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Abstract: Pushbroom-style imaging systems exhibit several advantages over line scanners 

when used on space-borne platforms as they typically achieve higher signal-to-noise and 

reduce the need for moving parts. Pushbroom sensors contain thousands of detectors , each 

having a unique radiometric response, which will inevitably lead to streaking and banding 

in the raw data. To take full advantage of the potential exhibited by push broom sensors, a 

relative radiometric correction must be performed to eliminate pixel-to-pixel 

non-uniformities in the raw data. Side slither is an on-orbit calibration technique where a 

90-degree yaw maneuver is performed over an invariant site to flatten the data. While this 

technique has been utilized with moderate success for the QuickBird satellite [ 1] and the 

RapidEye constellation [2], further analysis is required to enable its implementation for the 

Landsat 8 sensors, which have a 15-degree field-of-view and a 0.5% pixel-to-pixel 

uniformity requirement. This work uses the DIRSIG model to analyze the side slither 

maneuver as applicable to the Landsat sensor. A description of favorable sites, how to 

adjust the maneuver to compensate for the curvature of "linear" arrays, how to efficiently 

process the data, and an analysis to assess the quality of the side slither data, are presented. 
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1. Introduction 

Traditional line scam1ers used on space-bome platfonns (e.g., MODIS and ETM+) contain a 

handful of detectors that collect data of a scene in the cross-track direction as the satellite flies over in 

the along-track direction [3,4]. Minimal effort is required to petfonn a relative calibration of their data 

as the simplicity of their focal plane design minimizes non-uniformities in the raw data [5]. However, 

these sensors require moving pmts, which have the potential to fail on-orbit, m1d exhibit relatively low 

signal-to-noise ratios (SNR) compared to modern pushbroom systems. The focal plm1e design of 

pushbroom-style architectures is advantageous as it eliminates the need for cross-track motion when 

collecting data. As a result, the need for moving parts is reduced and SNR is enhanced due to longer 

dwell times [6]. To take full advantage of these potential benefits, much more effort is required to 

perfonn a relative calibration as pushbroom sensors typically contain tens-of-thousands (if not 

hundreds-of-thousands) of detectors arranged on several focal plane modules (FPMs) that are 

staggered across the focal plane [7]. 

Figure 1 shows a generic focal plane design for a pushbroom sensor and the raw data (simulated in 

this case) that is collected from this type of system. Each detector on the focal plane will have a unique 

radiometric response due to the doping process used to fabricate the detector arrays, variability in 

electronic gains and biases, m1d lens fall-off. As a result, banding and streal(ing will be apparent in the 

raw data and must be cmTected, so as to take full advantage of the enhanced SNR exhibited by these 

modern imaging systems. Figure la shows the raw simulated image data prior to calibration while 

Figure lb shows the processed data after flat-fielding. 

Figure 1. Focal plane design of a typical pushbroom sensor used to simulate data of Lake 

Tahoe, Califomia with all non-unifonnity effects applied (i.e., per detector gains, biases, 

spectral response functions, nonlinearities, noise, etc.) (a) Shows the raw data and 

(b) shows data after flat-fielding. 
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The nine-band Operational Land Imager (OLI) and the dual band Thermal Infrared Sensor (TIRS) 

are the latest sensors in the Landsat series and, in a departure from traditional sensor design, use 

pushbroom-style architectures. They were launched onboard Landsat 8 (formerly LDCM) on 

11 February 2013. OLI is equipped with dual full-aperture solar diffusers and multi-bulbed tungsten 

lamp assemblies that are used for on-orbit detector-to-detector radiometric calibration. The primary 

solar diffuser is deployed every eight days to determine flat-fielding coefficients and the pristine 

diffuser every six months to monitor the primary diffuser's degradation. Tungsten lamp assemblies 

will provide an additional source of calibration coefficients; a working lamp set will be used daily, a 

reference lamp set monthly, and a pristine lamp set every six months [8]. TIRS is equipped with a 

scene select mechanism that is deployed re.!:,JUlarly to view deep space and its onboard blackbody to 

enable an on-orbit detector-to-detector radiometric calibration [9]. 

To perform a relative calibration as illustrated in Figure 1, a governing calibration equation relating 

radiance at the focal plane to digital counts for each detector must be defined. For each detector within 

an array, 

DN1 = Q[G1 • f 1(L) + BJ; fori = 0, 11 ••• 1 n (1) 

where DN; is the raw detector response in digital counts for detector i,f;(L) is the radiometric response 

function of the detector ito the incident radiance, G; is the gain for detector i, B; is the bias measured in 

the absence of light for detector i, n is the total number of detectors in the array, and Q[] indicates the 

quantization process. Although detectors may have a nonlinear radiometric response, these effects are 

not directly addressed in this work. Additionally, the bit-depth of most modem sensors is at least 12-bit 

so Equation ( 1) can be simplified to, 

(2) 

To perform a relative calibration on-orbit, per-detector biases from Equation (2) can be obtained by 

imaging deep space or by closing the shutter. Then by sampling a uniform bright source (L1), 

per-detector gains can be derived for each detector, 

~ DNi -Bi . 
Gl = ; for t = 0, 11 ••• 1 n 

Lr 
(3) 

The gains from Equation (3) can be divided by the average gain across the entire array to derive the 

relative gains that get applied during the flat-field correction. 

(4) 

A flat-field correction can then be obtained in image data by applying Equation (5) for each detector i. 

DN--B· 
DNrr = r~ l; fori= 01 1, ... In (5) 

Gr. 
' 

Note that this procedure must be applied for all arrays on the focal plane. For satellite systems 

equipped with a solar diffuser, a uniform bright source (L1) can be achieved by introducing the 

solar-diffuser into the field-of-view (FOV) of the sensor to flood the focal plane with diffuse, reflected 

sunlight. However, diffuser panels can degrade over time causing a non-uniform illumination of the 
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foc-al plane. This ts evident with Terra's MODIS (The Moderate Resolution hnaging 

Spectroradiometer) sensor where an anomaly forcing its solar diffuser door to remain open has led to 

an accelerated degradation of its solar diffuser [10]. As a result, the proper perfonnance of the Terra 

MODIS solar diffuser stability monitor is critical to a well-calibrated system. The OLI is equipped 

with a pristine diffuser that may be used to monitor the primary diffuser's degradation but the need for 

a vicarious method to flat-field the data is desirable for systems not equipped ·with on-board calibrators. 

The side slither calibration technique is an on-orbit maneuver that has been used to flat-field linage 

data for the QuickBird and RapidEye pushbroom systems [1,2]. The Earth's surface exhibits excessive 

variability to enable a relative calibration in nonnal imaging mode with wide FOV pushbroom 

instruments. However, a 90-degree yaw maneuver can be applied to the spacecraft (thus the focal 

plane) forcing each detector to image a similar spot on the ground. This concept is illustrated in 

Figure 2 which shows an ideal linear array imaging over Dome Concordia (Dome C), Antarctica in 

both nonnal imaging mode (left) and in side slither itnaging mode (right). 

When the satellite is yawed 90 degrees, each detector on the idealized focal plane array will scan 

over the same area on the ground. This is a favorable scenario for relative calibration, as each detector 

should receive the same illumination. However, pushbroom-style imaging systems with wide 

fields-of-view (e.g., Landsat sensors) are not perfect linear arrays but more closely resemble the array 

illustrated in Figure 1. 

Figure 2. Illustration of a perfect linear array imaging over Dome Concordia, Antarctica in 

both nonnal itnaging mode and side slither mode. 
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This article presents the results of simulated studies designed to investigate the potential to use the 

side slither maneuver to perform a relative calibration for pushbroom-style imaging systems such as 

Landsat 8 (i.e., systems with a wide field-of-view). While this technique has been previously applied to 

other systems, the sources of potential errors in the flat-field process have not been convincingly 

identified. This work uses simulation and modeling to identify sources that will introduce errors into 

the calibration process, to assist in developing metrics to evaluate the efficacy of the side slither 

maneuver, and to provide recommendations for future side slither missions. 

Section 2 introduces techniques that enable an enhanced side slither calibration to be performed. 

Illustrations of how side slither data are obtained, how it can be interpreted, and how it is processed to 

calculate relative gains are presented. Preprocessing techniques intended to minimize scene-induced 

error are then presented and a simulated case study designed to identify uniform regions on Earth 

suitable for the side slither maneuver is introduced. In Section 3, potential issues associated with 

performing a relative calibration using side slither are identified and on-orbit modifications to the 

technique suggested. Additionally, a qualitative characterization of how to identify uniform regions 

that are suitable for the maneuver is provided. The site identification study is revisited and re-designed 

for sensors with a wide field-of-view. Finally, a summary of the side slither recommendations made 

for Landsat 8 during its commissioning phase is presented. 

2. The Side Slither Maneuver 

Before describing the processing chain that can be applied to effectively flat-field an image using 

the side slither maneuver, a basic knowledge of the data is required. To develop an understanding of 

the difference between data collected in normal imaging mode and side slither mode, simulation and 

modeling can be utilized. The DIRSIG (Digital Imaging and Remote Sensing Image Generation) 

model was used to support this work. DIRSIG is a well-developed physics-based model created at the 

Rochester Institute of Technology to simulate the spectral radiance images produced by sensors that 

observe the reflective and emitted energy from the Earth's surface [11]. DIRSIG supports scenes 

developed from complex geometries or can use radiance data directly as input to describe the synthetic 

landscape. Recent enhancements to DIRSIG support the development of a sophisticated data-driven 

sensor model [12]. Ifthe user is able to make lab measurements, DIRSIG accepts line-of-sight 

measurements to define the focal plane layout, platform jitter, and can handle inputs of gains, biases, 

relative spectral response functions, noise, etc. on a per-detector basis [ 13-15]. 

To generate the simulated data shown in Figure 3, Landsat 7 radiance data of the Dome C (from 

Figure 2) was provided directly as input to the DIRSIG model and imaged using a simple linear array 

in both normal and side slither imaging modes. Figure 3a shows the data that results from imaging in 

normal mode while Figure 3b shows the corresponding side slither data (Note: for simplicity the Earth 

beyond the Dome C "scene" was treated as a black background in these initial DIRSIG simulations). 

To develop our knowledge of how the side slither data shown in Figure 3b is obtained, and how it 

can potentially be used for calibration, we refer again to Figure 2. By treating the Earth outside the 

scene of interest as a black background, each detector of the linear array will image black prior to 

entering the uniform region when imaging in side slither mode. This is shown in Fi.!:,'ille 3b where the 

first few rows of the image are black. When the first detector enters the scene, the array images all 
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black except for the first detector (first column in Figure 3b). As subsequent detectors image over the 

unifonn region, more image data is introduced into each column from left to right. Approximately 

halfway do"-'11 Figure 3b, the first detector leaves the unifonn region as indicated by the introduction of 

black data in the first column. As subsequent detectors leave the unifonn region, black data is 

introduced to the corresponding columns until finally all detectors image black. The last few rows of 

Figure 3b indicate that all detectors arc imaging outside of the unifonn region. 

Figure 3. DIRSIG simulated grayscale images collected over Dome Concordia, Antarctica 

in both (a) nonnal mode and (b) side slither mode. 

(a) (b) 

2.1. Basic Processing 

The techniques described in [I] and [2] describe how side slither data should be shifted prior to 

processing the relative gains. In this paper, a horizontal correction is defined as a shifting of the 

columns in the side slither data so the linear features in the data arc oriented horizontally. A horizontal 

correction is pcrfonncd prior to calculating relative gains to simplify the data processing. Figure 4 

i llustratcs the horizontal correction process where each subsequent column i of the raw side slither data 

(left) is shifted up. 

Shifti= i- l (6) 

So (according to Equation (6)) the first column of the data is left alone, the second column is shifted 

up one row, the third column is shifted up two rows, and so on. Figure 4(ccntcr) shows the result of 

this nominal horizontal correction process. Notice that the linear features in the data arc not perfectly 



Remote Sens. 2014, 6 10529 

horizontal. This is likely due to the focal plane read-out clock cycle being out of synch when the array 

is oriented in the direction of motion, a perfect 90-degree side slither is not achieved, or a combination 

of the two. Figure 4(right) shows the side s lither data after an enhanced horizontal conection has been 

applied, where the slopes of the lines in Figure 4( center) were determined and used to further shift the 

data. Note that in the enhanced correction, only integer shifts of the data are applied to avoid the 

resampling of data. 

Figure 4. Illustration of the horizontal cmTection process where raw Thermal Infrared 

Sensor (TIRS) side slither data (left) was corrected using a nominal correction (center) and 

an enhanced correction (right). 
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The enhanced correction is a manual process, as conducted in this research, but potentially 

significant to an accurate relative calibration. Figure 5 shows the colunm averages of the side slither 

data from Figure 4. The red (solid) curve in Figure 5 corresponds to the colunm average for each 

detector calculated from the side sl ither data when a basic horizontal correction is applied, i.e., Figure 4 

(center). The blue (dashed) curve cones ponds to the column averages when the enhanced horizontal 

correction is applied, Figure 4(Iight). The two curves differ by as much as 1.5 percent in this example 

illustrating the importance of an accurate horizontal correction. If the relative gains are calculated 

using the data from Figure 4(center) then in-scene variability will be introduced to the relative gains 

simply due to poor data manipulation causing a low frequency gradient to appear in the final corrected 

image data. This will be further illustrated in Section 3. 

Once a suitable horizontal conection is achieved (e.g. , the blue-dashed curve of Figure 5) the 

column averages can be normalized by their mean to detennine the relative gain coefficients for each 

detector, recall Equation (4). Using Equation (5), the gain coefficients can then be applied to the 

bias-subtracted data (illustrated in Figure 1) to pe1fonn the flat-field. 
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Figure 5. Column averages obtained from the horizontally corrected data of Figure 4. The 

red solid curve shows the column averages obtained from the nominal horizontal 

correction (Figure 4(center)) while the blue dashed curve shows the column averages 

obtained from the enhanced correction (Figure 4(right)). 
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2.2. Enhanced Automated Processing: Finding Regions ofLowest Variability in Data 

Previous work suggests a visual inspection to detennine which region of the side slither data to use 

when deriving relative gains [2]. This section describes a simple methodology for identifying regions 

of lowest variability in the side slither data. By automatically identifying regions in the data that 

have minimal variability introduced by the scene, the derived relative gains can be calculated from 

data that reflect the instrument's behavior, not in-scene (or human-induced) variability. This concept is 

illustrated with an example where the regions of minimal variability are identified in an acntal TIRS 

side slither dataset. 

Figure 6 shows side slither data collected with SCA-A (sensor-chip assembly "A") on the TIRS 

instrument after an enhanced horizontal correction has been applied. To determine regions of lowest 

scene-induced vatiability in this TIRS side slither data, the horizontal data of Figure 6 can be 

segmented into smaller regions and the variability calculated within each region. The TIRS sensor has 

640 cross-track detectors in each array so the data was arbitratily segmented into regions of size 

10 >< 640 for this study. The typical side slither collect contains several thousand frames (i.e., rows) of 

data so hundreds (perhaps thousands) of tO x 640 regions may be characterized in this process. 

To characterize the variability within each region, the column mean vector xis first calculated 

(red curve in Figure 6). Next, the deviations of each row vector from the column mean (black curves in 

Figure 6) are calculated and summed to describe the variability associated with the region. Finally, the 

region(s) with the minimum variability (or close to the minimum variability) can be used to calculate 

the relative gains, as these regions represent portions of the scene that introduce minimal in-scene 

variability. Mathematically, this concept is written. 

min(}:r21 abs(xi- X) )}1= 1 (7) 
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where£ is the row number within a region, xi is the ith row vector in a region, xis the mean column 

vector within a region,) is the region number, and n is the total number of regions being characterized. 

Qualitatively, regions where the radiance curves for each row vary the least from their coiTesponding 

column mean will be identified as low variability regions. Since several hundreds of regions will be 

characterized, the user can be selective as to how many regions to use in the final processing of relative 

gains. Once the regions are identified, the relative gains can be calculated in these regions according to 

Equation (5). 

Figure 6. Illustration of automated processing method to find regions of lowest variability 

in the side slither data. 
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2.3. Site identification 

To determine worldwide sites that are favorable to support a side slither maneuver for Landsat 8, 

Gerace eta/. 2012 [16] conducted a modeling effort focused on identifying uniform regions whose 

brightness values span the dynamic range of the OLI bands yet introduce minimal variability to the 

calculated relative gains. Sites of this nature are favorable for side slither as they can help identifY 

potential detector nonlinearities while reducing pixel-to-pixel va1iability. 

Bas net 20 l 0 [ 17] conducted a statisti.cal analysis with Landsat 5 data to identify potential 

worldwide pseudo-invariant calibration sites (PICS). Sites labeled as pseudo-invariant exhibited 

temporally and spatially stable brightness values in the data indicating that they were typically cloud 

free and that their landscape did not vary s ignificantly. Sites of this nature are favorable for side slither 

missions as the potential risk of adverse weather is reduced in these regions. Gerace eta!. 2012 [16] 

used these scenes for the side slither analysis by acquiring Landsat 5 images from Earth Explorer [ 18] 

and using their coiTesponding radiance data as input to the DfRSIG modeL 

For the initial modeling effort described in [16], a sensor model that did not include non-unifonuity 

effects was developed to simulate the two center an-ays of Landsat 8's OLI sensor. Non-uniformity 



Remote Sens. 2014, 6 10532 

effects were excluded from this preliminary sensor model to determine the variability introduced by 

just the test site to properly assess its potential utility for side slither calibration. The sensor model was 

then used to image the Landsat radiance data in side slither mode and the valiability in the 

corresponding relative gain coefficients was observed. Figure 7 shows the within-array variability 

introduced to the process by each of the sites with the maximum acceptable target error (0.05%) 

highlighted as a dashed (red) line. Note that tllis enor target was chosen since it is an order of 

magnitude smaller than OLI's pixel-to-pixel uniformity requirement (0.5%). 

~ 
:D .. 
~ 
c ... 
C) 

Figure 7. Within-array gain variability introduced by the sites listed in Table I for the first 

seven bands of the Operational Land Imager (OLI). The red dashed indicates the maximum 

acceptable target error of 0.0005 or 0.05%. 
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The variability described in Figure 7 represents the standard deviation divided by the mean of the 

relative gains (calculated using Equation (5)) within an anay. Encouragingly, many ofthe sites studied 

in [16] introduce gain variabil ity that is just at, or below, the threshold of 0.05% when the 2-array 

sensor model is used. 

3. Significant Issues and Potential Solutions 

3.1. Between-Array Variability 

While the initial study of Section 2.3 helped identify potential sites to be used for the side slither 

maneuver, it also exposed an issue related to the cal.culation of relative gains. Figure 8a shows the 

relative gains calculated for Band l of OLI from the simulated side slither data imaged over the Dome 

Concordia dataset. A significant jump in relative gains occurs between the two anays due to the 

ground track ofthe arrays during side sl ither mode. 
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Figure 8b shows the approximate ground-track for the two anays when imaging in side-slither 

mode which, depending on the band, may be as much as 25 Jan apat1. Over this distance, issues such as 

illumination gradients and BRDF effects due to the tenain and atmosphere can atise precluding the use 

of the side slither data to flat-field between anays. Conveniently, to ensure data continuity, OLI has 

approximately 20 detectors of overlap between anays in nom1al imaging mode that can be utilized to 

flat-field across anays [7]. Although a full treatment of this process is beyond the scope of this at1icle, 

Figure 9 briefly illustrates how the overlap detectors can be exploited in nonnal imaging mode to 

perfonn a relative calibration between arrays. Figure 9a illustrates three (of fourteen) arbitrary arrays 

from OLI and their corresponding overlap region when imaging in normal mode. 

Figure 8. (a) Relative gains calculated for Band l of OLI from simulated side slither data 

collected over the Dome Concordia (b). Note that the ground track of the anays has been 

plotted over the Dome Concordia RGB data to illustrate that the offset anays image 

significantly different spots on the ground. 
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Figure 9. Illustration of how overlap region can be exploited to tlat-fi.eld between anays. 
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For this discussion, the middle array is labeled R, the left array R- 1, and the right array R + 1. To 

flat-field the data between arrays while imaging in normal mode (Figure 9a), several common in-track 

pixels (hundreds) imaged over a calibration site can be averaged for every detector in the overlap 

region to minimize temporal noise. The resulting averaged data is illustrated in Figure 9b(top). Then, 

to flatten the data between arrays, all detectors in an overlap region can be averaged and forced by 

ratio-ing to the average of the neighboring array ' s overlap region, e.g. , Figure 9b(bottom) illustrates 

how the average of the detectors in the overlap region of the R - 1 and R + 1 arrays can be forced to 

agree with averaged overlap values in array R. 

3.2. "Smearing" in Edge Arrays 

Section 2.3 identified calibration sites that are suitable for the side slither maneuver. While several 

sites are identified as favorable, the analysis was conducted with only the two center arrays of OLI. 

When projected through the optics, the edge arrays of OLI appear skewed approximately one degree 

from the center arrays. This can potentially impact the flat-fielding process when using relative gains 

calculated from the side slither maneuver, as the edge arrays will not experience a perfect 90-degree yaw. 

To validate the hypothesis that features in the landscape may introduce significantly higher gain 

variability in the edge arrays of OLI, a large-scale synthetic landscape of the Libya 4 PICS was 

developed with a single material type (sand) and used as input to DIRSIG, see Figure 10. This site has 

traditionally been used for Landsat calibration [ 19] and remains ideal for long-term drift analysis. 

However, Libya 4 exhibits features (e.g., sand dunes) that diminish its utility of side slither data. The 

projection of the OLI arrays is overlaid to illustrate the difference in orientation between the edge 

arrays and the middle arrays in side slither mode. The middle arrays (red oval) used in the preliminary 

study of Section 2.3 are parallel to the ground-track when in side slither mode while the edge arrays 

(e.g., blue circle) are not. When features exist in the landscape (e.g., a sand dune as shown by the blue 

arrow), each detector of the array will image a slightly different portion of the feature leading to an 

undesirable "smearing" in the side slither data. 

Side slither simulations were performed over the synthetic Libya 4 landscape shown in Figure 10 

using a DIRSIG sensor model developed from the line-of-site (LOS) vectors for all 14 OLI arrays. Note 

that only OLI band 1 was modeled for this study but all sources of non-uniformity (i.e., detector-to

detector gains, biases, relative spectral response functions, noise, and quantization) were incorporated. 

The resulting data after performing a horizontal correction is shown in Figure 11(top). 

Notice that the data for several arrays (blue circles) exhibit "smearing" due to the orientation of 

these arrays as they image over non-uniform features in the landscape in side slither mode. Using this 

data for calibration will introduce significant variability into the final data product. To quantify the 

magnitude of the variability introduced by smearing in the edge arrays, a flat plate of sand (the same 

sand used in the Libya 4 scene shown in Figure 10) was developed and provided as the scene input to 

DIRSIG. The same Band 1 sensor model that was used to generate the side slither data in Fi!,rure 11(top) 

was used to image the flat plate in normal imaging mode. The side slither data of Figure ll(top) was 

then used to perform an array-by-array relative calibration on the flat plate data. The desired result of 

this calibration process is a uniform brightness across the entire flat plate. 
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Figure 10. Synthetic Libya 4 landscape developed to illustrate the impact of in-scene 

variability on side slither relative calibration process. The red oval highlights the 2 center 

arrays of OLI. The blue circle highlights an edge array and its orientation with respect to 

sign ifi cant features in the landscape when imaging in side slither mode. 
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Figure 11. Top frame shows the resulting side slither data (after a horizontal correction has 

been applied) when imaging over the Libya 4 simulated landscape with all 14 atTays of 

OLI. The bottom frame shows the result of applying a side slither correction to a flat plate 

of sand with the relative gains obtained from the top frame. The blue circles highlight the 

smeming effect caused by arrays that are not oriented at 90 degrees when in side slither mode. 

Figure ll(bottom) shows that instead of obtaining a uniform image, as would be expected when 

flat-fielding a uniform scene, the correction process actually introduced significant striping and 
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banding to the calibrated image data. The banding and striping is not significant in the middle arrays 

but becomes increasingly significant toward the edge arrays indicating that the terrain-induced 

smearing is a function of the array orientation when imaging with a 90-dcgrcc yaw. 

By using the processing method described in Section 2.2 and choosing scenes with minimal terrain 

features (e.g., Dome C, Greenland, Niger, Mauritania, Saudi Arabia) as described in Sections 2.3 & 3.3, 

the impact of terrain-induced smearing can be minimized. For satellite systems versatile enough to 

pcrfonn side slither in the first place, an altcmativc methodology that can further reduce smearing in 

the edge arrays is now introduced. 

Figure 12 shows the column average DN as a function of detector number for the "calibrated" data 

sho\-\lll in Figure II (bottom). While the variability across the full field-of-view is approximately 4.5%, 

the variability within the center 2000 detectors is less than 0.5%. Recall, from Figure I 0 (red circle), 

that the center arrays in the nominal side slither maneuver arc parallel to the direction of motion so low 

variability is expected in this region. 

Figure 12. Column average of the mis-calibratcd data shm~m in Figure ll(bottom). Note 

that although variability across the entire field-of-view is in excess of 4.5%, the variability 

in the center region (between blue lines) is less than 0.5%. 
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To reduce the variability due to smearing in the edge arrays, additional side slither maneuvers can 

be pcrfonncd over a site to align the edge arrays with the direction of motion. To test this hypothesis, 

two side slither maneuvers in addition to the nominal 90-dcgrcc maneuver were simulated in DIRSIG 

over the Libya 4 synthetic landscape and the corresponding relative gains used to correct the flat plate 

of sand. One maneuver was conducted at R9 degrees to align the port side arrays and the other at 

91 degrees to align the starboard side arrays to the direction of motion. Figure 13 shows the 

column-averaged results of the corrected flat plate image and illustrates the potential effectiveness of 

this procedure. 

Figure 13(1cft) shows a significant reduction in variability in the first 4000 detectors 

(StdDcv/Mcan = 0.7%) while Figure 13(right) shows a significant reduction in variability in the last 

3000 detectors (StdDcv/Mcan = 0.9%). When combined with the nominal 90-dcgrcc maneuver, the 

variability across the full FOV can be reduced from 4.5% to under 0.9% in this case. 
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Figure 13. Column averages of calibrated side slither data resulting from maneuvers of 

(a) 89 degrees and (b) 91 degrees respectively. 
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3.3. Revisiting Site Identification 

6000 8000 

z 
0 

0 2000 4000 6000 8000 
Detecto r Number 

(b) 

To build on the work of Section 2.3, an additional study was conducted to identify potential sites for 

the side slither maneuver. This subject was revisited for several reasons but primarily to determine the 

variability introduced by potential sites when the full FOV of OLI was considered and to incorporate 

additional sites that would be suitable for the commissioning phase of LDCM. Due to its February 

launch, the Dome Concordia site, which exhibits extremely low variability (see Figure 7), would not 

have the proper illumination for calibration once LDCM achieved its fmal orbit. Anderson et a!. 20 11 [2] 

demonstrated success with the Greenland site so an additional investigation was conducted to 

determine if this site was suitable for the Landsat 8 instruments. 

3.3.1. Greenland 

Greenland exhibits several regions of low variability that indicate that it may be suitable for the side 

slither maneuver. The traditional calibration sites from Section 2.3 that are used for long-term drift 

analysis typically span a fraction of a path/row on the World Reference System 2 (WRS2). Greenland, 

on the other hand, spans several (> 1 0) path/rows. This is preferable for side slither maneuvers as it 

increases the likelihood of imaging a uniform region. 

Perhaps even more intriguing is the wide range of illumination conditions that it experiences 

throughout the year. Figure 14(left) shows the minimum (red squares) and the maximum (green 

triangles) radiance levels (W/m2/sr/micron) for the VNIR bands of Landsat 7 that were observed in the 

over-flight data shown in Figure 14(right). These Landsat 7 data, which were used as input to DIRSIG 

to test the variability introduced by the site, were collected close to the equinox. Interestingly, Landsat 7 

data for the months between April and August were also tested but the data were saturated even though 

ETM+ is set to its low gain setting over Greenland for these months [20]. The purple x's of Figure 14 

show the saturation radiances for Landsat 7 while the blue diamonds show the saturation radiances for 

Landsat 8. These data indicate that Greenland is suitable for characterizing potential nonlinearities in 

the lower to middle regions (and perhaps the middle to higher end) ofOLI's dynamic range. 
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Due to its location with respect to Landsat's orbit, a side s lither can be perfonned over Greenland 

with minimal loss of land imaging for the rest of the path. As is the case with any other site with snow, 

Greenland is not suitable for calibrating SWIR bands, as snow appears dark in the shortwave infrared. 

However, the potential upsides to this site wan anted further analysis. 

Figure 14. Figure illustrating a swath over Greenland (right) that is suitable for the side 

slither maneuver and the con esponcting radiance .levels observed in Landsat image data. 

The red squares show the minimum radiance levels and the green hiangles show the 

maximum radiance levels observed in the Greenland test data. The purple x's show the 

saturation levels for ETM+ while the blue diamonds show the saturation levels for OLI. 
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3.3.2. N iger and a Qualitative Characterization of Suitable Sites 

A second site that was included in this adctitional analysis was the Niger site located at path 189, 

row 046 in the WRS2. This site was included due to its apparent low spatial variability and infrequent 

cloud cover. The iJJclusion of this site, which does not show up as a PICS in the Earth Explorer data, 

raises the question, "What spatial characteristics make a site suitable for the side s.lither maneuver?" 

While a full analysis of this matter was not investigated, Figure 15 offers a qualitative (yet intuitive ly 

satisfying) explanation. 

The four true-color images in Figure 15a show the center 30 km for four PICS used in the 

preliminaty side slither analysis of Section 2.3. These data are grouped together as they represent the 

sites that iJJtroduce the most gain variability in the side slither study. While these sites have been 

historically, and continue to be, suitable for long-term drift analysis due to their invariant nature, they 

inu·oduce excessive gain variability to be used for side slither calibration with instruments exhibiting a 

wide in-track FOV. Recalling the discussion of Section 3.2, the sites of Figure 15a all contain 

signi ficant features in the ten-ain throughout the landscape that will significantly impact gai11 variability. 
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Figure 15. A visual comparison ofthe potential side slither sites tested in this work. (a) shows 

the sites that introduce the most error to the side slither-derived relative gains, (b) shows sites 

that introduce an acceptable error, and (c) shows the sites that introduce the least error. Note 

that sites whose image data resemble system noise introduce insignificant error to the process 

indicating that land featw·es have minimal impact on the sensor-reaching signal. (d) shows 

additional side slither test sites that were chosen based on their visual appeamnce. 

(a) (b) 

187/043 093/112 005/013 189/046 

(c) (d) 
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Figure 15b shows sites that introduced acceptable gain variability to the side slither process. While 

significant features exist in the landscape for these PICS, there are also regions (highlighted by the red 

boxes) that exhibit low spatial variability. The automated process of Section 2.2 finds these low 

variability regions and includes them in the relative gain calculation. 

The two images in Figure 15c show sites from Figure 7 that introduce the least variability. The 

zoom windows show that Libya 1 and the Dome C both contain large regions where the landscape 

resembles system noise. This indicates that the variability in the landscape is not significant enough to 

impact the sensor-reaching signal. Sites of this nature are desirable for the side slither maneuver when 

using a sensor with a wide in-track FOV. Finally, Figure 15d shows a small portion of the Greenland 

and Niger test sites. As shown in the zoom windows, they also exhibit regions that resemble system 

noise, indicating that they will likely introduce variability that is in-line with Libya 1 and the Dome C. 

Although this discussion characterizes uniform sites qualitatively, the methods described by Hu eta!. 

2012 [21] to characterize system noise can be applied directly to develop a quantitative 

characterization of sites suitable for side slither. A qualitative characterization of the sites could 

potentially take the place of the extensive analysis described in Section 2.3 and the next section. 

3.3.3. Site Identification Incorporating OLI's Full FOV 

The experiment described in Section 2.3 was repeated but with the additional sites included and 

with OLI's full FOV incorporated, i.e., Section 2.3 used the center 2 arrays for the sensor model 

whereas this study incorporated all 14 arrays in the sensor model. Landsat 5 radiance data was used as 

input to DIRSIG for all sites save Greenland where Landsat 7 data was used. The results of the gain 

variability introduced by all sites are shown in Figure 16. As expected, Niger, Greenland, and Libya 1 

introduce the least variability to the relative gains (Note that although Greenland replaced the Dome C 

in this study, the Dome Cis the preferred snow site due to its high elevation, small change in elevation, 

and favorable weather conditions [ 17]. 

The results shown in Figure 16 further verify that visual inspection or a simple statistical analysis [21] 

can be used to identify sites suitable for the side slither maneuver (as opposed to the significant 

modeling effort performed in this work). As hypothesized in Figure 15d, both Niger and Greenland 

introduce negligible variability to the side slither-derived relative gains. Figure 16 indicates that 

several sites are suitable for the side slither maneuver if the data are processed carefully. 

3.4. U\·ing Side Slither to Potentially Ident{fy Stray Light 

Early on in the mission, there was convincing evidence that Landsat 8's thermal instrument TIRS 

had a stray light issue. Significant effort has been, and continues to be, made to identifY and remove 

stray light from TIRS image data, see [22] for a full treatment. An interesting find was made during 

the processing of TIRS side slither data collected over the Mediterranean that supports the presence of 

stray light. 
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Figure 16. Results showing the side slither-derived gain variablllty for several of the 

original sites included in Section 2.3 and the additional Niger and Greenland sites. Note 

that the study in Section 2.3 used only the center 2 arrays for the sensor model while this 

study incorporated all 14 anays into its sensor model. 
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Figure 17 shows horizontally con ected Band 11 TIRS side slither data collected from SCA-A (left) 

and SCA-B (center). These two arrays image nearly the same ground-track in side slither mode so the 

images should appear the same other than non-uniformity effects in the instrument. When the two 

images are differenced, however, artifacts due to stray light are present. 

Figure l7(right) shows the resulting image when the two datasets are difTerenced (A-B). As 

expected, residual striping is apparent due to differing non-unifonnity effects in the two arrays. Also, 

the white stripe highlighted by the purple rectangle is a landmass (Cyprus). This landmass is 

approptiately absent in the difference image. The orange circles, however, highlight stray light 

captured by SCA-B as TJRS approaches Cyprus (top circle) and Egypt (bottom circle) in side slither 

mode. Montanaro eta/. 2014 [22] conf1IT11 that the source of the stray light for SCA-B would be over 

land when the stray light appears in the orange circles of Figure l7(tight). 

This find is somewhat discouraging in that it cun ently precludes TIRS side slither data from being 

used to flat-field image data without first applying a stray light preprocessing step. However, there 

may be some value in this data in that it potentially lends insight into the magnitude of the stray light 

on a per-detector basis since each detector should theoretically image the same spot on the ground. 

Using side slither data to derive the magnitude of stray light remains an area of ongoing research. 
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Figure 17. Artifacts due to stray light are present in TIRS band 11 side slither image data. 

(Left) shows horizontally conected SCA-A side slither data, (middle) shows horizontally 

conected SCA-B side slither data, and (right) shows the difference image. Significant artifacts 

exist in the orange circles indicating the presence of stray light. The purple square highl ights a 

landmass (Cyprus) which is appropriately removed in the difference image (right). 

4. Conclusions, Future Work, and Recommendations 

While previous work [1,2] demonstrates the potential to use side slither to flat-field image data for 

sensors with a nan-ow field-of-view, this work uses simulation and modeling to investigate potential 

issues with the maneuver when applied to sensors (such as those onboard Landsat 8) with a wide 

field-of-view. The modeling efforts perfom1ed in this work led to several significant conclusions. 

Section 2.1 shows a proper horizontal conection should be applied to avoid introducing 

low-frequency artifacts into the corrected image data. In Section 2.2, an automated processing 

technique designed to fmd region(s) of lowest variability in the side slither data was introduced. This 

simple method was devised to ensure that the most uniform regions in the data were being used to 

derive relative gains. Sections 2.3 and 3.3 described a methodology that was conceived to identify and 

characterize sites around the globe that may be suitable for the side slither maneuver. 
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In Section 3, potential issues that may arise when imaging in side slither mode were presented. The 

most notable and most likely to negatively impact the data is the concept of "smearing", which occurs 

when arrays are not aligned exactly 90 degrees to significant features in the landscape. There are two 

methods to avoid this unwanted effect; avoid any features by choosing the most uniform regions on 

Earth (see Figure 16) or performing multiple side slithers over a chosen region to align all the arrays 

properly. Failure to employ one of these methods will likely lead to banding in the corrected image 

data, recall Fi.~,Tlife 11(bottom). 

Future modeling efforts to characterize the utility of the calibration sites presented here for side 

slither calibration will focus on the incorporation of BRDF effects. All studies performed in this work 

used existing Landsat data or simulated data with Lambertian materials (e.g., the Libya 4 scene in 

Figure 10). Although the effects due to the terrain (and in some cases the relevant atmospheric paths) 

were present in the simulations performed in this work, the impact of material BRDFs on side slither 

calibration was not conducted. Recent enhancements to the DIRSIG model, however, have made the 

incorporation of BRDF effects possible for the large-scale landscapes required for a comprehensive 

analysis of the side slither maneuver. 

Much of the work presented here has been recommended to, and employed by, the Landsat 

Calibration and Validation team. Several side slither maneuvers were conducted during the 

commissioning phase of Landsat 8, including successful maneuvers over Niger and Greenland. The 

side slither maneuver continues to be part of normal operations where once a quarter, the maneuver is 

performed over the most suitable available sites from Figure 16. 
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