high risk of type 2
diabetes and cardiovascular disease, the medium-term
effects of a diet with a naturally high-polyphenol content
of different origin on postprandial cholesterol and trigly-
ceride composition of chylomicrons, large VLDL (VLDL1),
small VLDL (VLDL2), IDL, LDL, and HDL.

Materials/subjects and methods

Subjects

Eighty-six men and women aged between 35 and 70 years,
with overweight or obesity (BMI 27–35 kg/m2), high waist
circumference (above 102 cm for men or 88 cm for women),
and at least one more feature of the metabolic syndrome
based on the National Cholesterol Education Program/Adult
Treatment Program [15], were recruited at the obesity out-
patient clinic of the Federico II University Hospital. Sub-
jects were not included if they presented diabetes,
cardiovascular events in the previous 6 months, liver or
renal disease, fasting plasma triglycerides ≥4.5 mmol/l,
fasting cholesterol ≥7.0 mmol/l, any other chronic disease,
or who were on medications influencing inflammatory state,

and lipid or glucose metabolism. Inclusion and exclusion
criteria were assessed by interviews, clinical examinations,
and routine laboratory tests. Diabetes status was evaluated
by a 75-g oral glucose tolerance test (OGTT). The study
protocol—performed in accordance with the Declaration of
Helsinki for clinical trials—was approved by the Ethics
Committee of the Naples Federico II University, and all
participants provided written informed consent before
entering the study. The study is registered at ClinicalTrials.
gov as NCT01154478.

Study design

After a 3-week run-in period to stabilize their habitual diet,
participants were randomly allocated to an 8-week experi-
mental diet according to a 2 × 2 factorial design, as pre-
viously described in detail [14, 16]. The experimental diets
were isoenergetic and similar for macronutrient and
micronutrient composition, but differed for their content in
polyphenols and long-chain n-3 polyunsaturated fatty acids
(LCn3). Each participant was randomly assigned to follow
one of the following diets: (1) low in LCn3 (1.5 g/day) and
polyphenols (365 mg/day); (2) rich in LCn3 (4 g/day) and
low in polyphenols (363 mg/day); (3) low in LCn3
(1.4 g/day) and rich in polyphenols (2.903 mg/day); (4) rich
in LCn3 (4 g/day) and polyphenols (2.861 mg/day). The
high-polyphenol diet was ensured by supplying participants
with decaffeinated green tea and coffee, vegetables (i.e.,
onions, fennels, rocket), fruits (i.e., oranges), dark choco-
lates, and extra-virgin olive oil. Salmon, dentex, and
anchovies represented the main dietary sources of LCn3.
Participants were asked to complete a 7-day food record at
baseline, and at 4 and 8 weeks to improve dietary com-
pliance, which was reinforced through dietary counseling at
the clinic every week and through phone calls every
2–3 days. For the same purpose, every week participants
were given meals and beverages for the whole duration of
intervention, in amounts sufficient to cover overall house-
hold needs. Participants allocated to the diets rich in poly-
phenols or LCn3 were considered compliant with the
treatment if the intake of polyphenols or LCn3, respectively,
was ≥80% of that assigned; participants allocated to the
diets low in polyphenols or LCn3 were considered com-
pliant with the treatment, if the corresponding intake was
not >20% of that assigned. Meals were prepared in a qua-
lified catering service under the supervision of the team of
dietitians.

Energy and nutrient composition of the diets were cal-
culated according to the food composition tables of the
Italian Institute of Nutrition, with the aid of the MetaDieta
software (Meteda s.r.l., Ascoli-Piceno, Italy). The USDA
[17] and Phenol-Explorer databases [18] were used to assess
dietary polyphenol content of the foods consumed.
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Since the specific aim of this ancillary analysis was to
evaluate the medium-term effects of dietary polyphenols on
postprandial cholesterol and triglyceride composition of
chylomicrons, VLDL1, VLDL2, IDL, LDL, and HDL, the
four dietary intervention groups in the trial were pooled into
two diet groups according to their polyphenol content
(HighP or LowP)—i.e., High-Polyphenol&Low-LCn3 and
High-Polyphenol&High-LCn3 were combined into the
HighP group, while Low-Polyphenol&Low-LCn3 and
Low-Polyphenol&High-LCn3 were combined into the
LowP group (Supplementary Fig. 1).

Experimental procedures

At baseline and after the 8-week intervention, anthropo-
metric parameters (i.e., body weight, height, and waist cir-
cumference) were measured according to standardized
procedures. At baseline and at the end of the intervention,
after a 12-h overnight fast, the participants consumed a
high-fat test meal consisting of rice, butter, cured raw beef,
parmesan cheese, white bread, plus olive oil (LowP group)
or extra-virgin olive oil, and decaffeinated green tea (HighP
group), to achieve a low or high-polyphenol content
according to the assigned diets. Blood samples were col-
lected at fasting and 2, 4, and 6 h after the meal to measure
cholesterol and triglyceride content in chylomicrons,
VLDL1, VLDL2, IDL, LDL, and HDL. Apolipoprotein B-
48 (Apo B-48) was measured in plasma, and VLDL1 at
fasting and 4 and 6 h after the test meal in VLDL1.

Laboratory methods

Chylomicrons (Sf >400), VLDL1 (Sf 60–400), VLDL2 (Sf
20–60), IDL (Sf 12–20), and LDL (Sf 0–12) were isolated
from plasma by discontinuous density-gradient ultra-
centrifugation, as described previously [19]. HDL were
isolated from plasma by the phosphotungstic acid/magne-
sium chloride precipitation method. Cholesterol and trigly-
ceride concentrations were assayed by enzymatic methods
(Roche Molecular Biochemicals, Mannheim, Germany) on
a Cobas Mira autoanalyser (ABX Diagnostics, Montpellier,
France). Apo B-48 concentrations were analyzed in plasma
and VLDL1 by ELISA (Shibayagi Co Ltd, Shibukawa,
Gunma, Japan), automated on a Triturus ELISA auto-
analyzer (Grifols Italia S.p.A). All analyses were performed
by technicians blinded to the group assignment.

Statistical analysis

The sample size was calculated on the primary outcome,
i.e., postprandial lipid response, of the original trial [14]. To
detect a 30% difference between treatments in the total
triglyceride areas under the curve (AUCs) in the

chylomicron and VLDL fractions after a fat-rich meal, with
an 80% power at a 5% significance level, 80 patients had to
be studied. In view of possible dropouts, 86 participants
were enrolled. Based on the reduction in 6 h-AUCs of
cholesterol/triglyceride ratio in LDL (−30%), VLDL1
(−10%), and IDL (−14%) observed in a previous phar-
macological study [20], a sample size of 28 participants was
needed to detect differences in these variables in the present
analysis.

The random allocation to the intervention, stratified by
sex, age, BMI, and plasma triglycerides, was performed by
a minimization method using the MINIM software (www.
users.york.ac.uk). The data are expressed as mean ± SD
unless otherwise specified. Variables not normally dis-
tributed were analyzed following logarithmic transforma-
tion. The ratio between cholesterol and triglycerides was
evaluated as a measure of lipoprotein composition. Post-
prandial total AUCs were calculated by the trapezoidal
method. The effects of dietary polyphenols, dietary LCn3,
and the interaction between polyphenols and LCn3 were
evaluated by two-way ANOVA repeated measures analysis.
Since there was no interaction between the effects of dietary
polyphenols and dietary LCn3, the results are presented
pooling the intervention groups according to the polyphenol
content of the diet: HighP diet (High-Polyphenol&Low-
LCn3 plus High-Polyphenol&High-LCn3) or LowP diet
(Low-Polyphenol&Low-LCn3 and Low-Polyphenol&High-
LCn3) (Supplementary Fig. 1). The absolute values of
AUCs and postprandial profiles at end of the study (8-week)
were compared between the HighP and LowP diets
adjusting for the values at the start of the dietary interven-
tion (0-week) as covariate.

Univariate associations were assessed by Pearson’s
correlation. All statistical tests were two sided. Statistical
significance was accepted at a p level < 0.05. SPSS Sta-
tistics version 21.0 (SPSS/PC; Chicago, IL, USA) was used
to perform statistical analysis according to standard
methods.

Results

Baseline data and dietary compliance

Seventy-eight of the 86 participants enrolled completed the
study. Eight subjects, equally distributed between the two
experimental groups, withdraw from the study either
because they were unwilling to undergo further tests or for
work/family-related reasons. At baseline, the LowP and
HighP groups were comparable for age, body weight, body
mass index, waist circumference, fasting levels of plasma
cholesterol, triglycerides, Apo B-48, glucose, insulin, and
HOMA-IR (Table 1). At baseline, lipoprotein
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concentrations and compositions were not significantly
different between the two groups at fasting (Supplementary
Table 1) and after the test meals (Supplementary Table 2).
Participants’ dietary compliance was adequate, as demon-
strated by their 7-day food records completed during the
study [14], as well as by the assessment of phenolic meta-
bolites in their 24 h-urine collection, which were sig-
nificantly higher in the participants assigned to the HighP
diet [21].

Whole-plasma lipids and glucose metabolism

As previously reported [14], compared with the LowP diet,
the HighP diet decreased fasting (−0.19 ± 0.4 vs. 0.03 ±
0.62 mmol/L, p= 0.023) and postprandial whole-plasma
triglycerides (−1.6 ± 3.36 vs. 0.13 ± 0.06 mmol/L, p=
0.041), while no significant changes were observed in the
fasting state (−0.14 ± 0.59 vs. −0.13 ± 0.57 mmol/L, p=
0.041), and postprandial whole-plasma cholesterol
(−0.76 ± 3.18 vs. −1.01 ± 2.66 mmol/L, p= 0.699). No
significant differences in fasting whole-plasma concentra-
tions of Apo B-48 were observed between the HighP and
LowP diets (−0.10 ± 5 and −0.63 ± 4.8 μg/ml, respectively,
p= 0.178). As previously reported [16], glucose tolerance
and early insulin secretion during an oral glucose tolerance
test were improved by polyphenols, while no significant
differences between the HighP and LowP diets were
detected in plasma glucose and insulin responses to the
high-fat meal.

Lipoprotein composition

Chylomicrons. After the dietary intervention, no differences
were observed in chylomicron cholesterol and triglyceride
concentrations, and cholesterol/triglyceride (Chol/Tg) ratio,
between the HighP and LowP diets either at fasting and
after the test meal (Fig. 1, Table 2).

VLDL1. Postprandial VLDL1 cholesterol concentrations
were lower after the HighP than after the LowP diet
(p= 0.022, time × polyphenol interaction, Fig. 1; AUCs
difference, p= 0.014, Table 2), as were VLDL1 triglyceride
concentrations (p= 0.007, time × polyphenol interaction,
Fig. 1; AUCs difference, p= 0.005, Table 2). Chol/Tg ratio
was not significantly different between the HighP and LowP
diets (Fig. 1, Table 2). Similarly, no significant differences
in apo B-48 AUCs in VLDL1 were observed between the
HighP and LowP diets (12.9 ± 9.9 vs. 16.2 ± 12.0 μg/ml∙6 h,
p= 0.178).

VLDL2. No differences were observed in VLDL2 cho-
lesterol and triglyceride concentrations, and Chol/Tg ratio,
after the dietary intervention between the HighP and LowP
diets (Fig. 1, Table 2).

IDL. Postprandial IDL cholesterol concentrations were
higher after the HighP than after the LowP diet (p= 0.037,
time × polyphenol interaction, Fig. 2; AUCs difference, p=
0.037, Table 2). No differences were observed in IDL tri-
glyceride concentrations and Chol/Tg ratio (Fig. 2, Table 2).

LDL. No differences were observed in postprandial LDL
cholesterol concentrations after the dietary intervention

Table 1 Baseline characteristics
of the two groups of participants
in the dietary intervention study

High-polyphenol group,
n= 39

Low-polyphenol group,
n= 39

Pa

Sex (M/F) 17/22 16/23

Age (y) 54 ± 9 55 ± 8 0.481

Body weight (kg) 86.5 ± 11 85.5 ± 11 0.758

Body mass index (kg/m2) 31 ± 3 32 ± 3 0.136

Waist circumference (cm) 103 ± 9 104 ± 8 0.482

Systolic blood pressure (mm Hg) 122 ± 14 121 ± 9 0.491

Diastolic blood pressure (mm Hg) 74 ± 9 75 ± 8 0.737

Fasting plasma triglycerides (mmol/L) 1.38 ± 0.6 1.46 ± 0.7 0.649

Fasting plasma cholesterol (mmol/L) 4.9 ± 0.7 4.9 ± 0.8 0.922

HDL cholesterol (mmol/L) 1.1 ± 0.2 1.0 ± 0.2 0.528

LDL cholesterol (mmol/L) 2.9 ± 0.7 3.0 ± 0.6 0.807

Apo B-48 (μg/ml) 7.6 ± 7.7 6.5 ± 4.3 0.417

Fasting plasma glucose (mmol/L) 5.6 ± 0.5 5.7 ± 0.6 0.344

Fasting plasma insulin (pmol/L) 132 ± 41 125 ± 41 0.664

HOMA-IR 4.7 ± 1.8 4.6 ± 1.8 0.883

HOMA-IR homeostasis model assessment of insulin resistance, Apo B-48 apolipoprotein B-48

All values are means ± SDs
at test, no significant differences between the two groups
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between the HighP and LowP diets. Instead, LDL trigly-
ceride concentrations were higher after the HighP than after
the LowP diet (p < 0.001, time × polyphenol interaction,
Fig. 2; AUCs difference, p < 0.001, Table 2). Therefore,
Chol/Tg ratio was lower after the HighP than after the
LowP diet (p= 0.005, time × polyphenol interaction, Fig. 2;
AUCs difference, p= 0.007, Table 2).

HDL. No significant difference was observed in HDL
cholesterol concentrations after the dietary intervention
between the HighP and LowP diets (Fig. 2, Table 2), while
HDL triglyceride concentrations significantly decreased
after the HighP than after the LowP diet (p= 0.012 for
time × polyphenol interaction, Fig. 2; AUCs difference, p=
0.013, Table 2). Postprandial Chol/Tg ratio was higher after
the HighP than after the LowP diet (p= 0.038 time ×
polyphenol interaction, Fig. 2). The difference was not
statistically significant when expressed as total Chol/Tg
ratio AUC (p= 0.189, Table 2).

All these differences were still significant after adjusting
for the absolute changes of total plasma triglycerides or
cholesterol reported in the original trial (VLDL1 cholesterol
AUCs difference, p= 0.010; VLDL1 triglyceride AUCs
difference, p= 0.015; IDL cholesterol AUCs difference,

p= 0.044; LDL triglyceride AUCs difference, p < 0.001;
LDL cholesterol/triglyceride ratio AUCs difference, p <
0.001; HDL triglyceride AUCs difference, p= 0.030).

Correlation analyses

To further elucidate the plausible mechanisms involved in
postprandial lipoprotein composition changes, correlation
analysis (Pearson) between lipoprotein postprandial AUC
changes after the dietary interventions was performed, and
the more relevant correlations are reported in Fig. 3.

Changes in Chylomicrons correlated with those occurring
in VLDL1 (r= 0.623, p < 0.001 for cholesterol;
r= 0.601, p < 0.001 for triglycerides). Changes in VLDL2
directly correlated with those occurring in IDL (r= 0.545,
p < 0.001 for cholesterol, Fig. 3a; r= 0.424, p < 0.001 for
triglycerides, Fig. 3b; r= 0.556, p < 0.001 for Chol/Tg ratio,
Fig. 3c). Changes in IDL directly correlated with those
occurring in LDL (r= 0.275, p= 0.016 for cholesterol; r=
0.511, p < 0.001 for triglycerides), while changes in IDL
Chol/Tg ratio inversely correlated with those occurring in
LDL cholesterol (r=−0.204, p= 0.007, Fig. 3d). Changes
in HDL triglycerides directly correlated with triglyceride
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change in Chylomicrons (r= 0.302, p= 0.007), VLDL1
(r= 0.600, p < 0.001, Fig. 3e), and VLDL2 (r= 0.425, p <
0.001). Moreover, changes in HDL Chol/Tg ratio inversely
correlated with Chylomicron cholesterol (r=−0.259, p=
0.009), Chylomicron triglycerides (r=−0.343, p= 0.002),
VLDL1 cholesterol (r=−0.566, p < 0.001), and VLDL1
Chol/Tg ratio (r=−0.453, p < 0.001, Fig. 3f).

Discussion

Our study shows that a high-polyphenol diet, compared
with one low in polyphenols, significantly modifies post-
prandial lipoproteins by (a) reducing cholesterol and tri-
glycerides in VLDL1, (b) increasing cholesterol in IDL, (c)
increasing triglycerides in LDL thus reducing the choles-
terol/triglyceride ratio, and (d) reducing triglycerides in
HDL thus increasing the cholesterol/triglyceride ratio
profile.

Interestingly, these significant changes still remain sig-
nificant after further adjusting for the absolute changes of

plasma lipid (cholesterol or triglycerides) reported in the
original trial [14], suggesting a qualitative rearrangement of
lipid concentration in lipoprotein behind the quantitative
reduction of total circulating lipid.

To the best of our knowledge, this ancillary analysis
investigated for the first time in a randomized controlled
trial the effects of dietary polyphenols on postprandial
lipoprotein lipid composition—a not predefined outcome—
in individuals at high cardiometabolic risk.

The first finding of our study is that a diet with a natu-
rally high-polyphenol content equally reduced cholesterol
and triglycerides in VLDL1. Different mechanisms may
underlie this effect. Polyphenols could reduce lipid avail-
ability at the intestinal level by inhibiting pancreatic lipase
and reducing the synthesis of triglyceride-rich lipoproteins,
also influenced by a lower availability of cholesterol and
short fatty acids in the liver [10, 22]. The absence of a
reduction in fasting total Apo B-48 as well as in Apo B-48
AUCs with the HighP diet supports the hypothesis that the
number of endogenous lipoproteins of intestinal origin was
not reduced. Moreover, in addition to decreasing lipid

Table 2 Postprandial lipoprotein
AUCs of cholesterol,
triglycerides, and cholesterol/
triglyceride ratio after the dietary
intervention (8 weeks)

High-polyphenol group, n= 39 Low-polyphenol group, n= 39 Pa

Chylomicrons

Cholesterol (mmol/L × 6 h) 0.21 ± 0.17 0.29 ± 0.20 0.224

Triglycerides (mmol/L × 6 h) 2.55 ± 2.14 3.27 ± 2.20 0.301

Cholesterol/triglyceride ratio 0.08 ± 0.02 0.08 ± 0.05 0.219

VLDL1

Cholesterol (mmol/L × 6 h) 1.48 ± 0.98 1.91 ± 1.13 0.014

Triglycerides (mmol/L × 6 h) 4.70 ± 2.70 6.02 ± 3.07 0.005

Cholesterol/triglyceride ratio 0.31 ± 0.05 0.32 ± 0.04 0.992

VLDL2

Cholesterol (mmol/L × 6 h) 1.16 ± 0.80 0.97 ± 0.51 0.841

Triglycerides (mmol/L × 6 h) 1.17 ± 0.59 1.14 ± 0.48 0.511

Cholesterol/triglyceride ratio 0.99 ± 0.21 0.85 ± 0.14 0.114

IDL

Cholesterol (mmol/L × 6 h) 1.29 ± 0.77 1.01 ± 0.51 0.037

Triglycerides (mmol/L × 6 h) 0.35 ± 0.18 0.30 ± 0.12 0.088

Cholesterol/triglyceride ratio 3.68 ± 1.22 3.36 ± 0.81 0.386

LDL

Cholesterol (mmol/L × 6 h) 16.80 ± 4.19 16.36 ± 3.28 0.131

Triglycerides (mmol/L × 6 h) 1.15 ± 0.33 1.02 ± 0.35 <0.001

Cholesterol/triglyceride ratio 14.60 ± 4.01 16.03 ± 3.81 0.007

HDL

Cholesterol (mmol/L × 6 h) 5.74 ± 1.42 5.87 ± 1.52 0.074

Triglycerides (mmol/L × 6 h) 1.20 ± 0.41 1.34 ± 0.37 0.013

Cholesterol/triglyceride ratio 4.78 ± 1.50 4.37 ± 1.52 0.189

All values are means ± SDs
at test of absolute value at 8 weeks adjusted for baseline value as covariate

Significant differences (p < 0.05) are indicated in bold

G. Della Pepa et al.



availability in hepatocytes, polyphenols may decrease acyl-
CoA cholesterol acyltransferase, inhibit microsomal trigly-
ceride transfer protein, and increase fatty acid oxidation
[23, 24]. This could explain the reduction in VLDL1 lipid
content [25, 26]. The strong positive correlation between
postprandial changes in chylomicron and VLDL1 lipids
after a dietary intervention suggests common pathways in
intestinal and hepatic metabolism.

The decreased availability of lipids in the liver could lead
to a preferential secretion of VLDL2 [27]. The delipidation
of these lipoproteins would lead to the IDL richer in cho-
lesterol observed with the HighP diet. This is supported by
the strong direct correlation between postprandial AUC
changes in VLDL2 and IDL lipids after the dietary
intervention.

Another finding of our study is the increase in LDL tri-
glyceride concentration with a reduction in cholesterol/tri-
glyceride ratio. This effect could be related to the
cholesterol enrichment of IDL. In fact, it has been observed
that the IDL richer in triglycerides—deriving from VLDL1
—seem to give origin to intermediate LDL particles, while
IDL richer in cholesterol—deriving from VLDL2—are the

precursor of large LDL particles, rich in triglycerides
[27–29]. This is supported by the positive correlation
between postprandial AUC changes in IDL and LDL lipids,
and the inverse correlation between changes in Chol/Tg
ratio in IDL and LDL after the dietary intervention.

Polyphenols could induce the changes in LDL and HDL
triglyceride and LDL cholesterol/triglyceride ratio by inhi-
biting the cholesteryl ester transfer protein (CETP) [30]. It
has been reported that the increased activity of CETP in the
postprandial state induces an HDL enrichment in trigly-
cerides [31]. Similarly, LDL cholesterol lowering in the
postprandial state could be related to an enhanced formation
of small dense LDL particles poor in triglycerides, mediated
by CETP [4, 32]. The possible inhibition of CETP activity
by polyphenols could induce a less active triglyceride/
cholesterol exchange between HDL particles and both
triglyceride-rich lipoproteins and LDL. This mechanism is
supported by the inverse relation found in our study
between changes in Chol/Tg ratio in HDL and VLDL1.

Despite a plausible CETP inhibition, we failed to observe
a significant increase in the cholesterol content of HDL.
This might suggest an improvement in reverse cholesterol
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transport in agreement with some trials in which polyphenol
intake increased the expression of ATP-binding cassette
transporter-A1 and scavenger receptor-B [33, 34].

It is difficult to evaluate how the effects of the poly-
phenols observed in our study could influence cardiovas-
cular risk. Since “postprandial dyslipidaemia” is considered
an independent cardiovascular risk factor [2, 3], our results
may be clinically relevant, as they show that a diet with a
naturally high content of different classes of polyphenols, in
addition to its positive effects on lipoprotein lipid con-
centrations [14], induces modifications in the postprandial
lipoprotein composition that, at least for some of them (LDL
richer in Tg), may be considered “less atherogenic” [35–38].
The data on HDL composition and cardiovascular risk are
more controversial. In fact, recent epidemiological evidence
has provided inconsistent results on the prognostic value of
small cholesterol-enriched HDL and large triglyceride-
enriched HDL for predicting cardiovascular risk [39–43].

Our trial presents some strengths. First of all, our study
was a well-controlled intervention trial sufficiently long to
evaluate the effects of dietary polyphenol on lipoprotein
composition. Second, the sources of polyphenols in our

experimental diet were easily reached with natural foods
commonly used in different gastronomic traditions. Fur-
thermore, the use of natural foods rich in different poly-
phenols gave us the opportunity to have, in the high-
polyphenol diet, various types of bioactive polyphenol
compounds, such as anthocyanidins, flavones, flavonoids,
phenolic acids, flavans, flavanones, and flavonols [21, 44].

Finally, dietary compliance was assessed by the partici-
pants’ 7-day food records completed during the dietary
intervention and assaying their phenolic metabolites profile
in 24-h urine collections.

Our study has some limitations. Although we measured
phenolic metabolites profile in 24-h urine collections, the
plasma bioavailability of phenolic metabolites was not
investigated. Furthermore, the activities of some enzymes
involved in postprandial lipoprotein composition—CETP,
lipoprotein lipase, and hepatic lipase—were not measured.
Information on these activities would certainly help clarify
the mechanisms involved in the changes of postprandial
lipoprotein metabolism. Another limitation is that we stu-
died middle-aged men and women presenting abdominal
obesity and at least one more feature of the metabolic
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syndrome and, consequently, the results cannot be extra-
polated to other populations.

In conclusion, consuming a diet naturally rich in different
sources of polyphenols promotes changes in the lipid
composition of postprandial lipoproteins. These changes
may help understand the dynamic modifications occurring
in the postprandial state. From a clinical point of view,
particularly in relation to cardiovascular risk, it may be
relevant that the effects of polyphenol on lipid concentra-
tions, especially the reduction of VLDL1 lipids, are asso-
ciated with modifications in lipid composition of
lipoproteins. The overall effect of these changes on ather-
ogenicity warrants further investigation on clinical cardio-
vascular outcomes.
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