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Abstract:	 Wetlands	 are	 thought	 to	 be	 the	 major	 contributor	 to	 interannual	
variability	in	the	growth	rate	of	atmospheric	methane	(CH4)	with	anomalies	driven	
by	 the	 influence	 of	 the	 El	 Niño-Southern	 Oscillation	 (ENSO).	 However,	 it	 remains	
unclear	whether	the	increase	in	total	global	CH4	emissions	during	El	Niño	versus	La	
Niña	 events	 is	 from	 wetlands	 and	 how	 large	 the	 contribution	 of	 wetland	 CH4	
emissions	 is	 to	 the	 interannual	 variability	 of	 atmospheric	 CH4.	 Here,	 we	 use	 a	
terrestrial	 ecosystem	 model	 that	 includes	 permafrost	 and	 wetland	 dynamics	 to	
estimate	CH4	emissions,	forced	by	three	separate	meteorological	reanalyses	and	one	
gridded	observational	climate	dataset,	to	simulate	the	spatio-temporal	dynamics	of	
wetland	CH4	 emissions	 from	1980-2016.	 The	 results	 show	 that,	 although	wetland	
CH4	responds	to	El	Niño	events	with	negative	anomalies	during	the	El	Niño	periods,	
the	 instantaneous	 growth	 rate	 of	 wetland	 CH4	 emissions	 exhibits	 complex	 phase	
dynamics.	All	of	our	simulations	suggest	that	a	record-high	wetland	CH4	growth	rate	
was	reached	in	the	beginning	of	the	2015-2016	El	Niño	event.	We	also	find	evidence	
for	 a	 step	 increase	 of	 CH4	 emissions	 by	 7.8±1.6	 Tg	 CH4	 yr-1	 during	 2007-2014	
compared	 to	 the	 average	 of	 2000-2006	 from	 simulations	 using	 meteorological	
reanalyses,	which	 is	 equivalent	 to	 a	~3.5	ppb	 yr-1	 rise	 in	CH4	 concentrations.	 The	
step	increase	is	mainly	caused	by	the	expansion	of	wetland	area	in	the	tropics	(30°S-
30°N)	due	 to	an	enhancement	of	 tropical	precipitation	as	 indicated	by	 the	suite	of	
the	meteorological	reanalyses.	Our	study	highlights	the	role	of	wetlands	 in	driving	
the	variability	and	trends	of	atmospheric	CH4	concentrations	and	stresses	the	need	
to	 account	 for	 uncertainty	 in	 climate	 forcings	 in	 addressing	 the	 interannual	
variability	and	decadal-scale	trends	of	wetland	CH4	fluxes.	
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Introduction	
	
Methane	 (CH4)	 is	 a	 potent	 greenhouse	 gas	 contributing	 to	 about	 20%	 of	 the	
warming	 induced	by	 long-lived	greenhouse	gases	since	pre-industrial	 times	(IPCC,	
2013).	Atmospheric	CH4	concentrations	have	risen	from	preindustrial	levels	of	715	
parts	per	billion	(ppb)	since	the	1800s	(Etheridge	et	al.,	1998;	MacFarling	Meure	et	
al.,	 2006)	 to	 current	 global	 concentration	 of	 ~1847	 ppb,	 a	 2.5-fold	 increase,	
primarily	 driven	by	 anthropogenic	 activities	 (Kirschke	et	al.,	 2013),	 e.g.	 fossil	 fuel	
activities,	 agriculture,	 and	 also	 by	 the	 biogeochemical	 feedbacks	 of	 natural	
processes	 to	 climate	 change	 (Arneth	 et	 al.,	 2010;	 Tian	 et	 al.,	 2016;	 Saunois	 et	 al.,	
2016).	 However,	 the	 variability	 in	 the	 annual	 growth	 rate	 of	 atmospheric	 CH4	 is	
considered	 to	be	strongly	associated	with	 the	response	of	biogenic	CH4	sources	 to	
climate	 variability,	 in	 which	 global	 wetlands	 contributes	 60-80%	 of	 biogenic	
emissions	during	the	past	(Quiquet	et	al.,	2015;	Hopcroft	et	al.,	2017)	and	likely	into	
the	projected	future	(Zhang	et	al.,	2017b).	Thus,	the	growth	rate	of	atmospheric	CH4	
is	 largely	affected	by	the	response	of	global	wetland	CH4	emissions	to	 the	year-to-
year	mode	of	global	climate	variability	like	the	El	Niño-Southern	Oscillation	(ENSO),	
one	of	the	largest	climate	phenomena	that	drives	carbon	fluxes	and	their	anomalies	
across	large	portions	of	the	globe	(Chatterjee	et	al.,	2017).	
	
El	Niño,	 the	positive	phase	of	ENSO,	 influences	 the	hydrologic	and	carbon	cycle	of	
tropical	 terrestrial	ecosystems	through	a	change	 in	atmospheric	pressure	patterns	
and	sea	surface	temperatures	that	induce	strong	warming	and	reduced	precipitation	
patterns	 by	 shifting	 the	 Intertropical	 Convergence	 Zone	 southward,	 causing	
amplified	wildfires	(Worden	et	al.,	2013)	and	reduced	wetland	areal	extent	and	CH4	
emissions	(Hodson	et	al.,	2011).	Tropical	wetlands,	which	contribute	50-70%	of	the	
global	 wetland	 CH4	 emissions	 (Bousquet	 et	 al.,	 2006),	 are	 largely	 affected	 by	 the	
periodic	 variations	 of	 air	 temperature	 and	 precipitation	 induced	 by	 ENSO	 phases	
(Pison	et	al.,	2013).	However,	 in	contrast	to	the	findings	 from	forward	models,	e.g.	
terrestrial	 biogeochemical	models,	which	 suggest	 that	 tropical	 and	global	wetland	
CH4	 emissions	 are	 usually	 found	 to	 decrease	 during	 El	Niño	 (Hodson	 et	al.,	 2011;	
Zhu	 et	al.,	 2017;	 Ringeval	 et	al.,	 2014),	 atmospheric	measurements	 show	 that	 the	
growth	rate	of	global	CH4	concentration	can	rise	during	strong	El	Niño	years	(Nisbet	
et	 al.,	 2016).	 In	 addition,	 the	 link	 between	 the	 annual	 CH4	 growth	 rate	 and	 the	
variability	 in	 global	 wetland	 CH4	 emissions	 has	 been	 challenged	 by	 the	 observed	
pause	 in	 the	 growth	 during	 2000-2006,	 but	 following	 which,	 in	 2007,	 a	 strong	
growth	 rate	 resumed	 (Nisbet	 et	 al.,	 2014).	 Recent	 studies	 suggest	 that	 global	
wetlands	played	a	limited	role	during	the	renewed	rise	through	2012	(Poulter	et	al.,	
2017;	 Turner	 et	 al.,	 2017;	 Rigby	 et	 al.,	 2017).	 Meanwhile,	 isotopic	measurements	
appear	 to	 indicate	 that	 the	 resumed	 increase	 in	 the	 growth	 rate	 rather	 originates	
from	biogenic	sources	than	from	fossil-fuels	(Schwietzke	et	al.,	2016),	suggesting	an	
increased	influence	of	tropical	wetlands	(Nisbet	et	al.,	2016)	or	agricultural	sources	
(Schaefer	et	al.,	2016).	This	calls	for	revisiting	the	role	of	teleconnections,	and	their	
timing,	on	wetlands	and	land-atmosphere	CH4	fluxes	to	help	reconcile	top-down	and	
bottom-up	methodologies.	
	



Previous	extreme	El	Niño	events,	 in	years	1982-1983,	1997-1998,	and	2015-2016,	
had	significant	impacts	on	terrestrial	ecosystems	and	are	considered	key	drivers	of	
the	atmospheric	CO2	growth	rate	variability	(Liu	et	al.,	2017).	It	has	been	reported	
that	 the	 latest	 El	 Niño	 event	 (2015-2016)	 was	 one	 of	 the	 strongest	 on	 record,	
causing	unprecedented	warming	and	extreme	droughts	over	most	of	the	Amazonia	
regions	 (Jiménez-Muñoz	 et	 al.,	 2016;	 L’Heureux	 et	 al.,	 2016;	 Lim	 et	 al.,	 2017;	
Chatterjee	 et	 al.,	 2017).	 The	 occurrence	 of	 this	 extreme	 El	 Niño	 event	 severely	
disrupted	 regional	 ecosystems,	 causing	 sharp	 increases	 in	 atmospheric	 CO2	
concentrations	 (Betts	 et	 al.,	 2016)	 and	 a	 doubling	 of	 fire-induced	 emissions	 in	
Southeast	Asia	(Whitburn	et	al.,	2016).	El	Niño	may	have	also	contributed	to	record	
warming	during	2015	and	the	first	third	of	2016,	at	0.98°C	above	the	20th	century	
mean	monthly	average	(http://www.ncdc.noaa.gov/sotc/global/201613,	last	access	
at	 August	 2017).	 Exactly	 how	 much	 the	 2015-2016	 ENSO	 phenomenon	 has	
impacted	global	wetland	CH4	emissions	and	to	what	extent	it	has	affected	the	annual	
growth	rate	of	atmospheric	CH4	concentration	remains	unknown	due	to	challenges	
in	monitoring	and	modeling.	
	
Here,	we	 analyze	 the	 relationship	 between	 ENSO	phases	 and	 annual	wetland	 CH4	
emissions	by	addressing	two	main	questions.	First,	how	does	ENSO,	with	particular	
attention	to	the	ENSO	event	in	2015-2016,	affect	the	interannual	variability	of	CH4	
emissions	 from	 global	 wetlands?	 	 Second,	 what	 is	 the	 relationship	 between	 the	
interannual	variability	of	the	growth	in	atmospheric	CH4	and	wetland	CH4	emissions	
over	 the	 recent	 decade,	 and	what	 are	 the	major	mechanisms	 linking	wetland	CH4	
emissions	to	the	increases	since	2007?	
	
	
Methods	
	
We	use	a	process-based	ecosystem	model	LPJ-wsl	(Lund-Potsdam-Jena	model,	WSL	
version)	 forced	with	 four	 different	 atmospheric	 forcings	 to	 simulate	wetland	 CH4	
emissions	from	1980	to	2016.	The	four	climate	products	include	one	station-based	
monthly	 geo-interpolation	 dataset	 (CRU)	 and	 three	 meteorological	 reanalyses	
products.	 The	 reason	 for	 using	multiple	 forcings	 is	 to	 investigate	 the	 uncertainty	
from	 meteorological	 forcings	 in	 driving	 the	 simulated	 atmospheric	 CH4	
concentrations,	and	hence	to	better	characterizes	the	CH4	variations	in	response	to	
climate	variability.		
	
LPJ-wsl	 (Poulter	 et	al.,	 2011)	 is	 a	 process-based	 dynamic	 global	 vegetation	model	
(DGVM)	developed	for	studying	terrestrial	ecosystems,	which	is	based	on	an	earlier	
LPJ	 core	model	 (Sitch	et	al.,	 2003).	The	version	of	 the	model	applied	 in	 this	 study	
includes	 a	 new	 hydrologic	 model	 TOPMODEL	 to	 determine	 wetland	 area	 and	 its	
inter-	 and	 intra-annual	 dynamics	 (Zhang	 et	 al.,	 2016),	 a	 permafrost	 and	 dynamic	
snow	model	 (Wania	 et	 al.,	 2009),	 and	 a	 prognostic	 wetland	 CH4	 emission	 model	
(Hodson	 et	 al.,	 2011),	 each	 of	 which	 is	 incorporated	 into	 the	 LPJ-wsl	 framework	
with	consideration	of	the	effects	of	snow	and	freeze/thaw	cycles	on	CH4	emissions	
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(Zhang	et	al.,	2016).	The	estimation	of	CH4	emissions	is	based	on	an	empirical	model	
that	considers	soil	respiration,	inundated	area,	and	a	temperature-based	ecosystem	
emission	efficiency	 (Christensen	et	al.,	 1996).	The	 simulated	variations	 in	wetland	
areas	 and	 CH4	 emissions	 have	 been	 evaluated	 against	 large-scale	 observations	 in	
previous	studies	(Hodson	et	al.,	2011;	Zhang	et	al.,	2016;	Zhang	et	al.,	2017b).	Here,	
we	 calibrated	 temperature-modified	 CH4	 emitting	 factors	 by	 scaling	 simulated	
global	 estimates	 to	match	172	Tg	CH4	 yr-1	 in	 2004,	which	was	 estimated	 from	an	
independent	 atmospheric	 inversion	 study	 (Spahni	 et	 al.,	 2011),	 and	 in	 agreement	
with	 independent	 satellite-based	methods	 from	Bloom	et	al.	 (2010).	We	 improved	
inundation	 estimates	 by	 calibrating	 the	 TOPMODEL	 parameter	 ‘maximum	
inundation	 potential’	 (Fmax)	 (Zhang	 et	 al.,	 2016)	 using	 an	 independent	 inundation	
dataset	(Poulter	et	al.,	2017)	that	was	derived	from	a	satellite-based	Surface	Water	
Microwave	Product	Series	(SWAMPS)	(Schroeder	et	al.,	2015)	and	inventory-based	
dataset	Global	 Lakes	 and	Wetlands	Database	 (GLWD)	 (Lehner	 and	Döll,	 2004),	 as	
well	as	from	a	regional	wetland	map	derived	from	satellite	retrievals	for	Amazonia	
(Hess	et	al.,	2015).	To	avoid	confusion	regarding	double	counting	(Thornton	et	al.,	
2016),	we	clarify	that	in	this	study	simulated	wetland	area	explicitly	includes	both	
permanently	inundated	vegetated	wetlands	and	seasonally	inundated	wetlands,	e.g.	
floodplains,	 but	 excludes	 reservoirs,	 large	 and	 small	 lakes	 and	 rivers,	 as	 well	 as	
coastal	wetlands	that	are	defined	and	constrained	by	GLWD,	and	rice	agriculture.		
	
The	climate	datasets	included	the	monthly	meteorology	from	the	Climate	Research	
Unit	 (CRU)	 TS	 3.25	 (Harris	 et	 al.,	 2014),	 three	 state-of-the-art	 metrological	
reanalysis	 products,	 including	 1-hourly	 reanalysis	 Modern-Era	 Retrospective	
analysis	 for	 Research	 and	 Applications	 Version	 2	 (MERRA2)	 (Gelaro	 et	 al.,	 2017)	
from	 the	 NASA	 Global	 Modeling	 and	 Assimilation	 Office	 (GMAO),	 6-hourly	 ERA-
Interim	 (ERA-I)	 (Dee	 et	 al.,	 2011)	 from	 the	 European	 Centre	 for	 Medium-Range	
Weather	 Forecasts	 (ECMWF)	 data	 assimilation	 system	 and	 6-hourly	 Japanese	 55-
year	 Reanalysis	 (JRA-55)	 (Kobayashi	 et	 al.,	 2015)	 from	 the	 Japan	 Meteorological	
Agency	(JMA).	To	generate	these	three	forcing	datasets,	four	output	products	(total	
precipitation,	 2m	 air	 temperature,	 downward	 shortwave	 radiation,	 and	 surface	
longwave	 radiation)	 were	 aggregated	 to	 a	 daily	 time-step	 and	 downscaled	 to	 a	
common	 0.5°	 spatial	 resolution	 grid	 using	 bilinear	 interpolation	 to	 match	 the	
gridded	soils	input.	For	the	monthly	CRU	data,	LPJ-wsl	was	set	up	to	use	a	wet-day	
frequency	 dataset,	 a	 weather	 generator	 (Geng	 et	 al.,	 1986)	 to	 generate	 daily	
precipitations,	and	a	set	of	simplified	equations	with	monthly	cloud	cover	as	input	
to	calculate	mid-month	daily	photosynthetically	active	radiation	 flux	and	potential	
evapotranspiration	 (Prentice	et	al.,	 1993).	Additional	details	of	 the	 climate	 forcing	
datasets	and	model	experiments	are	in	Supplementary	Material	(Table	S1).	The	LPJ-
wsl	 state	 variables	 (i.e.,	 carbon	 in	 vegetation,	 litter,	 and	 soils)	 were	 simulated	 to	
reach	equilibrium	by	using	a	1000-year	spinup,	with	fire	dynamics,	and	a	398-year	
spinup	for	 land	use	change	using	Land-Use	Harmonization	dataset	(LUHv2)	(Hurtt	
et	 al.).	 After	 equilibrium,	 a	 transient	 simulation	 with	 fire	 effects	 included	 was	
performed	 for	 the	 years	 1901-2016	 (for	 CRU)	 and	 1980-2016	 (for	 reanalysis),	
forced	 with	 changing	 climate	 conditions	 as	 prescribed.	 For	 the	 reanalysis	



simulations,	CO2	concentrations	were	gradually	increased	starting	from	the	spinup	
and	recycling	the	meteorological	information.	
	
We	 used	 the	 Multivariate	 ENSO	 index	 (MEI)	 for	 representing	 the	 ENSO	 strength	
(Wolter	and	Timlin,	1998).	The	MEI	 index	represents	 the	 first	unrotated	principal	
component	 of	 the	 combined,	 normalized	 fields	 of	 the	 primary	 climate	 variables	
observed	 over	 the	 tropical	 Pacific,	 reflecting	 a	 global	 signal	 of	 climate-land-
atmosphere	interaction	for	both	El	Niño	and	La	Niña	events;	Given	that	studies	on	
progressions	of	carbon	fluxes	during	El	Niño	(Yuanyuan	et	al.,	2017;	Liu	et	al.,	2017)	
have	shown	a	hysteresis	in	the	Earth	system’s	response	to	changes	in	temperature	
and	precipitation	patterns,	we	 carried	 out	 a	 cross-correlation	 analysis	 to	 examine	
possible	time-lag	effects	of	wetland	CH4	response	to	El	Niño	events.		
	
To	 test	 whether	 annual	 wetland	 anomalies	 contributed	 to	 the	 growth	 rate	 of	
atmospheric	 CH4,	 we	 compared	 our	 results	 against	 the	 annual	 mean	 global	 CH4	
growth	rate	and	monthly	CH4	trend	derived	from	NOAA/ESRL	(Dlugokencky	et	al.,	
1994).	We	 then	used	 the	 first	derivative	of	 spline-smoothed	monthly	wetland	CH4	
anomalies	 as	 a	 metric	 for	 quantifying	 the	 growth	 rate	 of	 month	 wetland	 CH4	
emissions.	The	time	series	of	CH4	concentration	measurements,	derived	from	NOAA	
cooperative	 air	 sampling	 network,	 were	 processed	 with	 a	 curve	 fitting	 method	
(Thoning	et	al.,	1989)	that	decomposes	the	full	signal	into	a	long-term	growth	rate	
fit	by	a	polynomial	function,	seasonal	oscillations	by	a	harmonic	function	and	a	low	
pass	 digital	 filter	 to	 retain	 interannual	 and	 short-term	 variations.	 From	 the	
decomposed	signal,	we	derived	 the	component	 signals	 such	as	 trend,	growth	rate,	
and	 annual	 amplitude.	 The	 CH4	 amplitude	 of	 the	 seasonal	 cycle	 from	Mauna	 Loa	
surface	site	(MLO:	19.53°N,	155.58°W)	in	NOAA/ESRL	was	applied	to	the	analysis	as	
a	 reflection	 of	 the	 strength	 of	 CH4	 seasonality,	which	 is	mainly	 controlled	 by	 CH4	
uptake	 and	 release	 processes	 of	 the	 land	 biosphere.	 Given	 that	 the	 wetlands	
contribute	 to	 the	 largest	 portion	 of	 natural	 CH4	 sources	 and	 the	 interannual	
variability	of	the	major	CH4	sink,	hydroxyl	radical	(OH)	is	relatively	small	(Montzka	
et	al.,	2011),	the	changing	trends	in	CH4	amplitude	consequently	imply	that	they	are	
largely	affected	by	changing	CH4	dynamics	in	the	wetland	ecosystems.	We	compared	
the	observed	MLO	CH4	amplitude	with	simulated	wetland	CH4	amplitude,	which	 is	
calculated	 as	 the	 difference	 between	 maxima	 and	 minima	 in	 spline-smoothed	
monthly	 wetland	 CH4	 anomalies	 within	 one	 year,	 to	 test	 whether	 the	 simulated	
shifting	patterns	of	wetland	CH4	dynamics	is	consistent	with	observations.	
	
For	 evaluation	 of	wetland	 areal	 changes	we	 used	 terrestrial	water	 storage	 (TWS)	
anomalies,	 observed	 by	 the	 Gravity	 Recovery	 and	 Climate	 Experiment	 (GRACE)	
satellite	measurement,	as	a	proxy	for	groundwater	storage	and	surface	 inundation	
(Bloom	et	al.,	2012;	Boening	et	al.,	2012).	We	used	Level-3	monthly	solutions	from	
Geo	Forschung	Zentrum	 (GFZ),	 the	University	 of	Texas	Center	 for	 Space	Research	
(CSR),	and	the	Jet	Propulsion	Laboratory	(JPL)	from	April	2002	to	December	2016	
to	analyze	the	time	variations	of	the	water	mass	changes	in	the	tropics.	The	monthly	
TWS	 was	 multiplied	 by	 a	 spatial	 grid	 of	 scaling	 coefficients	 derived	 from	 post-
processing	 of	 GRACE	 observations	 (Landerer	 and	 Swenson,	 2012)	 to	 restore	 the	



signals	 attenuated	 in	 the	 processing	 at	 small	 spatial	 scales.	 Given	 the	 ensemble	
mean	was	 the	most	 effective	 in	 reducing	 the	 noise	 in	 the	 gravity	 fields	 solutions	
(Sakumura	et	al.,	2014),	we	applied	the	ensemble	mean	of	monthly	TWS	from	three	
different	products	in	the	analysis.	
	
Results	and	Discussion	
	
Long-term	response	of	wetland	CH4	to	ENSO	
	
The	ensemble	climate	simulations	indicate	a	strong	link	between	ENSO	and	wetland	
CH4	emissions,	with	higher	emissions	during	La	Niña	and	lower	emissions	during	El	
Niño	 (Figure	 1a).	We	 find	 a	 significant	 negative	 correlation	 (d.f.	 =	 443,	 p	 <	 0.01)	
between	the	ENSO	MEI	index	and	monthly	wetland	CH4	anomalies,	regardless	of	the	
climate	 data	 used	 in	 the	 simulations.	 This	 is	 consistent	 with	 the	 findings	 from	
bottom-up	modeling	estimates	 (Hodson	et	al.,	 2011;	McNorton	et	al.,	 2016;	Zhu	et	
al.,	 2017),	 atmospheric	 modeling	 (Pison	 et	 al.,	 2013;	 Chen	 and	 Prinn,	 2006)	 and	
satellite	 observations.	 For	 example,	 the	 atmospheric	 CH4	 observations	 from	 the	
Infrared	 Atmospheric	 Sounding	 Interferometer	 (IASI)	 aboard	 METOP	 and	 the	
Atmospheric	 Infrared	 Sounder	 (AIRS)	 aboard	 NASA’s	 Aqua	 satellite	 also	 suggest	
similar	findings	in	that	column-averaged	dry-air	mole	fractions	of	CH4	(XCH4)	show	
higher	increase	in	2007-2008	and	2010-2011	when	strong	La	Niña	events	occurred	
(Xiong	et	al.,	2016).	Airborne-based	estimates	of	 the	 interannual	variability	of	CH4	
fluxes	 for	 eastern	 Amazon	 Basin	 also	 provides	 ancillary	 evidence	 that	 the	 CH4	
emissions	are	greatest	in	2008,	a	year	of	La	Niña	phase	(Basso	et	al.,	2016).	Recent	
satellite	observations	from	the	Greenhouse	gases	Observing	SATellite	(GOSAT)	also	
suggest	large-scale	fluctuations	in	atmospheric	CH4	during	ENSO	events,	 indicating	
that	wetland	CH4	emissions	are	~5%	higher	during	La	Niña	events	 (Pandey	et	al.,	
2017).	 The	 increase	 in	 CH4	 emissions	 from	 wetlands	 during	 La	 Niña	 can	 be	
attributed	predominantly	to	a	large	increase	in	flood	extents,	primarily	over	tropical	
areas	 (including	 SE	 Australia,	 northern	 South	 America,	 and	 Southeast	 Asia)	
(Boening	 et	 al.,	 2012),	 whereas	 the	 decreases	 during	 El	 Niño	 are	 possibly	 due	 to	
drought-induced	 shrinking	 of	 flooded	 areas.	 All	 of	 the	 evidence	 above	 suggests	 a	
robust	 negative	 relationship	 between	 anomalies	 of	 wetland	 CH4	 emissions	 and	
ENSO	events,	i.e.,	positive	anomalies	during	La	Niña	and	vice	versa.	
	
However,	negative	anomalies	of	wetland	CH4	emissions	do	not	necessarily	lead	to	a	
decrease	in	the	growth	rate	of	wetland	CH4	emissions	during	El	Niño.	We	find	that	
the	growth	rate	of	wetland	CH4	emissions	is	in	a	rising	phase	during	strong	El	Niño	
events	with	the	amplitudes	of	the	growth	rate	varied,	with	the	strength	dependent	
on	which	meteorological	 forcing	was	 used	 in	 the	 simulations	 (Figure	 1b).	 This	 is	
mainly	 because	 strong	 El	 Niño	 events	 exhibit	 negative	 CH4	 growth	 rates	 at	 the	
beginning	 of	 the	 ENSO	 anomaly,	 but	 then	 the	 growth	 rate	 rapidly	 recovers	 to	
positive	 values.	 Despite	 that	 the	 largely	 decreased	 inundations	 caused	 declines	 in	
CH4	 emissions	 at	 the	 beginning	 of	 strong	 El	 Niño	 phases,	 the	 extremely	 high	
temperatures	over	the	tropics	strongly	increase	the	CH4	growth	rate	due	to	higher	



soil	 decomposition	 rates.	 Cross-correlation	 analyses	 between	 the	monthly	 growth	
rate	of	wetland	CH4	emissions	and	the	MEI	index	suggest	that	the	peak	correlation	
occurs	at	a	3-month	lag	(when	ENSO	leads	ΔCH4/Δt)	for	the	globe.	As	expected,	the	
timing	 of	 wetland	 response	 to	 ENSO	 varies	 regionally,	 where	 Tropical	 Asia	 and	
Tropical	South	America	exhibit	a	~4	month	lag	and	no	lag,	respectively	(Figure	S1).	
The	 IAV	 of	wetland	 CH4	 emissions	 is	 dominated	 by	 the	 Tropics	 (30°S-30°N)	with	
relatively	 small	 contributions	 from	 the	 Northern	 Hemisphere	 (Figures	 1c,	 1d).	
MERRA2	 showed	 the	 highest	 IAV	 among	 all	 four	 simulations,	 whereas	 the	 CRU-
based	simulation	had	the	lowest	IAV.	The	rise	of	wetland	CH4	emission	growth	rate	
is	 consistent	 with	 the	 observed	 spikes	 of	 atmospheric	 CH4	 growth	 rates	 during	
strong	El	Niño	events	(Dlugokencky	et	al.,	1998).	
	
Impact	of	2015-2016	El	Niño	on	wetland	CH4	
	
Annual	growth	in	CH4	emissions	from	global	wetlands	during	the	2015-2016	El	Niño	
surpassed	any	growth	rate	previously	observed,	including	the	growth	rate	observed	
during	 two	 strong	 El	 Niño	 events,	 in	 1982-1983	 and	 1997-1998.	 Our	 simulations	
captured	 the	 magnitude	 of	 this	 large	 increase	 in	 wetland	 CH4	 emissions	 with	 an	
instantaneous	growth	rate	of	~7.6±1.6	Tg	CH4	yr-1	during	2015-2016	El	Niño.	The	
meteorological	datasets	drove	instantaneous	growth	rates	that	ranged	between	9.2	
Tg	CH4	month-1,	8.6	Tg	CH4	yr-1,	7.2	Tg	CH4	yr-1,	and	5.5	Tg	CH4	yr-1	using	MERRA2,	
JRA-55,	CRU,	 and	ERA-I,	 respectively.	Although	 the	2015-2016	El	Niño	was	not	 as	
strong	as	the	1997-1998	El	Niño	according	to	the	MEI	index	(~3	in	1997-1998	and	
~2.5	 in	 2015-2016),	 the	 combined	 effect	 of	 rising	 CO2	 concentrations	 and	 high	
temperatures	 most	 likely	 amplified	 the	 impact,	 causing	 1.8	 times	 the	 maximum	
growth	rate	of	CH4	of	the	1997-1998	El	Niño	event	(mean	growth	rate	of	~4.2±1.4	
Tg	CH4	yr-1	for	the	respective	time	period).		
	
The	 spatial	 distribution	 of	 wetland	 CH4	 anomalies	 demonstrated	 that	 the	 large	
increases	in	soil	respiration	drove	the	strong	growth	rate	and	occurred	during	the	
March-April-May	(MAM)	season	in	2016	as	a	consequence	of	warming	and	droughts	
in	 this	 summer	 (October	 2015	 -	 May	 2016)	 (Figure	 2).	 There	 was	 a	 widespread	
increase	 in	 CH4	 emissions	 over	western	Amazonia,	mainly	 attributed	 to	 increased	
soil	respiration	resulting	from	drought-induced	mortality.	Despite	a	large	decline	in	
wetland	extent	due	to	severe	drought,	significant	positive	anomalies	in	CH4	emission	
peaked	 across	 the	 western	 Amazonian	 basin,	 likely	 due	 to	 high	 temperatures.	 A	
number	of	studies	reported	that	hot	and	dry	conditions	during	El	Niño	caused	tree	
mortality	 and	 declines	 in	 biomass	 growth	 and	 resulted	 in	 increased	 litter	 and	
carbon	release	(Jones	and	Cox,	2005;	Keeling	et	al.,	1995),	which	is	consistent	with	
LPJ-wsl	simulated	results.	Temperature	is	the	primary	climatic	variable	driving	the	
long-term	 trend	 and	 resulting	 increase	 in	 CH4	 emissions	 (Zhang	 et	 al.,	 2017b).	
However,	 precipitation	 is	 the	 dominant	 climatic	 variable	 regulating	 interannual	
variability	in	CH4	emissions	by	altering	the	inundation	extent	and	creating	anaerobic	
conditions	 suitable	 for	 methanogenesis	 in	 the	 tropics	 (Zhang	 et	 al.,	 2017b).	 In	
addition,	 the	 higher	 CO2	 concentrations	 in	 2016	 compared	 to	 levels	 during	 the	
1997-1998	El	Niño	have	enhanced	the	impact	of	temperature	on	CH4	IAV	through	a	



positive	feedback	on	primary	production	from	CO2	fertilization	effects.	This	has	led	
to	 increased	 soil	 carbon	 substrate	 availability	 for	 microbial	 decomposition	 and	 a	
positive	 feedback	 is	 therefore	modeled	 in	LPJ-wsl	 and	 in	most	of	 the	 land	 surface	
models	(Wania	et	al.,	2013).	
	
Wetland	CH4	trends	between	2000-2006	and	post-2007	
	
Using	 the	meteorological	 reanalysis	 data,	 we	 find	 evidence	 for	 a	 step	 increase	 in	
global	annual	wetland	emissions	between	the	periods	of	2007-2014	relative	to	that	
of	 2000-2006	 (Figure	3a).	 These	 simulations	 suggest	 that	 the	 average	 annual	 CH4	
emissions	 from	 2007-2014	 increased	 by	 ~7.8±1.6	 Tg	 CH4	 yr-1	 compared	 to	 the	
average	of	2000-2006,	which	is	equivalent	to	an	increase	in	the	growth	rate	of	up	to	
~	3.5	ppb	CH4	yr-1	for	the	post-2007	period,	or	about	half	of	the	observed	increase	in	
concentrations.	 Interestingly,	 CRU-based	 simulation	 in	 this	 study	 did	 not	 show	 a	
strong	 step-increase	 between	 these	 two	 periods,	 suggesting	 an	 insignificant	
contribution	 only	 from	wetlands	with	 a	 1.5	Tg	CH4	 yr-1	 increase	 in	 the	 post-2007	
resume	of	 the	 growth	 rate.	 This	 is	 consistent	with	 the	 findings	 from	an	 ensemble	
modeling	 experiment	 using	 CRU	 as	 forcing	 dataset,	 which	 did	 not	 result	 in	 a	
significant	 increase	 of	 global	 wetland	 CH4	 emissions	 to	 the	 period	 of	 renewed	
atmospheric	 CH4	 growth	 (Poulter	 et	 al.,	 2017).	 Another	 recent	 atmospheric	
modeling	study,	also	using	CRU	as	forcing	for	their	prior	inputs,	suggested	likewise	
that	 wetlands	 made	 only	 a	 small	 contribution	 to	 the	 post-2007	 growth	 with	
~1ppb/yr	 (McNorton	 et	 al.,	 2016).	 In	 contrast,	 all	 our	 simulations	 using	
meteorological	 reanalysis	 data	 suggest	 that	more	 than	90%	of	 the	 increase	 in	 the	
growth	rate	of	wetland	CH4	is	from	the	Tropics	(Table	2),	mainly	due	to	increases	in	
precipitation	 across	 the	 South	 America,	 Tropical	 Africa,	 and	 Southeast	 Asia	 since	
2007.	 MERRA2-based	 simulations	 suggest	 that	 the	 post-2007	 rise	 in	 global	 CH4	
concentrations	primarily	 comes	 from	South	America	 and	Tropical	Africa,	whereas	
ERA-I	 and	 JRA-55	 identify	 South	 America	 as	 the	 largest	 contributor	 to	 the	 CH4	
growth	rate	(Figure	S2).	
	
The	different	 IAV	patterns	of	CH4	emissions	among	 these	simulations	suggest	 that	
the	uncertainties	in	climate	drivers	in	estimation	of	CH4	emissions	(Figure	3a).	The	
model	 experiments	 demonstrated	 that	 the	 discrepancy	 is	 mainly	 from	 different	
model	 behavior	when	using	products	 like	CRU	and	meteorological	 reanalyses	 like	
MERRA2,	ERA-I,	and	JRA-55,	regardless	of	the	temporal	resolution	of	climate	inputs	
used	(Figure	S3).	We	found	only	minor	differences	between	using	daily	and	monthly	
temporal	resolution,	which	likely	reduced	uncertainties	from	applying	the	weather	
generator	and	 thus	show	that	 the	weather	generator	covered	 the	 internal	climatic	
variability	 at	monthly	 scale.	 The	 importance	 of	 considering	uncertainty	 of	 climate	
forcing	 was	 also	 reflected	 in	 the	 representation	 of	 the	 seasonal	 cycle	 of	 CH4	
emissions.	The	comparison	of	simulated	CH4	emissions	with	independent	estimates	
using	an	atmospheric	model	STILT	based	on	CARVE	airborne	experiments	(Zona	et	
al.,	2016)	suggested	a	dominant	role	of	climate	forcings	in	capturing	CH4	seasonality	
in	arctic	regions	(Figure	3b).	MERRA2,	ERA-Interim,	and	JRA-55	underestimated	the	
peak	CH4	emission	in	growing	season	but	were	able	to	capture	the	general	seasonal	



cycle	 in	 CH4	 emissions	 for	 the	 North	 Slope	 of	 Alaska,	 while	 CRU-based	 estimates	
failed	to	reproduce	a	similar	pattern.	The	seasonal	cycle	of	CH4	emissions	was	also	
generally	underestimated	by	most	bottom-up	models	that	used	CRU	climate	data	in	
a	 synthesis	 modeling	 experiment	 (Melton	 et	 al.,	 2013),	 highlighting	 the	 need	 to	
better	 constrain	 the	 CH4	 emissions	 by	 taking	 into	 account	 several	 datasets	 that	
represent	climate	forcing	uncertainty.		
	
Sensitivity	of	wetland	CH4	emissions	to	ENSO	
	
To	 further	 investigate	 whether	 the	 influence	 of	 ENSO	 on	 global	 wetland	 CH4	
fluctuation	 was	 strengthening,	 we	 evaluated	 the	 average	 sensitivity	 of	 simulated	
wetland	 CH4	 emissions	 and	 wetland	 areas	 in	 the	 tropics	 to	 ENSO	 events	 by	
calculating	 the	 ratio	 of	 the	 annual	 anomaly	 of	 CH4	 emission/wetland	 area	 to	 the	
annual	 MEI	 index	 for	 three	 different	 time	 periods,	 1980-1999,	 2000-2006,	 and	
2007-2016	 (Figure	 4).	 We	 observed	 a	 minor	 change	 in	 the	 sensitivity	 of	 CH4	
emissions	and	wetland	areas	between	1980-1999	and	2000-2006,	which	suggest	a	
dampened	 feedback	 of	 global	 wetland	 CH4	 emissions	 to	 increasing	 global	
temperatures.	 However,	 the	 sensitivity	 became	 enhancing	 post-2007.	 The	
sensitivity	 of	 the	modeled	 results	was	 strongly	 increased	 for	 the	 period	 of	 2007-
2016	relative	to	the	two	previous	time	periods.	The	sensitivity	in	CH4	emissions	was	
increased	by	~200%	in	MERRA2,	ERA-I,	and	JRA-55,	whereas	the	CRU	run	resulted	
in	a	 lower	percent	 increase	(42%)	compared	to	the	other	model	experiments.	The	
concurrent	increase	in	the	sensitivity	of	CH4	emissions	and	wetland	areas	indicates	
that	 the	 increase	 of	 CH4	 emissions	 since	 2007	 can	 mainly	 be	 attributed	 to	 an	
increased	 sensitivity	 of	 wetland	 areas,	 which	 was	 driven	 by	 the	 changing	
precipitation	 patterns	 found	 in	 meteorological	 reanalysis	 products.	 The	 GRACE	
measurement	 for	relative	equivalent	water	storage	confirms	the	 large	 increase	 for	
the	period	of	2007-2014	compared	to	earlier	periods	(Figure	5),	suggesting	that	our	
simulated	increases	in	tropical	wetland	areas	are	robust.	All	of	the	modeled	wetland	
areas	have	significant	correlations	(d.f.=176,	p	<0.01)	with	GRACE	TWS,	and	suggest	
a	 ~0.15	 Mkm2	 increase	 in	 inundation	 over	 time	 period	 of	 2007-2014.	 This	 also	
implies	 that,	 despite	 an	observed	decline	 in	open	water	 in	 the	 tropics	 (due	 to	 the	
anthropogenic	effect	from	denser	population	and	impact	of	human	activities	for	the	
period	of	1990s	and	early	2000s	(Prigent	et	al.,	2012)),	an	increase	in	precipitation	
since	2007	was	primarily	 related	 to	La	Niña	 induced	precipitation	anomalies	over	
Australia,	 Southeast	 Asia,	 and	 northern	 South	 America,	 which	 possibly	 affected	
wetland	patterns	and	CH4	emissions	globally.	
	
Relationship	between	wetland	CH4	and	atmospheric	growth	rate	
	
There	 was	 a	 statistically	 significant	 (90%-level)	 positive	 trend	 in	 the	 simulated	
annual	 amplitude	 of	wetland	 CH4	 emissions,	 suggesting	 an	 increasingly	 enhanced	
sensitivity	of	wetland	CH4	emissions	to	climate	change	in	recent	decades	(Figure	6).	
All	model	simulations	indicated	positive	trends	of	the	annual	amplitude	of	wetland	
CH4	 emissions	 with	 small	 differences	 depending	 on	 climate	 forcings.	 These	
simulated	positive	trends	are	consistent	with	observed	trends	 in	CH4	amplitude	at	



the	MLO	site,	for	which	MERRA2,	ERA-I,	and	JRA-55	runs	were	well	correlated	with	
MLO	observations	 (d.f.	 =	 30,	 p	 <	 0.05)	 and	 only	 CRU-based	 simulations	 showed	 a	
weak	 correlation	 between	 wetland	 CH4	 emissions	 and	 enhanced	 global	 CH4	
seasonality.	 These	 significant	 correlations	 suggest	 that	 the	 seasonal	 amplitude	 of	
atmospheric	CH4	concentrations	are	largely	driven	by	the	seasonal	cycle	of	natural	
wetland	 emissions.	 The	 increasing	 trends	 in	 CH4	 amplitude	 also	 imply	 a	 high	
likelihood	that	there	is	an	underlying	shift	of	CH4	seasonality	in	wetland	ecosystems	
and	this	shift	in	seasonality	is	likely	greatest	in	tropical	regions.		
	
We	found	a	small,	but	significant,	positive	correlation	between	annual	wetland	CH4	
emissions	and	the	annual	atmospheric	CH4	growth	rate	in	simulations	forced	by	the	
daily	meteorological	 datasets	MERRA2	 (R=	 0.31,	 d.f.=	 33,	 p	 <	 0.1),	 ERA	 (R=	 0.36,	
d.f.=33,	p	<	0.1),	and	JRA-55	(R=0.38,	d.f.=33,	p<	0.05)	for	the	period	of	2000-2015,	
whereas	no	significant	correlation	was	 found	 in	CRU-based	runs	 (R=0.07,	d.f.=	33,	
p>0.75).	For	the	period	of	1980-1999,	none	of	the	simulations	showed	a	significant	
correlation	 with	 the	 annual	 atmospheric	 CH4	 growth	 rate.	 The	 atmospheric	 CH4	
growth	rate	 is	not	exclusively	a	result	of	changes	 in	wetland	emissions,	but	rather	
due	to	a	combined	influence	of	anthropogenic	and	natural	sources,	and	also	due	to	a	
hydroxyl	radical	sink	(Turner	et	al.,	2017;	Rigby	et	al.,	2017).	Combined	with	recent	
studies	 reporting	 the	 estimated	 increase	 in	 annual	 CH4	 emissions	 from	 global	
livestock	 (Wolf	 et	al.,	 2017)	 and	 observed	 expansion	 of	 agricultural	 areas	 for	 rice	
paddies	 in	 Southern	 Asia	 (Zhang	 et	 al.,	 2017a),	 where	 precipitation	 has	 largely	
increased	since	2007,	we	hypothesize	 that	a	combination	of	 tropical	wetlands	and	
agricultural	 sources	 have	most	 strongly	 contributed	 to	 the	 resumption	 in	 growth	
rate	 of	 atmospheric	 CH4	 concentrations,	which	 is	 consistent	with	 the	 depletion	 in	
isotopic	signature	13CH4	(Schaefer	et	al.,	2016).	
	
	
Conclusions	
	
We	demonstrate	that	global	wetland	CH4	emission	anomalies	are	strongly	related	to	
ENSO	variability	using	an	extended,	multi-meteorological	ensemble.	At	sub-annual	
time-scales,	 we	 also	 found	 that	 the	 instantaneous	 growth	 rate	 of	 wetland	 CH4	
anomalies	 was	 positively	 correlated	 with	 ENSO	 strengths,	 which	 provides	 an	
explanation	for	the	observed	rise	of	atmospheric	CH4	growth	rate	during	strong	El	
Niño	events.	The	ongoing	warming	trend,	as	well	as	 the	shifting	patterns	of	global	
precipitation,	 has	 likely	 had	 a	 significant	 impact	 on	 increasing	 global	 CH4	
interannual	 variability.	 The	 strong	 El	 Niño	 event	 in	 2015-2016,	 associated	 with	
extreme	heat	and	drought	over	the	Amazonian	regions,	caused	record-high	growth	
rates	 of	wetland	CH4	 emissions	 compared	 to	 the	 previous	 three	 decades.	We	 also	
found	 an	 increasing	wetland	 sensitivity	 to	 ENSO	oscillation	 since	 2007,	which	we	
attribute	 to	 increased	 precipitations	 in	 the	 tropics	 as	 is	 visible	 from	 three	
meteorological	 reanalysis	 datasets,	 MERRA2,	 ERA-Interim,	 and	 JRA-55.	 Our	 study	
highlights	the	need	to	accurately	account	for	uncertainties	in	the	climate	forcing	in	
CH4	estimations.	
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Figures:	
	

	
Figure	1.	Global	anomalies	of	monthly	wetland	CH4	emissions	(a)	and	instantaneous	
growth	rates	of	wetland	CH4	emission	anomalies	from	1980	to	2016	for	the	Global	
(b),	Tropics	(middle,	30°S-30°N)	(c),	and	Northern	Hemisphere	(bottom,	>30°N)	(d).	
The	global	anomalies	of	wetland	CH4	emissions	were	calculated	relative	to	monthly	
average	 from	 1980-2016.	 The	 instantaneous	 growth	 rate	 for	 each	 simulation	 is	 a	
time	derivative	of	the	smoothed	monthly	CH4	anomalies	using	spline	functions.	The	
Spearman	rank	correlation	coefficients	between	the	multivariate	ENSO	index	(MEI)	
and	 monthly	 wetland	 anomalies	 were	 derived	 from	 cross	 correlation	 analyses	
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(Figure	S1)	at	3	month	lags	(Lag=	-3),	with	different	colors	corresponding	to	specific	
runs.	Shaded	grey	areas	represent	the	strong	El	Niño	phases	with	MEI	strength		>	60	
according	 to	MEI	 ranks	 (https://www.esrl.noaa.gov/psd/enso/mei/rank.html,	 last	
access	at	January	2018).	
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Figure	2.	Spatial	distributions	of	seasonal	ensemble	mean	anomalies	in	wetland	CH4	
emissions	 (a:	 eCH4,	Unit:	 g	CH4	m-2	mon-1),	 inundated	areas	 (b:	Awet,	Unit:	%),	 and	
heterotrophic	respiration	(c:	Rh,	Unit:	g	C	m-2	mon-1)	of	the	greater	Amazonia	region	
for	 the	March-April-May	season,	2016,	where	eCH4	shows	 the	highest	growth	rate	
during	the	2015-2016	ENSO	event.	The	anomalies	are	calculated	as	seasonal	means	
during	 the	MAM	season	of	2016	relative	 to	average	over	 the	period	of	1980-2016	
level,	 with	 the	 uncertainty	 calculated	 as	 one-standard	 deviation	 from	 the	 four	
simulations	forced	by	each	meteorological	dataset.		 	
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Figure	 3.	 Simulated	 temporal	 patterns	 of	 CH4	 from	 all	 model	 experiments	 (see	
details	 in	Table	1).	 (a)	Time	series	of	annual	CH4	emissions	using	climate	 forcings	
with	daily	and	monthly	temporal	resolution.	The	daily	forcings	were	aggregated	to	
monthly	values	to	evaluate	the	influence	of	daily	variations	of	climate	variables	on	
CH4	 estimations.	 Solid	 and	 dotted	 lines	 represent	 daily	 and	 monthly	 inputs,	
respectively.	The	horizontal	lines	represent	averaged	annual	CH4	emissions	for	two	
time	 periods,	 2000-2006	 and	 2007-2014,	 with	 the	 different	 colors	 representing	
different	 climate	 forcings.	 (b)	 Seasonal	 cycle	 between	 LPJ-wsl	 simulated	monthly	
CH4	 fluxes	 (black	 line)	 using	 different	 climate	 forcings,	with	min/maximum	 range	
(areal	 shaded)	over	 the	Northern	Slope	of	Alaska	 for	2012-2014	 in	comparison	 to	
the	observed	regional	CH4	fluxes	(dots)	estimated	from	analysis	of	15	aircraft	flights	
by	 the	 National	 Aeronautics	 and	 Space	 Administration’s	 Carbon	 in	 Arctic	
Vulnerability	Experiment	(CARVE).		 	
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Figure	4.	 Sensitivity	of	 (a)	wetland	CH4	anomalies	 (Unit:	Tg	CH4	/yr/MEI)	and	 (b)	
wetland	 area	 anomalies	 for	 the	 tropics	 (Unit:	Mkm2/yr/MEI;	Mkm2	=	106	 km2)	 to	
global	ENSO	strength	for	the	period	of	1980-1999,	2000-2006,	and	2007-2016.	The	
sensitivity	metric	is	calculated	as	the	ratio	of	averaged	annual	cumulative	anomalies	
of	wetland	CH4	emissions	and	wetland	areas	 to	 the	MEI	 index.	Bars	 represent	 the	
modeled	sensitivity	from	experiments	with	different	forcing	datasets,	and	the	error	
bars	represent	one	standard	deviation.		 	
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Figure	 5.	 Trends	 of	 simulated	 wetland	 areal	 anomalies	 (Unit:	 Mkm2/month;	
Mkm2=106	 km2)	 for	 the	 tropics	 (30°S-30°N)	 compared	 to	 area-weighted	 average	
terrestrial	water	storage	(TWS;	Unit:	mm-H2O)	from	the	ensemble	mean	of	GRACE	
satellite	 measurement.	 The	 wetland	 anomalies	 were	 calculated	 relative	 to	 the	
monthly	mean	of	 1980-2016,	while	TWS	anomalies	were	 relative	 to	means	of	 the	
2004-2009	 period.	 The	 fitted	 trends	 were	 calculated	 by	 smoothing	 the	 monthly	
anomalies	 with	 a	 12-month	 moving	 average.	 The	 Spearman	 rank	 correlation	
coefficients	 between	model	 and	TWS	 are	 given	 for	 each	 simulation	with	 different	
climate	forcings	in	corresponding	colors.		 	
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Figure	6.	Time	series	of	the	seasonal	amplitudes	of	global	CH4	fluxes.	The	seasonal	
amplitude	of	CH4	fluxes	(dashed	dotted	line)	is	calculated	as	the	difference	between	
maxima	 and	 minima	 of	 simulated	 monthly	 CH4	 emissions.	 The	 dashed	 black	 line	
represents	 observed	 peak-to-through	 seasonal	 amplitude	 of	 atmospheric	 CH4	
concentration	at	Mauna	Loa	observational	 station.	The	solid	 lines	 represent	 linear	
fitted	 long-term	 trends	 of	 the	 seasonal	 CH4	 cycle	with	 Spearman	 rank	 correlation	
coefficients	between	models	and	observed	amplitudes	listed	for	each	model	runs	in	
corresponding	colors.		 	
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Tables:	
	
Table	1.	Model	experiment	descriptions.	Climatic	variables	T,	P,	SW,	LW,	CLD,	and	
WETD	 represent	 temperature,	 precipitation,	 shortwave	 radiation,	 longwave	
radiation,	cloud	cover,	and	wet	days	respectively.	
Run	 ID	
number	

Forcing	 Temporal	
Resolution	

Climatic	Variables	 Time	periods	

i	 MERRA2	 Daily	 T,	P,	SW,	LW	 1980-2016	
ii	 MERRA2	 Monthly	 T,	P,	SW,	LW*	 1980-2016	
iii	 ERA-Interim	 Daily	 T,	P,	SW,	LW	 1980-2016	
iv	 ERA-Interim	 Monthly	 T,	P,	SW,	LW	 1980-2016	
v	 JRA-55	 Daily	 T,	P,	SW,	LW	 1980-2016	
vi	 JRA-55	 Monthly	 T,	P,	SW,	LW*	 1980-2016	
vii	 CRU	 Monthly	 T,	P,	CLD,	WETD	 1901-2016	
*CLD	and	WETD	are	from	CRU	for	comparison	
	 	



Table	2.	Summary	of	mean	annual	CH4	emissions	of	the	Tropics	(30°S-30°N,	denoted	
as	TRO),	the	Northern	Extratropics	(denoted	as	NET),	and	the	Southern	Extratropics	
(denoted	 SET)	 for	 2000-2006,	 and	 2007-2014	 from	 simulations	 with	 daily	
meteorological	forcings	MERRA2,	ERA-I,	and	JRA-55	and	with	a	spatial-interpolated	
climate	dataset	CRU	that	is	based	on	interpolations	from	meteorological	stations.	
Time	period	 Forcing	 eCH4	(Tg	CH4	yr-1)	

	 	 TRO	 NET	 SET	 Global	
2000-2006	 CRU	 138.1	 32.3	 1.8	 172.2	
	 MERRA2	 136.1	 32.5	 2.1	 170.7	

	 ERA-Interim		 142.3	 26.6	 1.9	 170.9	

	 JRA-55	 141.5	 29.8	 1.8	 173.1	
2007-2014	 CRU	 139.1	 33.0	 1.7	 173.8	
	 MERRA2	 145.6	 32.8	 1.9	 180.3	

	 ERA-Interim		 148.6	 27.0	 1.8	 177.4	

	 JRA-55	 147.7	 31.1	 1.8	 180.6	
	



Supplementary	Information:	
	

	
Figure	 S1.	 Cross-correlation	 analysis	 between	 ENSO	MEI	 index	 and	 instantaneous	
growth	 rate	 of	 wetland	 CH4	 anomalies	 (calculated	 as	 time	 derivative	 of	
deseasonalized	 monthly	 wetland	 CH4	 emissions)	 from	 four	 simulations	 with	
different	forcings	(MERRA2,	ERA-I,	CRU,	JRA-55).	Dashed	horizontal	blue	lines	in	all	
panels	represent	the	95%	confidence	interval.		 	
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Figure	S2.	Spatial	distribution	of	the	mean	difference	in	(a)	precipitation	(Unit:	mm	
yr-1)	 and	 (b)	 temperature	 (Unit:	 °C	 yr-1)	 between	 2007-2014	 and	 2000-2006	 for	
MERRA2	and	ERA-Interim.		 	
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Figure	 S3.	 Time	 series	 of	 climate	 variables	 and	 simulated	 wetland	 area	 for	 the	
monthly	anomalies	of	(a)	precipitation	(ΔP),	(b)	temperature	(ΔT),	and	(c)	wetland	
area	(ΔA)	in	the	tropics	(30°S-30°N).		Monthly	anomalies	were	estimated	relative	to	
corresponding	 long-term	 monthly	 mean	 (1980-2016).	 Dashed	 and	 solid	 lines	
represent	the	monthly	anomaly	and	12-month	moving	average	respectively.	
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