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Abstract:	 Wetlands	 are	 thought	 to	 be	 the	 major	 contributor	 to	 interannual	18	
variability	in	the	growth	rate	of	atmospheric	methane	(CH4)	with	anomalies	driven	19	
by	the	influence	of	the	El	Niño-Southern	Oscillation	(ENSO).	Yet	it	remains	unclear	20	
whether	(i)	the	increase	in	total	global	CH4	emissions	during	El	Niño	versus	La	Niña	21	
events	 is	 from	 wetlands	 and	 (ii)	 how	 large	 the	 contribution	 of	 wetland	 CH4	22	
emissions	is	to	the	interannual	variability	of	atmospheric	CH4.	We	used	a	terrestrial	23	
ecosystem	model	 that	 includes	permafrost	 and	wetland	dynamics	 to	 estimate	CH4	24	
emissions,	 forced	 by	 three	 separate	 meteorological	 reanalyses	 and	 one	 gridded	25	
observational	climate	dataset,	to	simulate	the	spatio-temporal	dynamics	of	wetland	26	
CH4	 emissions	 from	 1980-2016.	 The	 simulations	 show	 that	 while	 wetland	 CH4	27	
responds	 with	 negative	 annual	 anomalies	 during	 the	 El	 Niño	 events,	 the	28	
instantaneous	 growth	 rate	 of	 wetland	 CH4	 emissions	 exhibits	 complex	 phase	29	
dynamics.	We	 find	 that	wetland	CH4	 instantaneous	 growth	 rates	were	declined	 at	30	
the	 onset	 of	 the	 2015-2016	 El	 Niño	 event	 but	 then	 increased	 to	 a	 record-high	 at	31	
later	stages	of	the	El	Niño	event	(January	through	May	2016).	We	also	find	evidence	32	
for	 a	 step	 increase	 of	 CH4	 emissions	 by	 7.8±1.6	 Tg	 CH4	 yr-1	 during	 2007-2014	33	
compared	 to	 the	 average	 of	 2000-2006	 from	 simulations	 using	 meteorological	34	
reanalyses,	which	 is	 equivalent	 to	 a	~3.5	ppb	 yr-1	 rise	 in	CH4	 concentrations.	 The	35	
step	increase	is	mainly	caused	by	the	expansion	of	wetland	area	in	the	tropics	(30°S-36	
30°N)	due	 to	an	enhancement	of	 tropical	precipitation	as	 indicated	by	 the	suite	of	37	
the	meteorological	 reanalyses.	 Our	 study	 highlights	 the	 role	 of	 wetlands,	 and	 the	38	
complex	 temporal	 phasing	 with	 ENSO,	 in	 driving	 the	 variability	 and	 trends	 of	39	
atmospheric	CH4	concentrations.	In	addition,	the	need	to	account	for	uncertainty	in	40	
meteorological	forcings	is	highlighted	in	addressing	the	interannual	variability	and	41	
decadal-scale	trends	of	wetland	CH4	fluxes.	42	
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Introduction	44	
	45	
Methane	(CH4)	is	a	potent	greenhouse	gas	and	has	contributed	to	~20%	of	observed	46	
warming	 since	pre-industrial	 times	 (IPCC,	2013).	Atmospheric	CH4	 concentrations	47	
have	risen	from	preindustrial	 levels	of	715	parts	per	billion	(ppb)	since	the	1800s	48	
(Etheridge	 et	 al.,	 1998;	 MacFarling	 Meure	 et	 al.,	 2006)	 to	 current	 global	49	
concentration	of	~1847	ppb,	a	2.5-fold	increase,	primarily	driven	by	anthropogenic	50	
activities	(Kirschke	et	al.,	2013),	e.g.	fossil	fuel	activities,	agriculture,	and	also	by	the	51	
biogeochemical	 feedbacks	 of	 natural	 processes	 to	 climate	 change	 (Arneth	 et	 al.,	52	
2010;	Tian	et	al.,	2016;	Saunois	et	al.,	2016).	However,	the	variability	in	the	annual	53	
growth	 rate	 of	 atmospheric	 CH4	 is	 strongly	 related	 to	 the	 climatic	 sensitivity	 of	54	
biogenic	 CH4	 sources,	 of	 which	 global	 wetland	 CH4	 comprises	 60-80%	 of	 natural	55	
emissions	(Quiquet	et	al.,	2015;	Hopcroft	et	al.,	2017)	and	this	large	role	is	likely	to	56	
persist	 into	 the	 future	 (Zhang	 et	 al.,	 2017b).	 Thus,	 interannual	 variability	 in	 the	57	
growth	rate	of	atmospheric	CH4	is	largely	affected	by	the	response	of	global	wetland	58	
CH4	emissions	to	the	year-to-year	mode	of	global	climate	variability	such	as	the	El	59	
Niño-Southern	 Oscillation	 (ENSO).	 ENSO	 is	 one	 of	 the	 largest	 climate	 phenomena	60	
that	drives	carbon	dynamics	and	their	anomalies	across	large	portions	of	the	globe	61	
(Chatterjee	et	al.,	2017).	62	
	63	
El	Niño,	the	positive	phase	of	ENSO,	influences	water-	and	carbon-	fluxes	of	tropical	64	
terrestrial	 ecosystems	 through	 a	 change	 in	 patterns	 of	 atmospheric	 pressure	 and	65	
sea	 surface	 temperature	 (Philander	 1990).	 These	 changes	 induce	 strong	warming	66	
and	reduced	precipitation	patterns	by	shifting	 the	 Intertropical	Convergence	Zone	67	
southward,	causing	amplified	wildfires	(Worden	et	al.,	2013)	and	reduced	wetland	68	
areal	 extent	 and	 CH4	 emissions	 (Hodson	 et	 al.,	 2011).	 Tropical	 wetlands,	 which	69	
comprise	 50-70%	 of	 global	 wetland	 CH4	 emissions	 (Bousquet	 et	 al.,	 2006),	 are	70	
similarly	influenced	by	the	periodic	variations	of	air	temperature	and	precipitation	71	
related	 to	 ENSO	 phases	 (Pison	 et	 al.,	 2013).	 Atmospheric	 measurements	 of	 CH4	72	
provide	evidence	that	the	growth	rate	of	global	CH4	concentrations	can	rise	during	73	
strong	 El	 Niño	 years	 (Nisbet	 et	 al.,	 2016;	 Bousquet	 et	 al.,	 2006),	 but	 terrestrial	74	
biogeochemical	models	suggest	that	tropical	and	global	wetland	CH4	emissions	are	75	
usually	 found	 to	 decrease	 during	 El	 Niño	 (Hodson	 et	 al.,	 2011;	 Zhu	 et	 al.,	 2017;	76	
Ringeval	et	al.,	2014).		77	
	78	
At	 decadal	 time	 scales,	 the	 relationship	 between	 the	 annual	 CH4	 growth	 rate	 and	79	
variability	 in	 global	 wetland	 CH4	 emissions	 is	 not	 fully	 agreed	 upon,	 and	 the	80	
observed	pause	in	the	growth	rate	during	2000-2006	and	subsequent	return	of	the	81	
growth	rate	since	2007	(Nisbet	et	al.,	2014)	is	not	fully	understood.	A	recent	study	82	
suggests	that	global	wetlands	have	played	a	limited	role	during	the	renewed	rise	of	83	
the	 growth	 rate	 through	 2012	 (Poulter	 et	 al.,	 2017).	 However,	 isotopic	84	
measurements	indicate	that	the	resumed	increase	in	the	growth	rate	could	originate	85	
either	from	biogenic	sources	(Schwietzke	et	al.,	2016)	like	tropical	wetlands	(Nisbet	86	
et	al.,	2016),	from	agricultural	sources	(Schaefer	et	al.,	2016),	or	from	the	combined	87	
effect	of	decreased	biomass	burning	(Worden	et	al.,	2017)	and	increased	fossil-fuel	88	
emissions	 (Helmig	et	al.,	2016).	 In	addition,	 simple-box	models	and	more	 complex	89	



atmospheric	 inversion	 models	 can	 attribute	 the	 recent	 CH4	 change	 to	 varying	90	
hydroxyl	radical	(OH)	concentration,	the	major	CH4	sink	in	the	atmosphere	(Turner	91	
et	al.,	2017;	Rigby	et	al.,	2017).	Our	poor	understanding	of	wetland	CH4	responses	at	92	
annual	 to	decadal	 time	scales	 calls	 for	 revisiting	 the	 role	of	 relationships	between	93	
climate	forcings	and	wetland	CH4	fluxes	to	help	reconcile	top-down	and	bottom-up	94	
methodologies.	95	
	96	
Previous	El	Niño	 anomalies,	 in	 years	1982-1983,	 1997-1998,	 and	2015-2016,	 had	97	
significant	impacts	on	terrestrial	ecosystems	and	these	events	were	considered	key	98	
drivers	of	 the	atmospheric	CO2	growth	rate	variability	 (Liu	et	al.,	2017).	The	most	99	
recent	 El	 Niño	 event	 (2015-2016)	 caused	 unprecedented	 warming	 and	 extreme	100	
drought	over	most	of	the	Amazonia	regions	(Jiménez-Muñoz	et	al.,	2016;	L’Heureux	101	
et	al.,	2016;	Lim	et	al.,	2017;	Chatterjee	et	al.,	2017).	The	occurrence	of	this	extreme	102	
El	 Niño	 event	 disrupted	 regional	 ecosystems,	 causing	 sharp	 increases	 in	103	
atmospheric	CO2	concentrations	(Betts	et	al.,	2016)	and	a	doubling	of	 fire-induced	104	
emissions	in	Southeast	Asia	(Whitburn	et	al.,	2016).	The	more	recent	El	Niño	event	105	
may	 have	 also	 contributed	 to	 record	warming	 during	 2015	 and	 the	 first	 third	 of	106	
2016,	with	 global	 air	 temperature	 at	 0.94°C	 above	 the	 20th	 century	mean	 annual	107	
average	 (http://www.ncdc.noaa.gov/sotc/global/201613,	 last	 access	 in	 August	108	
2017).	 Exactly	 how	much	 the	 2015-2016	ENSO	phenomenon	 has	 impacted	 global	109	
wetland	CH4	emissions	and	to	what	extent	it	has	affected	the	annual	growth	rate	of	110	
atmospheric	CH4	concentration	remains	unknown	due	 to	challenges	 in	monitoring	111	
and	modeling.	112	
	113	
Here,	we	analyze	the	relationship	between	ENSO	phase	and	wetland	CH4	emissions	114	
by	addressing	two	main	questions:	First,	how	does	ENSO,	with	particular	attention	115	
to	the	ENSO	event	in	2015-2016,	affect	the	interannual	variability	of	CH4	emissions	116	
from	 global	wetlands?	 Second,	what	 are	 the	major	mechanisms	 that	 link	wetland	117	
CH4	emissions	to	the	atmospheric	increases	observed	since	2007?	118	
	119	
	120	
Methods	121	
	122	
We	use	a	process-based	ecosystem	model	LPJ-wsl	(Lund-Potsdam-Jena	model,	WSL	123	
version)	forced	with	four	different	meteorological	forcings	to	simulate	wetland	CH4	124	
emissions	from	1980	to	2016.	These	drivers	include	one	station-based	monthly	geo-125	
interpolation	dataset	(CRU)	and	three	meteorological	reanalyses	products	(Table	1).	126	
We	 use	 multiple	 climate	 datasets	 to	 investigate	 uncertainty	 from	 meteorological	127	
forcing	 driving	 simulated	 atmospheric	 CH4	 concentrations,	 and	 hence,	 to	 better	128	
characterize	CH4	variation	in	response	to	climate	variations.		129	
	130	
LPJ-wsl	 (Poulter	 et	al.,	 2011)	 is	 a	 process-based	 dynamic	 global	 vegetation	model	131	
(DGVM)	developed	for	studying	terrestrial	ecosystems,	based	on	an	earlier	LPJ	core	132	
model	(Sitch	et	al.,	2003).	The	version	of	the	model	applied	in	this	study	includes	a	133	
new	 hydrology	model,	 TOPMODEL,	 to	 determine	 wetland	 area	 and	 its	 inter-	 and	134	
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intra-annual	dynamics	(Zhang	et	al.,	2016),	a	permafrost	and	dynamic	snow	model	135	
(Wania	et	al.,	2009),	and	a	prognostic	wetland	CH4	emission	model	(Hodson	et	al.,	136	
2011),	 each	 of	 which	 is	 incorporated	 into	 the	 LPJ-wsl	 framework	 with	 explicit	137	
representation	 of	 the	 effects	 of	 snow	 and	 freeze/thaw	 cycles	 on	 soil	 temperature	138	
and	moisture	 and	 thus	CH4	 emissions	 (Zhang	et	al.,	 2016).	We	 apply	 an	 empirical	139	
model	 to	 estimate	 CH4	 emissions	 in	 the	model	which	 is	 based	 on	 soil	 respiration,	140	
inundated	 area,	 and	 a	 temperature-based	 ecosystem	 emission	 efficiency	141	
(Christensen	 et	 al.,	 1996).	 Soil	 respiration	 is	 modelled	 empirically	 in	 response	 to	142	
temperature	and	soil	moisture	based	on	an	Arrhenius	type	equation	where	varying	143	
effective	 activation	 energies	 for	 respiration	 and	 a	 dampening	 of	 the	 temperature	144	
sensitivity	 (Q10)	 due	 to	 acclimation	 were	 considered	 (Sitch	 et	 al.,	 2003).	 The	145	
simulated	dynamics	of	wetland	area	and	CH4	emissions	have	been	evaluated	against	146	
large-scale	observations	in	previous	studies	(Hodson	et	al.,	2011;	Zhang	et	al.,	2016;	147	
Zhang	et	al.,	2017b).	Here,	we	calibrated	temperature-modified	CH4	emitting	factors	148	
by	scaling	simulated	global	estimates	to	match	172	Tg	CH4	yr-1	in	2004,	which	was	149	
estimated	 from	an	 independent	atmospheric	 inversion	study	 (Spahni	et	al.,	2011),	150	
and	 is	 in	 agreement	 with	 independent	 satellite-based	methods	 from	 Bloom	 et	 al.	151	
(2010).	 We	 improved	 inundation	 estimates	 by	 calibrating	 the	 TOPMODEL	152	
parameter	 ‘maximum	 inundation	 potential’	 (Fmax)	 (Zhang	 et	 al.,	 2016)	 using	 an	153	
independent	 inundation	 dataset	 (Poulter	 et	 al.,	 2017)	 that	 was	 derived	 from	 a	154	
satellite-based	 Surface	Water	Microwave	 Product	 Series	 (SWAMPS)	 (Schroeder	 et	155	
al.,	2015),	an	inventory-based	dataset	Global	Lakes	and	Wetlands	Database	(GLWD)	156	
(Lehner	 and	 Döll,	 2004),	 and	 a	 regional	 wetland	 map	 derived	 from	 satellite	157	
retrievals	 for	 Amazonia	 (Hess	 et	 al.,	 2015).	 To	 avoid	 confusion	 regarding	 double	158	
counting	(Thornton	et	al.,	2016),	we	clarify	that	our	simulated	wetland	area	includes	159	
seasonally	 inundated	 wetlands,	 e.g.	 floodplains,	 and	 permanently	 inundated	160	
vegetated	 wetlands,	 but	 excludes	 rice	 agriculture,	 non-vegetated	 reservoirs,	161	
medium	to	large	sized	lakes,	rivers,	and	coastal	wetlands	that	are	not	accounted	for	162	
by	the	GLWD.		163	
	164	
The	climate	datasets	included	the	monthly	meteorology	from	the	Climate	Research	165	
Unit	 (CRU)	 TS	 3.25	 (Harris	 et	 al.,	 2014)	 and	 three	 state-of-the-art	 metrological	166	
reanalysis	products.	The	reanalysis	products	were	comprised	of	1-hourly	reanalysis	167	
Modern-Era	 Retrospective	 analysis	 for	 Research	 and	 Applications	 Version	 2	168	
(MERRA2)	 (Gelaro	 et	 al.,	 2017)	 from	 the	 NASA	 Global	Modeling	 and	 Assimilation	169	
Office	(GMAO),	6-hourly	ERA-Interim	(ERA-I)	(Dee	et	al.,	2011)	from	the	European	170	
Centre	 for	 Medium-Range	 Weather	 Forecasts	 (ECMWF)	 data	 assimilation	 system	171	
and,	and	 lastly,	 a	6-hourly	 Japanese	55-year	Reanalysis	 (JRA-55)	 (Kobayashi	et	al.,	172	
2015)	 from	 the	 Japan	 Meteorological	 Agency	 (JMA).	 The	 reanalysis	 data	 (total	173	
precipitation,	2m	air	 temperature,	downward	shortwave	radiation,	and	downward	174	
longwave	radiation)	were	aggregated	to	a	common	daily	time-step	and	downscaled	175	
to	0.5°	spatial	resolution	grid	using	first	order	conservative	interpolation.	The	soils	176	
dataset	we	used	was	the	Harmonized	World	Soil	Database	v1.2	(Nachtergaele	et	al.,	177	
2008)	 and	 using	 pedotransfer	 functions	 of	 the	 surface	 soil	 texture	 (Cosby	 et	 al.,	178	
1984)	 to	 estimate	 volumetric	 water	 holding	 capacity.	 For	 the	 monthly	 CRU	 data,	179	
LPJ-wsl	was	set	up	to	use	a	wet-day	frequency	dataset,	a	weather	generator	(Geng	et	180	



al.,	 1986)	 to	 generate	 daily	 precipitations,	 and	 a	 set	 of	 simplified	 equations	 with	181	
monthly	cloud	cover	as	 input	 to	calculate	daily	photosynthetically	active	radiation	182	
flux	 and	 potential	 evapotranspiration	 (Prentice	 et	 al.,	 1993).	 Additional	 details	 of	183	
the	 climate	 datasets	 and	 model	 experiments	 are	 in	 the	 Supplementary	 Material	184	
(Table	 S1).	 The	LPJ-wsl	 state	 variables	 (i.e.,	 carbon	 in	 vegetation,	 litter,	 and	 soils)	185	
were	 simulated	 to	 reach	 equilibrium	 by	 using	 a	 1000-year	 spinup,	 with	 fire	186	
dynamics,	 and	 a	 398-year	 spinup	 for	 land	 use	 change	 using	 Land-Use	187	
Harmonization	 dataset	 (LUHv2)	 (Hurtt	 et	 al.	 2011).	 Spin-up	 was	 done	 using	188	
randomly	 selected	 climate	 inputs	 from	 1901-1930	 for	 CRU	 and	 1980-2000	 for	189	
reanalysis	 with	 fixed	 atmospheric	 CO2	 to	 the	 1860	 value.	 After	 equilibrium,	 a	190	
transient	simulation	with	fire	effects	and	varying	land	cover	was	performed	for	the	191	
years	 1901-2016	 (for	 CRU)	 and	 1980-2016	 (for	 reanalysis),	 forced	with	 changing	192	
climate	 conditions	 and	 varying	 atmospheric	 CO2	 concentration	193	
(https://www.esrl.noaa.gov/ccgg/trends,	 last	 access	 at	 August	 2017).	 The	194	
simulations	 consider	 gross	 land-use	 transitions	 (with	 no	 wood	 harvest)	 with	195	
primary	and	secondary	lands	treated	separately	(for	details,	see	Arneth	et	al.,	2017),	196	
where	the	soil	moisture	and	soil	respiration	were	calculated	by	fraction-weighting	197	
individual	land	stands	within	a	grid	cell.		198	
	199	
We	 used	 the	 Multivariate	 ENSO	 index	 (MEI)	 for	 representing	 the	 ENSO	 strength	200	
(Wolter	and	Timlin,	1998).	The	MEI	 index	represents	 the	 first	unrotated	principal	201	
component	 of	 the	 combined,	 normalized	 fields	 of	 the	 primary	 climate	 variables	202	
observed	 over	 the	 tropical	 Pacific,	 reflecting	 a	 global	 signal	 of	 climate-land-203	
atmosphere	 interaction	 for	 both	 El	 Niño	 and	 La	 Niña	 events.	 Given	 that	 previous	204	
studies	 (Fang	 et	 al.,	 2017;	 Liu	 et	 al.,	 2017)	 have	 shown	 a	 hysteresis	 in	 the	 Earth	205	
systems	response	to	changes	in	temperature	and	precipitation	patterns,	we	carried	206	
out	a	cross-correlation	analysis	to	examine	possible	time-lag	effects	of	wetland	CH4	207	
response	to	El	Niño	events.		208	
	209	
To	 test	whether	 annual	wetland	 CH4	 anomalies	 contributed	 to	 the	 growth	 rate	 of	210	
atmospheric	 CH4,	 we	 compared	 our	 results	 against	 the	 annual	 mean	 global	 CH4	211	
growth	 rate	 and	 monthly	 CH4	 trend	 derived	 from	 NOAA/ESRL	212	
(https://www.esrl.noaa.gov/gmd/ccgg/flask.php,	 last	 access	 at	 August	 2017).	 We	213	
then	used	the	first	derivative	of	spline-smoothed	monthly	wetland	CH4	anomalies	to	214	
calculate	 the	 wetland	 CH4	 instantaneous	 growth	 rate.	 The	 time	 series	 of	 CH4	215	
concentration	 measurements,	 derived	 from	 NOAA	 cooperative	 air	 sampling	216	
network,	 were	 processed	 with	 a	 curve	 fitting	 method	 (Thoning	 et	 al.,	 1989)	 that	217	
decomposes	the	full	signal	into	a	long-term	growth	rate	fit	by	a	polynomial	function,	218	
seasonal	oscillations	by	a	harmonic	 function,	and	a	 low	pass	digital	 filter	 to	retain	219	
interannual	 and	 short-term	 variations.	 From	 the	 decomposed	 signal,	 we	 derived	220	
component	 signals	 such	 as	 trend,	 growth	 rate,	 and	 annual	 amplitude.	 The	 CH4	221	
amplitude	 of	 the	 seasonal	 cycle	 from	 Mauna	 Loa	 surface	 site	 (MLO:	 19.53°N,	222	
155.58°W)	in	NOAA/ESRL	was	applied	to	the	analysis	as	an	indicator	of	the	strength	223	
of	 CH4	 seasonality	 in	 the	 Northern	 Tropics,	 where	 CH4	 amplitude	 is	 mainly	224	
controlled	by	OH	and	fluxes	from	the	land	biosphere.	Given	that	wetlands	contribute	225	
the	largest	fraction	of	natural	CH4	sources	and	that	the	interannual	variability	of	OH	226	
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is	relatively	small	(Montzka	et	al.,	2011),	the	changing	trends	in	the	CH4	amplitude	227	
consequently	 imply	 that	 the	 variation	 in	 the	 trend	 is	 largely	 affected	 by	 changing	228	
CH4	dynamics	in	wetland	ecosystems.	To	test	whether	the	shifting	spatio-temporal	229	
patterns	of	 simulated	wetland	CH4	dynamics	are	 consistent	with	observations,	we	230	
compared	the	observed	MLO	CH4	amplitude	with	simulated	wetland	CH4	amplitude,	231	
which	 was	 calculated	 as	 the	 difference	 between	 annual	 maxima	 and	 minima	 in	232	
spline-smoothed	monthly	wetland	CH4	anomalies.	233	
	234	
For	 evaluation	 of	wetland	 areal	 changes	we	 used	 terrestrial	water	 storage	 (TWS)	235	
anomalies,	 observed	 by	 the	 Gravity	 Recovery	 and	 Climate	 Experiment	 (GRACE)	236	
satellite	measurement,	as	a	proxy	for	groundwater	storage	and	surface	 inundation	237	
(Bloom	et	al.,	2012;	Boening	et	al.,	2012).	We	used	the	Level-3	monthly	 ‘solutions’,	238	
version	RL05,	 from	Geo	Forschung	Zentrum	(GFZ),	 the	University	of	Texas	Center	239	
for	Space	Research	(CSR),	and	the	Jet	Propulsion	Laboratory	(JPL)	from	April	2002	240	
to	December	2016	to	analyze	the	temporal	variations	of	water	mass	in	the	tropics.	241	
The	monthly	 TWS	was	multiplied	 by	 a	 spatial	 grid	 of	 scaling	 coefficients	 derived	242	
from	 post-processing	 of	 GRACE	 observations	 (Landerer	 and	 Swenson,	 2012)	 to	243	
restore	the	signals	attenuated	in	the	processing	at	small	spatial	scales.	We	used	the	244	
ensemble	 mean	 of	 monthly	 TWS	 from	 three	 different	 products	 in	 the	 analysis	245	
because	the	ensemble	mean	was	the	most	effective	in	reducing	the	noise	in	gravity	246	
fields	solutions	from	GRACE	data	(Sakumura	et	al.,	2014).	247	
	248	
Results	and	Discussion	249	
	250	
Long-term	response	of	wetland	CH4	to	ENSO	251	
	252	
The	ensemble	climate	simulations	indicate	a	strong	link	between	ENSO	and	wetland	253	
CH4	emissions,	with	higher	emissions	during	La	Niña	and	lower	emissions	during	El	254	
Niño	 (Figure	 1a).	We	 find	 significant	 negative	 correlations	 (rMERRA2=-0.51,	 rERA-I=-255	
0.36,	rCRU=-0.45,	rJRA-55=-0.35,	d.f.=443,	p	<	0.01)	between	the	ENSO	MEI	 index	and	256	
monthly	 wetland	 CH4	 anomalies,	 regardless	 of	 the	 climate	 data	 used	 in	 the	257	
simulations.	 This	 is	 consistent	 with	 findings	 from	 bottom-up	 modeling	 estimates	258	
(Hodson	et	al.,	2011;	McNorton	et	al.,	2016;	Zhu	et	al.,	2017),	atmospheric	modeling	259	
(Pison	et	al.,	2013;	Chen	and	Prinn,	2006)	and	satellite	observations.	For	 instance,	260	
the	 atmospheric	 CH4	 variations	 of	 the	mid-troposphere	measured	 by	 the	 Infrared	261	
Atmospheric	 Sounding	 Interferometer	 (IASI)	 aboard	 METOP	 satellite,	 and	 by	 the	262	
Atmospheric	 Infrared	 Sounder	 (AIRS)	 aboard	 NASA’s	 Aqua	 satellite,	 also	 show	263	
higher	increases	in	2007-2008	and	2010-2011	when	strong	La	Niña	events	occurred	264	
(Xiong	et	al.,	2016).	Airborne-based	estimates	of	 the	 interannual	variability	of	CH4	265	
fluxes	 for	 eastern	 Amazon	 Basin	 also	 provide	 ancillary	 evidence	 that	 the	 CH4	266	
emissions	are	greatest	in	2008,	a	year	of	La	Niña	phase	(Basso	et	al.,	2016).	Recent	267	
satellite	observations	from	the	Greenhouse	gases	Observing	SATellite	(GOSAT)	also	268	
suggest	large-scale	fluctuations	in	atmospheric	CH4	during	ENSO	events,	 indicating	269	
that	wetland	CH4	emissions	are	~5%	higher	during	La	Niña	events	 (Pandey	et	al.,	270	
2017).	 The	 increase	 in	 CH4	 emissions	 from	 wetlands	 during	 La	 Niña	 can	 be	271	



attributed	to	a	large	increase	in	flood	extent,	primarily	over	tropical	areas	(including	272	
SE	 Australia,	 northern	 South	 America,	 and	 Southeast	 Asia)	 (Boening	 et	al.,	 2012),	273	
whereas	 the	 decreases	 during	 El	 Niño	 are	 possibly	 due	 to	 drought-induced	274	
decreases	 in	 flooded	 area.	 All	 of	 the	 evidence	 above	 suggests	 a	 robust	 negative	275	
relationship	between	annual	anomalies	of	wetland	CH4	emissions	and	ENSO	events,	276	
i.e.,	positive	anomalies	during	La	Niña	and	vice	versa.	277	
	278	
However,	 negative	 anomalies	 of	 annual	wetland	CH4	 emissions	do	not	necessarily	279	
lead	to	a	decrease	in	the	instantaneous	growth	rate	of	wetland	CH4	emissions	during	280	
El	Niño.	We	find	that	the	growth	rate	of	wetland	CH4	emissions	is	initially	decreased	281	
but	 then	 is	 in	 a	 rising	 phase	 during	 the	 later	 stages	 of	 strong	 El	 Niño	 events.	282	
Although,	 the	 amplitude	 of	 the	 rising	 varied	 depending	 on	 which	 meteorological	283	
forcing	was	 used	 in	 the	 simulations	 (Figure	 1b).	 This	 is	mainly	 because	 strong	 El	284	
Niño	events	drive	negative	wetland	CH4	growth	rates	at	the	beginning	of	the	ENSO	285	
anomaly,	 but	 then	 the	 growth	 rate	 rapidly	 recovers	 to	 positive	 values.	 Despite	286	
positive	 atmospheric	 methane	 growth	 rate	 correlations	 with	 El	 Niño	 events,	 the	287	
general	 decline	 in	 wetland	 area	 causes	 declines	 in	 wetland	 CH4	 emissions	 at	 the	288	
beginning	of	strong	El	Niño	phases.	The	high	temperatures	over	the	tropics	strongly	289	
increase	the	CH4	growth	rate	due	to	higher	soil	decomposition	rates	during	the	later	290	
stages	 of	 the	 2015-2016	 El	 Niño	 event.	 Cross-correlation	 analyses	 between	 the	291	
monthly	growth	rate	of	wetland	CH4	emissions	and	the	MEI	index	suggest	that	the	292	
peak	correlation	occurs	at	a	3-month	lag	(when	ENSO	leads	ΔCH4/Δt)	for	the	globe.	293	
As	 expected,	 the	 timing	 of	 wetland	 response	 to	 ENSO	 varies	 regionally,	 where	294	
Tropical	 Asia	 and	 Tropical	 South	 America	 exhibit	 a	 ~4	 month	 lag	 and	 no	 lag,	295	
respectively	(Figure	S1).	The	Interannual	Variability	(IAV)	of	wetland	CH4	emissions	296	
is	 dominated	 by	 the	 Tropics	 (30°S-30°N)	with	 relatively	 small	 contributions	 from	297	
the	Northern	Hemisphere	(Figures	1c,	1d).	MERRA2	showed	the	highest	IAV	among	298	
all	four	simulations,	whereas	the	CRU-based	simulation	had	the	lowest	IAV.	The	rise	299	
of	 wetland	 CH4	 emission	 growth	 rate	 is	 consistent	 with	 the	 observed	 spikes	 of	300	
atmospheric	CH4	growth	rates	during	strong	El	Niño	events	(Nisbet	et	al.,	2016).	301	
	302	
Impact	of	2015-2016	El	Niño	on	wetland	CH4	303	
	304	
The	amplitude	of	instantaneous	growth	in	wetland	CH4	emissions	during	the	2015-305	
2016	El	Niño	was	 higher	 than	 that	 in	 the	 previous	 periods	 1982-1983	 and	1997-306	
1998,	suggesting	an	increased	sensitivity	of	wetland	CH4	in	response	to	the	recent	El	307	
Niño	 (Figure	 1b).	 Our	 results	 captured	 the	 magnitude	 of	 this	 large	 increase	 in	308	
wetland	CH4	emissions	with	an	 instantaneous	growth	rate	of	~7.6±1.6	Tg	CH4	yr-1	309	
during	2015-2016	El	Niño.	The	meteorological	datasets	drove	instantaneous	growth	310	
rates	that	ranged	between	9.2	Tg	CH4	month-1,	8.6	Tg	CH4	yr-1,	7.2	Tg	CH4	yr-1,	and	311	
5.5	Tg	CH4	yr-1	using	MERRA2,	 JRA-55,	CRU,	and	ERA-I,	 respectively.	Although	 the	312	
2015-2016	El	Niño	was	not	as	strong	as	the	1997-1998	El	Niño	according	to	the	MEI	313	
index	(~3	in	1997-1998	and	~2.5	in	2015-2016),	the	combined	effect	of	rising	CO2	314	
concentrations	and	high	temperatures	most	likely	amplified	the	impact,	causing	1.8	315	
times	 the	 maximum	 growth	 rate	 of	 CH4	 of	 the	 1997-1998	 El	 Niño	 event	 (mean	316	
growth	rate	of	~4.2±1.4	Tg	CH4	yr-1	for	the	respective	time	period).		317	



	318	
The	 spatial	 distribution	 of	 wetland	 CH4	 anomalies	 demonstrated	 that	 the	 large	319	
increases	in	soil	respiration	drove	the	strong	growth	rate	and	occurred	during	the	320	
March-April-May	(MAM)	season	in	2016	as	a	consequence	of	warming	and	droughts	321	
in	the	wet	seasons	(October	2015	-	May	2016)	(Figure	2).	There	was	a	widespread	322	
increase	 in	 CH4	 emissions	 over	western	Amazonia,	mainly	 attributed	 to	 increased	323	
soil	 respiration.	 Despite	 a	 large	 decline	 in	 wetland	 extent	 due	 to	 severe	 drought,	324	
significant	 positive	 anomalies	 in	 CH4	 emission	 peaked	 across	 the	 western	325	
Amazonian	 basin,	 likely	 due	 to	 high	 temperatures.	 Temperature	 is	 the	 primary	326	
climatic	variable	driving	the	increasing	long-term	trend	in	CH4	emissions	(Zhang	et	327	
al.,	 2017b).	 However,	 precipitation	 is	 the	 dominant	 climatic	 variable	 regulating	328	
interannual	 variability	 in	 CH4	 emissions	 by	 altering	 the	 inundation	 extent	 and	329	
creating	anaerobic	conditions	suitable	 for	methanogenesis	 in	 the	tropics	(Zhang	et	330	
al.,	2017b).		331	
	332	
Wetland	CH4	trends	between	2000-2006	and	post-2007	333	
	334	
Using	 the	meteorological	 reanalysis	 data,	 we	 find	 evidence	 for	 a	 step	 increase	 in	335	
global	annual	wetland	emissions	between	the	periods	of	2007-2014	relative	to	that	336	
of	 2000-2006	 (Figure	3a).	 These	 simulations	 suggest	 that	 the	 average	 annual	 CH4	337	
emissions	 from	 2007-2014	 increased	 by	 ~7.8±1.6	 Tg	 CH4	 yr-1	 compared	 to	 the	338	
average	of	2000-2006,	which	is	equivalent	to	an	increase	in	the	growth	rate	of	up	to	339	
~	3.5	ppb	CH4	yr-1	for	the	post-2007	period,	or	about	half	of	the	observed	increase	in	340	
concentrations.	The	CRU-based	simulation	in	this	study	did	not	show	a	strong	step-341	
increase	between	these	two	periods,	suggesting	only	a	marginal	contribution	from	342	
wetlands	 with	 a	 1.5	 Tg	 CH4	 yr-1	 increase	 in	 the	 post-2007	 growth	 rate.	 This	 is	343	
consistent	 with	 findings	 from	 an	 ensemble	 modeling	 experiment	 using	 CRU	 as	 a	344	
forcing	dataset,	which	found	no	significant	increase	of	global	wetland	CH4	emissions	345	
during	 the	 period	 of	 renewed	 atmospheric	 CH4	 growth	 (Poulter	 et	 al.,	 2017).	346	
Another	 recent	 atmospheric	 modeling	 study,	 also	 using	 CRU	 as	 forcing	 for	 their	347	
prior	inputs,	likewise	suggested	that	wetlands	made	only	a	small	contribution	to	the	348	
post-2007	 growth	 at	 ~1	 ppb/yr	 (McNorton	 et	 al.,	 2016).	 In	 contrast	 to	 the	 CRU	349	
simulations	 just	 listed,	 all	 our	 simulations	 using	 meteorological	 reanalysis	 data	350	
suggest	 that	more	 than	 90%	of	 the	 increase	 in	 the	 growth	 rate	 of	wetland	CH4	 is	351	
from	 the	 Tropics	 (Table	 2),	 and	 mainly	 due	 to	 increases	 in	 precipitation	 across	352	
South	 America,	 Tropical	 Africa,	 and	 Southeast	 Asia	 since	 2007.	 MERRA2-based	353	
simulations	 suggest	 that	 the	post-2007	rise	 in	global	CH4	concentrations	primarily	354	
comes	from	South	America	and	Tropical	Africa,	whereas	ERA-I	and	JRA-55	identify	355	
South	America	as	the	largest	contributor	to	the	CH4	growth	rate	(Figure	S2).	356	
	357	
The	 different	 IAV	 patterns	 of	 CH4	 emissions	 among	 these	 simulations	 suggest	358	
considerable	uncertainties	in	CH4	emissions	due	to	climate	drivers	(Figure	3a).	The	359	
model	 experiments	 demonstrated	 that	 the	 discrepancy	 originates	 mainly	 from	360	
different	 model	 behavior	 when	 using	 products	 like	 CRU	 and	 meteorological	361	
reanalyses	like	MERRA2,	ERA-I,	and	JRA-55,	regardless	of	the	temporal	resolution	of	362	
climate	 inputs	used	 (Figure	S3).	We	 found	only	minor	differences	using	a	daily	or	363	



monthly	temporal	resolution,	which	likely	reduced	uncertainties	from	applying	the	364	
simulated	weather	generator	and	thus	show	that	the	weather	generator	covered	the	365	
internal	 climatic	 variability	 at	 monthly	 scale.	 The	 importance	 of	 considering	366	
uncertainty	 of	 climate	 forcing	 was	 also	 reflected	 in	 the	 representation	 of	 the	367	
seasonal	 cycle	of	CH4	emissions.	The	comparison	of	 simulated	CH4	emissions	with	368	
independent	estimates	using	an	atmospheric	model	STILT	based	on	CARVE	airborne	369	
experiments	 (Zona	 et	 al.,	 2016)	 suggested	 a	 dominant	 role	 of	 climate	 forcings	 in	370	
capturing	CH4	seasonality	in	arctic	regions	(Figure	3b).	MERRA2,	ERA-I,	and	JRA-55	371	
underestimated	the	peak	CH4	emission	in	growing	season	but	were	able	to	capture	372	
the	 general	 seasonal	 cycle	 in	 CH4	 emissions	 for	 the	 North	 Slope	 of	 Alaska,	 while	373	
CRU-based	estimates	failed	to	reproduce	a	similar	pattern.	The	seasonal	cycle	of	CH4	374	
emissions	was	also	generally	underestimated	by	most	bottom-up	models	that	used	375	
CRU	 climate	 data	 in	 a	 synthesis	 modeling	 experiment	 (Melton	 et	 al.,	 2013),	376	
highlighting	the	need	to	better	constrain	the	CH4	emissions	by	taking	 into	account	377	
several	datasets	that	represent	climate	forcing	uncertainty.		378	
	379	
Sensitivity	of	wetland	CH4	emissions	to	ENSO	380	
	381	
To	 further	 investigate	 whether	 the	 influence	 of	 ENSO	 on	 global	 wetland	 CH4	382	
fluctuation	 was	 strengthening,	 we	 evaluated	 the	 average	 sensitivity	 of	 simulated	383	
wetland	 CH4	 emissions	 and	wetland	 areas	 in	 the	 tropics	 to	 ENSO	 events.	 To	 this	384	
means	we	calculated	the	ratio	of	the	annual	anomaly	of	CH4	emission/wetland	area	385	
to	 the	 annual	MEI	 index	 for	 three	 different	 time	 periods,	 1980-1999,	 2000-2006,	386	
and	 2007-2016	 (Figure	 4).	We	 observed	 a	minor	 change	 in	 the	 sensitivity	 of	 CH4	387	
emissions	and	wetland	areas	between	1980-1999	and	2000-2006,	which	suggests	a	388	
subtle	change	in	the	response	of	global	wetland	CH4	emissions	to	increasing	global	389	
temperatures.	However,	the	sensitivity	of	the	modeled	results	strongly	increased	for	390	
the	period	of	2007-2016	relative	to	the	two	previous	time	periods.	The	sensitivity	in	391	
CH4	 emissions	 increased	 by	 ~200%	 in	 MERRA2,	 ERA-I,	 and	 JRA-55,	 whereas	 the	392	
CRU	run	resulted	 in	a	 lower	percent	 increase	(42%)	compared	to	the	other	model	393	
experiments.	 The	 concurrent	 increase	 in	 the	 sensitivity	 of	 CH4	 emissions	 and	394	
wetland	areas	indicates	that	the	increase	of	CH4	emissions	since	2007	can	mainly	be	395	
attributed	 to	 an	 increased	 sensitivity	 of	 wetland	 areas,	 which	 was	 driven	 by	 the	396	
changing	 precipitation	 patterns	 found	 in	 meteorological	 reanalysis	 products.	 The	397	
GRACE	 measurement	 for	 relative	 equivalent	 water	 storage	 confirms	 the	 large	398	
increase	 for	 the	 period	 of	 2007-2014	 compared	 to	 earlier	 periods	 (Figure	 5),	399	
suggesting	that	our	simulated	increases	in	tropical	wetland	areas	are	robust.	All	of	400	
the	modeled	wetland	 areas	have	 significant	 correlations	 (rMERRA2=0.59,	 rERA-I=0.59,	401	
rCRU=0.56,	rJRA-55=0.5,	d.f.=176,	p	<0.01)	with	GRACE	TWS,	and	suggest	a	~150	103	402	
km2	 increase	 in	 inundation	over	 time	period	of	2007-2014.	This	also	 implies	 that,	403	
despite	an	observed	decline	in	open	waters	in	the	tropics	(due	to	the	anthropogenic	404	
effect	from	denser	populations	and	impacts	from	human	activities	for	the	period	of	405	
1990s	and	early	2000s	(Prigent	et	al.,	2012)),	the	enhanced	precipitation	since	2007	406	
(Sun	et	al.,	2017;	Rodell	et	al.,	2018)	was	primarily	related	to	the	ENSO	phase	over	407	
Tropical	land,	which	has	affected	wetland	patterns	and	CH4	emissions	globally.	408	
	409	



Relationship	between	wetland	CH4	and	atmospheric	growth	rate	410	
	411	
There	was	a	statistically	significant	(p	<	0.10)	positive	trend	in	the	simulated	annual	412	
amplitude	 of	 wetland	 CH4	 emissions,	 suggesting	 an	 increasingly	 enhanced	413	
sensitivity	of	wetland	CH4	emissions	to	climate	change	in	recent	decades	(Figure	6).	414	
All	model	simulations	indicated	positive	trends	of	the	annual	amplitude	of	wetland	415	
CH4	 emissions	 with	 small	 differences	 depending	 on	 climate	 forcings.	 These	416	
simulated	positive	trends	are	consistent	with	observed	trends	 in	CH4	amplitude	at	417	
the	MLO	site,	for	which	MERRA2,	ERA-I,	and	JRA-55	runs	were	correlated	with	MLO	418	
observations	(rMERRA2=0.36,	rERA-I=0.42,	rCRU=0.29,	rJRA-55=0.37,	d.f.	=	30,	p	<	0.05)	and	419	
only	 CRU-based	 simulations	 showed	 a	 weak	 correlation	 between	 wetland	 CH4	420	
emissions	 and	 enhanced	 global	 CH4	 seasonality.	 These	 significant	 correlations	421	
suggest	 relationships	 between	 atmospheric	 CH4	 seasonality	 and	 natural	 wetland	422	
emissions,	 despite	 the	 major	 role	 of	 OH	 in	 determining	 CH4	 seasonality.	 The	423	
increasing	 trends	 in	 CH4	 amplitude	 also	 imply	 a	 high	 likelihood	 that	 there	 is	 an	424	
underlying	 shift	 of	 CH4	 seasonality	 in	 wetland	 ecosystems	 and	 this	 shift	 in	425	
seasonality	is	likely	greatest	in	tropical	regions.		426	
	427	
We	found	a	small,	but	significant,	positive	correlation	between	annual	wetland	CH4	428	
emissions	and	the	annual	atmospheric	CH4	growth	rate	in	simulations	forced	by	the	429	
daily	meteorological	 datasets	MERRA2	 (r=	 0.31,	 d.f.=	 33,	 p	 <	 0.1),	 ERA-I	 (r=	 0.36,	430	
d.f.=33,	p	<	0.1),	and	JRA-55	(r=0.38,	d.f.=33,	p	<	0.05)	for	the	period	of	2000-2015,	431	
whereas	no	 significant	 correlation	was	 found	 in	CRU-based	 runs	 (r=0.07,	 d.f.=	 33,	432	
p>0.75).	For	the	period	of	1980-1999,	none	of	the	simulations	showed	a	significant	433	
correlation	 with	 the	 annual	 atmospheric	 CH4	 growth	 rate.	 The	 atmospheric	 CH4	434	
growth	rate	 is	not	exclusively	a	result	of	changes	 in	wetland	emissions,	but	rather	435	
due	to	a	combined	influence	of	anthropogenic	and	natural	sources,	and	also	due	to	a	436	
hydroxyl	 radical	 sink	 (Turner	et	al.,	 2017;	Rigby	et	al.,	 2017).	Recent	 studies	have	437	
reported	 an	 increase	 in	 annual	 CH4	 emissions	 from	 global	 livestock	 (Wolf	 et	 al.,	438	
2017)	 and	 an	 expansion	 of	 agricultural	 areas	 for	 rice	 paddies	 in	 Southern	 Asia	439	
(Zhang	et	al.,	2017a),	a	region	where	precipitation	has	largely	increased	since	2007.	440	
Thus,	 we	 hypothesize	 that	 a	 combination	 of	 tropical	 wetlands	 and	 agricultural	441	
sources	 are	 likely	 responsible	 for	 the	 resumed	 growth	 rate	 of	 atmospheric	 CH4	442	
concentrations,	 which	 is	 consistent	 with	 the	 depletion	 in	 the	 global	 isotopic	443	
signature	in	13CH4	(Schaefer	et	al.,	2016)	and	with	regional	measurements	of	13CH4	444	
in	the	Tropics	(Nisbet	et	al.,	2016).	445	
	446	
	447	
Conclusions	448	
	449	
We	demonstrate	that	global	wetland	CH4	emission	anomalies	are	strongly	related	to	450	
ENSO	variability	using	an	extended,	multi-meteorological	ensemble.	At	sub-annual	451	
time-scales,	 we	 also	 found	 that	 the	 instantaneous	 growth	 rate	 of	 wetland	 CH4	452	
anomalies	 was	 positively	 correlated	 with	 ENSO	 strengths,	 which	 provides	 an	453	
explanation	for	the	observed	rise	of	atmospheric	CH4	growth	rate	during	strong	El	454	
Niño	events.	The	ongoing	warming	trend,	as	well	as	 the	shifting	patterns	of	global	455	



precipitation,	 has	 likely	 had	 a	 significant	 impact	 on	 increasing	 global	 CH4	456	
interannual	 variability.	 The	 strong	 El	 Niño	 event	 in	 2015-2016,	 associated	 with	457	
extreme	heat	and	drought	over	the	Amazonian	regions,	caused	record-high	growth	458	
rates	 of	wetland	CH4	 emissions	 compared	 to	 the	 previous	 three	 decades.	We	 also	459	
found	an	 increasing	sensitivity	of	wetland	CH4	emissions	to	ENSO	oscillation	since	460	
2007,	which	we	attribute	to	increases	in	the	areal	extent	of	tropical	wetlands	from	461	
increased	 precipitation.	 Our	 study	 also	 highlights	 the	 need	 to	 account	 for	462	
uncertainty	in	the	climate	forcing	for	estimating	wetland	CH4	emissions.	463	
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Figures:	757	
	758	

	759	
Figure	1.	Global	anomalies	of	monthly	wetland	CH4	emissions	(a)	and	instantaneous	760	
growth	rates	of	wetland	CH4	emission	anomalies	from	1980	to	2016	for	the	Global	761	
(b),	Tropics	(middle,	30°S-30°N)	(c),	and	Northern	Hemisphere	(bottom,	>30°N)	(d).	762	
The	global	anomalies	of	wetland	CH4	emissions	were	calculated	relative	to	monthly	763	
average	 from	 1980-2016.	 The	 instantaneous	 growth	 rate	 for	 each	 simulation	 is	 a	764	
time	derivative	of	the	smoothed	monthly	CH4	anomalies	using	spline	functions.	The	765	
Spearman	rank	correlation	coefficients	between	the	multivariate	ENSO	index	(MEI)	766	
and	 monthly	 wetland	 anomalies	 were	 derived	 from	 cross	 correlation	 analyses	767	
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(Figure	S1)	at	3	month	lags	(Lag=	-3),	with	different	colors	corresponding	to	specific	768	
runs.	Shaded	grey	areas	represent	the	strong	El	Niño	phases	with	MEI	strength		>	60	769	
according	 to	MEI	 ranks	 (https://www.esrl.noaa.gov/psd/enso/mei/rank.html,	 last	770	
access	at	January	2018).	771	
	 	772	
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	773	
	774	
Figure	2.	Spatial	distributions	of	seasonal	ensemble	mean	anomalies	in	wetland	CH4	775	
emissions	 (a:	 eCH4,	Unit:	 g	CH4	m-2	mon-1),	 inundated	areas	 (b:	Awet,	Unit:	%),	 and	776	
heterotrophic	respiration	(c:	Rh,	Unit:	g	C	m-2	mon-1)	of	the	greater	Amazonia	region	777	
for	 the	March-April-May	season,	2016,	where	eCH4	shows	 the	highest	growth	rate	778	
during	the	2015-2016	ENSO	event.	The	anomalies	are	calculated	as	seasonal	means	779	
during	 the	MAM	season	of	2016	relative	 to	average	over	 the	period	of	1980-2016	780	
level,	 with	 the	 uncertainty	 calculated	 as	 one-standard	 deviation	 from	 the	 four	781	
simulations	forced	by	each	meteorological	dataset.		 	782	
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	783	
Figure	 3.	 Simulated	 temporal	 patterns	 of	 CH4	 from	 all	 model	 experiments	 (see	784	
details	 in	Table	1).	 (a)	Time	series	of	annual	CH4	emissions	using	climate	 forcings	785	
with	daily	and	monthly	temporal	resolution.	The	daily	forcings	were	aggregated	to	786	
monthly	values	to	evaluate	the	influence	of	daily	variations	of	climate	variables	on	787	
CH4	 estimations.	 Solid	 and	 dotted	 lines	 represent	 daily	 and	 monthly	 inputs,	788	
respectively.	The	horizontal	lines	represent	averaged	annual	CH4	emissions	for	two	789	
time	 periods,	 2000-2006	 and	 2007-2014,	 with	 the	 different	 colors	 representing	790	
different	 climate	 forcings.	 (b)	 Comparison	 between	 the	 seasonal	 cycle	 of	 LPJ-wsl	791	
simulated	 monthly	 CH4	 fluxes	 (solid	 line)	 using	 different	 climate	 forcings,	 with	792	
min/maximum	 range	 (areal	 shaded)	 over	 the	Northern	 Slope	 of	 Alaska	 for	 2012-793	
2014	 in	 comparison	 to	 the	 observed	 regional	 CH4	 fluxes	 (dots)	 estimated	 from	794	
analysis	 of	 15	 aircraft	 flights	 by	 the	 National	 Aeronautics	 and	 Space	795	
Administration’s	Carbon	in	Arctic	Vulnerability	Experiment	(CARVE).		 	796	
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	797	
Figure	4.	 Sensitivity	of	 (a)	wetland	CH4	anomalies	 (Unit:	Tg	CH4	/yr/MEI)	and	 (b)	798	
wetland	 area	 anomalies	 for	 the	 tropics	 (Unit:	Mkm2/yr/MEI;	Mkm2	=	106	 km2)	 to	799	
global	ENSO	strength	for	the	period	of	1980-1999,	2000-2006,	and	2007-2016.	The	800	
sensitivity	metric	is	calculated	as	the	ratio	of	averaged	annual	cumulative	anomalies	801	
of	wetland	CH4	emissions	and	wetland	areas	 to	 the	MEI	 index.	Bars	 represent	 the	802	
modeled	sensitivity	from	experiments	with	different	forcing	datasets,	and	the	error	803	
bars	represent	one	standard	deviation.		 	804	
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	805	
Figure	 5.	 Trends	 of	 simulated	 wetland	 areal	 anomalies	 (Unit:	 Mkm2/month;	806	
Mkm2=106	 km2)	 for	 the	 tropics	 (30°S-30°N)	 compared	 to	 area-weighted	 average	807	
terrestrial	water	storage	(TWS;	Unit:	mm-H2O)	from	the	ensemble	mean	of	GRACE	808	
satellite	 measurement.	 The	 wetland	 anomalies	 were	 calculated	 relative	 to	 the	809	
monthly	mean	of	 1980-2016,	while	TWS	anomalies	were	 relative	 to	means	of	 the	810	
2004-2009	 period.	 The	 fitted	 trends	 were	 calculated	 by	 smoothing	 the	 monthly	811	
anomalies	 with	 a	 12-month	 moving	 average.	 The	 Spearman	 rank	 correlation	812	
coefficients	 between	model	 and	TWS	 are	 given	 for	 each	 simulation	with	 different	813	
climate	forcings	in	corresponding	colors.		 	814	
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	815	
Figure	6.	Time	series	of	the	seasonal	amplitudes	of	global	CH4	fluxes.	The	seasonal	816	
amplitude	of	CH4	fluxes	(dashed	dotted	line)	is	calculated	as	the	difference	between	817	
maxima	 and	 minima	 of	 simulated	 monthly	 CH4	 emissions.	 The	 dashed	 black	 line	818	
represents	 observed	 peak-to-through	 seasonal	 amplitude	 of	 atmospheric	 CH4	819	
concentration	at	Mauna	Loa	observational	 station.	The	solid	 lines	 represent	 linear	820	
fitted	 long-term	 trends	 of	 the	 seasonal	 CH4	 cycle	with	 Spearman	 rank	 correlation	821	
coefficients	between	models	and	observed	amplitudes	listed	for	each	model	runs	in	822	
corresponding	colors.		 	823	
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Tables:	824	
	825	
Table	1.	Model	experiment	descriptions.	Climatic	variables	T,	P,	SW,	LW,	CLD,	and	826	
WETD	 represent	 temperature,	 precipitation,	 shortwave	 radiation,	 longwave	827	
radiation,	cloud	cover,	and	wet	days	respectively.	828	
Run	 ID	
number	

Forcing	 Temporal	
Resolution	

Climatic	Variables	 Time	periods	

i	 MERRA2	 Daily	 T,	P,	SW,	LW	 1980-2016	
ii	 MERRA2	 Monthly	 T,	P,	SW,	LW*	 1980-2016	
iii	 ERA-I	 Daily	 T,	P,	SW,	LW	 1980-2016	
iv	 ERA-I	 Monthly	 T,	P,	SW,	LW	 1980-2016	
v	 JRA-55	 Daily	 T,	P,	SW,	LW	 1980-2016	
vi	 JRA-55	 Monthly	 T,	P,	SW,	LW*	 1980-2016	
vii	 CRU	 Monthly	 T,	P,	CLD,	WETD	 1901-2016	
*CLD	and	WETD	are	from	CRU	for	comparison	829	
	 	830	



Table	2.	Summary	of	mean	annual	CH4	emissions	of	the	Tropics	(30°S-30°N,	denoted	831	
as	TRO),	the	Northern	Extratropics	(denoted	as	NET),	and	the	Southern	Extratropics	832	
(denoted	 SET)	 for	 2000-2006,	 and	 2007-2014	 from	 simulations	 with	 daily	833	
meteorological	forcings	MERRA2,	ERA-I,	and	JRA-55	and	with	a	spatial-interpolated	834	
climate	dataset	CRU	that	is	based	on	interpolations	from	meteorological	stations.	835	
Time	period	 Forcing	 eCH4	(Tg	CH4	yr-1)	

	 	 TRO	 NET	 SET	 Global	
2000-2006	 CRU	 138.1	 32.3	 1.8	 172.2	
	 MERRA2	 136.1	 32.5	 2.1	 170.7	

	 ERA-I		 142.3	 26.6	 1.9	 170.9	

	 JRA-55	 141.5	 29.8	 1.8	 173.1	
2007-2014	 CRU	 139.1	 33.0	 1.7	 173.8	
	 MERRA2	 145.6	 32.8	 1.9	 180.3	

	 ERA-I		 148.6	 27.0	 1.8	 177.4	

	 JRA-55	 147.7	 31.1	 1.8	 180.6	
	836	



Supplementary	Information:	837	
	838	

	839	
Figure	 S1.	 Cross-correlation	 analysis	 between	 ENSO	MEI	 index	 and	 instantaneous	840	
growth	 rate	 of	 wetland	 CH4	 anomalies	 (calculated	 as	 time	 derivative	 of	841	
deseasonalized	 monthly	 wetland	 CH4	 emissions)	 from	 four	 simulations	 with	842	
different	forcings	(MERRA2,	ERA-I,	CRU,	JRA-55).	Dashed	horizontal	blue	lines	in	all	843	
panels	represent	the	95%	confidence	interval.		 	844	
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	845	

	846	
Figure	S2.	Spatial	distribution	of	the	mean	difference	in	(a)	precipitation	(Unit:	mm	847	
yr-1)	 and	 (b)	 temperature	 (Unit:	 °C	 yr-1)	 between	 2007-2014	 and	 2000-2006	 for	848	
MERRA2	and	ERA-I.		 	849	
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	850	
Figure	 S3.	 Time	 series	 of	 climate	 variables	 and	 simulated	 wetland	 area	 for	 the	851	
monthly	anomalies	of	(a)	precipitation	(ΔP),	(b)	temperature	(ΔT),	and	(c)	wetland	852	
area	(ΔA)	in	the	tropics	(30°S-30°N).		Monthly	anomalies	were	estimated	relative	to	853	
corresponding	 long-term	 monthly	 mean	 (1980-2016).	 Dashed	 and	 solid	 lines	854	
represent	the	monthly	anomaly	and	12-month	moving	average	respectively.	855	
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