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Abstract 7 

The Noah land surface model with multiple parameterization options (Noah-MP) includes a 8 

routine for dynamic simulation of vegetation carbon assimilation and soil carbon decomposition 9 

processes. To use remote sensing observations of vegetation to constrain simulations from this model, it 10 

is necessary first to understand the sensitivity of the model to its parameters. This is required for efficient 11 

parameter estimation, which is both a valuable way to use observations and also a first or concurrent step 12 

in many state-updating data assimilation procedures. We use variance decomposition to assess the 13 

sensitivity of estimates of sensible heat, latent heat, soil moisture, and net ecosystem exchange made by 14 

certain standard Noah-MP configurations that include dynamic simulation of vegetation and carbon to 15 

forty-three primary user-specified parameters. This is done using thirty-two years’ worth of data from ten 16 

international FluxNet sites. Findings indicate that there are five soil parameters and six (or more) 17 

vegetation parameters (depending on the model configuration) that act as primary controls on these states 18 

and fluxes.   19 

  20 
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1. Introduction 21 

Globally, transpiration accounts for more than four-fifths of the total evaporative flux (Jasechko 22 

et al., 2013), and thus vegetation plays a key role in coupling the water and energy balances at the land 23 

surface with the atmosphere. At present, many operational land data assimilation systems (LDASs) do not 24 

dynamically simulate vegetation, and instead rely on prescribed vegetation indices (e.g., Ek et al., 2003, 25 

Chen and Dudhia, 2001, Xia et al., 2011, Case et al., 2011, Rodell et al., 2004, Hao et al., 2014). This 26 

limits the ability of these systems to assimilate different types of vegetation data products.  27 

If LDASs were instead to use land surface models (LSMs) that directly simulate plant carbon 28 

uptake and partitioning, then vegetation-related observations could be assimilated directly, and these 29 

LDAS frameworks would be able, at least in theory, to derive information from almost any vegetation 30 

remote sensing product. Recently, the Noah LSM (Ek et al., 2003) was extended into a multi-physics 31 

simulation platform (Noah-MP) that includes a dynamic vegetation component (Niu et al., 2011). This 32 

model has the potential to facilitate assimilation of remote sensing vegetation products and indices into 33 

terrestrial hydrologic forecast and monitoring systems (e.g., Ek et al., 2003, Xia et al., 2011, Case et al., 34 

2011).  35 

Currently, there are a plethora of high-quality vegetation-monitoring products available from 36 

various remote-sensing platforms (e.g., Running et al., 2004, Jiang et al., 2008, Dash and Curran, 2004, 37 

Didan and Huete, 2006, Huete, 1988, Deng et al., 2006, Vogelmann et al., 2001, Zhu et al., 2013) that 38 

could, in principle, be used to constrain or otherwise inform these large-scale LDAS or other hydrologic 39 

forecast systems. The two most important methods in terrestrial hydrology for constraining model 40 

simulations with observations are parameter estimation (e.g., Rosolem et al., 2013) and state-updating 41 

data assimilation (e.g., Reichle, 2008). Related to the latter, by far the most common algorithms (e.g., 42 

Evensen and van Leeuwen, 2000) are bias-blind (Dee, 2005). As such, they require that the observations 43 
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and the model predictions have identical climatology – that is, bias-blind algorithms are not effective at 44 

estimating systematic differences in the mean state of the model as compared to that of observations. It 45 

cannot be expected that any parameterized model and any set of indirect remote sensing observations, 46 

which are themselves typically dependent on a parameterized retrieval model, will have mutually 47 

consistent climatologies (e.g., Reichle and Koster, 2004). It is necessary, therefore, to somehow map the 48 

observations to the model climatology or vice versa. The two primary methods for doing this are (1) via 49 

parameter estimation or (2) via non-parametric regression – i.e., matching of cumulative density functions 50 

(e.g., Kumar et al., 2012). The density matching approach is inefficient in the sense that it discards 51 

potentially valuable information (e.g., Kumar et al., 2015), and therefore parameter estimation is (or 52 

should be) an important part of robust methods for combining information from models and remote 53 

sensing data. 54 

Parameter estimation is extremely computationally expensive, with costs that rise – typically – 55 

closer to exponentially than linearly in the number of parameters, and an important first step is to reduce 56 

the number of parameters to be estimated via sensitivity analysis. Many sensitivity analyses have been 57 

performed on the various models that underlie most of the major land data assimilation systems (e.g., 58 

Demaria et al., 2007, Xue et al., 1996, Chen and Dudhia, 2001, Pitman, 1994, Hou et al., 2012, Liang et 59 

al., 1996, Bastidas et al., 1999), including the Noah model (Rosero et al., 2010, Hogue et al., 2005, Hogue 60 

et al., 2006, Hou et al., 2015), and Noah-MP in particular (Cai et al., 2014a; Mendoza et al., 2015; Cuntz 61 

et al., 2016). Cuntz et al., (2016) performed a sensitivity analysis with Noah-MP, focusing on hydrological 62 

variables such as latent heat flux and runoff components, at catchment scales.  However, none of these 63 

studies have looked at the sensitivity of parameters specifically related to the dynamic vegetation.  64 

Our purpose here is very specific: to assess the sensitivity of the model to its parameters in a way 65 

that is general enough to provide guidance on parameter estimation either as a stand-alone method or pre-66 
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requisite for assimilating vegetation-related remote sensing products into land data assimilation type 67 

systems. Our strategy is to assess the sensitivity of LSM estimates of the major hydrologic states and 68 

fluxes to variations in prescribed parameter values. Sensitivity analysis is an investigation of the model 69 

equations and parameters, not an investigation of the model’s ability to reproduce observations, nor is it 70 

an investigation of the value of any particular set of observations for informing the model simulation. As 71 

such, high-quality in situ observations of storage states (soil moisture) and fluxes (sensitive and latent 72 

heat, and net ecosystem exchange), like what are available from the FluxNet observing network, are 73 

preferable to satellite-based observations for this task – even though it is satellite-based observations that 74 

will ultimately be used by LDAS systems. Energy fluxes, like latent heat flux, are important for land-75 

atmosphere interactive processes, especially in weather forecasting and climate models.  Also, soil 76 

moisture is a critical variable used in determining agricultural drought, water and food security, etc., and 77 

the net carbon or ecosystem exchange is important to better understanding and modeling CO2 fluxes 78 

regionally and globally. 79 

The following section describes the model, forcing data, observation data, and methodology used 80 

in this study. Section 3 presents the primary results of our analysis. The objective of this paper is to serve 81 

as a concise resource for directing parameter estimation with the dynamic vegetation component of Noah-82 

MP, and as such, we have made every effort to keep this report short and to the point, with the main results 83 

easily accessible. 84 

2. Data and Methods 85 

2.1.  FluxNet Observations 86 

Observations used for this experiment, both as meteorological forcing data to run the model and 87 

as response data against which to calculate sensitivity indices, were taken from ten of the FluxNet 88 

(Baldocchi et al., 2001; fluxnet.ornl.gov) sites included in the Protocol for Analysis of Land Surface 89 
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Models (PALS; Abramowitz, 2012). These sites were used, for example, by Best et al. (2015) to evaluate 90 

and compare performance of most of the land surface models referenced in the introduction. The subset 91 

of PALS sites used here included all of the landcover types in the original PALS data set except for 92 

broadleaf forests (the subset does include a mixed forest site, Sylvania, which is a deciduous forest) and 93 

permanent wetlands. We employed a total of thirty-two years’ worth of data, as outlined in Table 1. These 94 

data-years were chosen from the complete collection of PALS level-4 (gap-filled) FluxNet data on the 95 

criteria that they include half-hourly measurements of sensible heat, 𝑄ℎ [W/m2], latent heat, 𝑄𝑙𝑒 [W/m2], 96 

net ecosystem exchange, 𝑁𝐸𝐸 [𝜇mol/m2s], and soil moisture [m3/m3] measured at two different depths, 97 

𝜃1 and 𝜃2 (the soil moisture measurement depths vary by site and are listed in Table 1). These data were 98 

then used to estimate model sensitivity via a function of the residuals between model predictions and 99 

FluxNet observations as described in section 2.4.  100 

Forcing data included 2-meter air temperature [K], rainfall rate [mm/s], relative humidity [kg/kg], 101 

wind speed [m/s], surface pressure [hPa], incident longwave radiation [W/m2], and incident shortwave 102 

radiation [W/m2]. These data were recorded from each FluxNet site at 30 minute intervals, and the model 103 

configurations were run on the same 30 minute timestep. The model runs were initialized according to 104 

PALS protocol: by running the model using a forcing data record that includes all of the available data at 105 

a particular site repeated ten times in sequence. Each model was initialized at each site in this manner 106 

exactly once using a default set of parameters, and an initial state was captured at the beginning of each 107 

simulation year listed in Table 1. Repeating the spin-up for each model separately for all of the requisite 108 

sensitivity runs would require on the order of hundreds of thousands of processor-hours, and is therefore 109 

infeasible. The default spin-up parameters were extracted via STATSGO-FAO soil data (Miller and 110 

White, 1998) and the U.S. Geological Survey (USGS) vegetation classification maps (Anderson, 1976, 111 

Pielke et al., 1997, Chen and Dudhia, 2001) and utilized by the standard Noah-MP look-up tables.  112 
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2.2. Model 113 

Noah-MP (Niu et al., 2011; Yang et al., 2011) expands upon the Noah LSM (Ek et al., 2003). Noah 114 

is an important component of many (especially U.S.-based) land data assimilation systems because it is 115 

coupled with the Weather Research and Forecast (WRF) model and is used operationally by the US 116 

National Center for Environmental Prediction (NCEP) and U.S. Air Force 557th Weather Squadron.  117 

Noah-MP includes options for parameterizing ten distinct land surface states and processes; these are 118 

listed in Table 2. Three of these options (first three lines in Table 2) are related to vegetation; these are: 119 

(1) the parameterization of leaf area index and vegetation shade fraction, (2) the stomatal resistance 120 

parameterization, and (3) the effect of soil moisture on stomatal resistance. In total, there are 1728 possible 121 

Noah-MP configurations with dynamic vegetation, and it is impossible to assess parameter sensitivity 122 

under all of these configurations. To reduce the number of configurations, we note that the Noah-MP has 123 

a “default” configuration outlined in the public release code, and we used the default configuration options 124 

for all of the non-vegetation related components. This includes seven default options (outlined in column 125 

3 of Table 2); those related to: runoff and groundwater, surface layer drag coefficient, super-cooled liquid 126 

water in the soil, frozen soil permeability, radiation transfer, snow albedo, and frozen precipitation 127 

partitioning.  128 

Using these seven default options cuts the number of dynamic vegetation configurations to three 129 

– dynamic vegetation requires the Ball-Berry stomatal resistance option, and then there are three different 130 

parameterizations of soil moisture control on stomatal resistance, , based on 1) Noah LSM’s version, 2) 131 

the Community Land Model (CLM), and 3) Simplified Simple Biosphere (SSiB) model equations (Niu et 132 

al., 2011), as outlined in Table 2. The Noah LSM version of  is simply a function of soil moisture and 133 

wilting point and reference soil moisture parameters, which depend on soil type (Chen et al., 1996), 134 

whereas the CLM and SSiB type approaches rely on the matric potential of each soil layer, including the 135 
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saturated and wilting matric potential (see Oleson et al., 2010, for CLM, and Xue et al., 1991, for SSiB).  136 

Because our purpose here is to test parameter sensitivity related to dynamic vegetation, we explore several 137 

model configurations related to two of the three sets of options.  Therefore, we compared parameter 138 

sensitivity under the three Noah-MP configurations that include dynamic vegetation, and which vary with 139 

the soil moisture factor for stomatal resistance (Noah-type, CLM-type, and SSiB-type) against the default 140 

Noah-MP configuration, which does not include dynamic vegetation and uses prescribed leaf area index 141 

(LAI) and the default (Noah-type) soil moisture factor for stomatal resistance. Thus, in total we compare 142 

four Noah-MP configurations. It is important to point out that the options used in the prescribed LAI 143 

configuration differ from the parameters used in the dynamic vegetation configurations and also that this 144 

default configuration does not simulate net ecosystem exchange. All configurations of Noah-MP were run 145 

using four soil layers with thicknesses of 10 cm, 30 cm, 60 cm, and 100 cm (for a total 2 meter profile). 146 

2.3. Parameters 147 

A total of 42 user-specified parameters must be set for the Noah-MP configurations that simulate 148 

dynamic vegetation; these are listed in Table 3. Thirty of these parameters are related to vegetation and 149 

twelve are related to soil. Similarly, we considered a total of 31 parameters for the Noah-MP configuration 150 

that used prescribed LAI. Nineteen of these are related to vegetation and the same twelve (as in the 151 

dynamic vegetation configurations) are related to soil; these are listed in Table 4. Aside from the soil 152 

parameters, twelve of the vegetation parameters are shared between the two configurations – these are 153 

related to the two-stream radiation transfer component. The deep soil temperature parameters (ZBOT and 154 

TBOT) are used for the SIMGM runoff and groundwater option that we used in all configurations. 155 

The typical way to assign values to all of these parameters is via look-up tables indexed by USGS 156 

vegetation and STATSGO-FAO soil categorization schemes, which is how we derived the default 157 

parameters for model spin-up. With a few exceptions, the ranges over which we conducted the sensitivity 158 
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analysis were bounded by the minimum and maximum values from the Noah-MP look-up tables; Tables 159 

3 and 4 list these ranges.  The exceptions are as follows. LAI and SAI (stem area index) are prescribed to 160 

the model as monthly values, so in reality there are 24 LAI and SAI parameters. We assessed the general 161 

influence of LAI and SAI by measuring sensitivity to a multiplier that scaled the entire LAI (SAI) time 162 

series. Additionally, the four soil moisture parameters that are expressed as volumetric water contents 163 

(porosity, wilting point, field capacity, and dry soil) were constrained to preserve an appropriate ordering 164 

relationship (i.e., field capacity must be lower than porosity, wilting point lower than field capacity, and 165 

dry soil lower than wilting point). Porosity was allowed to vary between hard limits (listed in the parameter 166 

tables), and instead of assigning ranges to the other three volumetric water content parameters directly, 167 

we assessed sensitivity to hyperparameters that represented the percentage of the difference between the 168 

lower bound listed in Tables 3 and 4 and the parameterized upper limit according to the ordering 169 

relationship mentioned above. Finally, we lowered the range of the single-side leaf area (SLA) parameter, 170 

which is vegetation type dependent, since previous studies, which Noah-MP is somewhat based on, 171 

included lower SLA values (e.g., Dickinson et al., 1998; Gulden and Yang, 2006). 172 

2.4. Sensitivity Analysis 173 

A variance-based global sensitivity analysis was applied to the four chosen Noah-MP 174 

configurations to derive total sensitivity indices for each of the parameters listed in Tables 3 and 4 and 175 

related to each of the five different observed responses: 𝑄ℎ, 𝑄𝑙𝑒 , 𝑁𝐸𝐸, 𝜃1, and 𝜃2 . In the following 176 

equations, the parameters are notated such that 𝑥𝑖 is the 𝑖𝑡ℎ (of 𝑁) parameter, and 𝒙~𝑖 is a vector of the 177 

other 𝑁 − 1 parameters. The total effect index associated with (scalar) 𝑥𝑖 is (Saltelli et al., 2009, page 178 

178): 179 
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𝑇𝑖 = 1 −
𝐸𝑥𝑖

[𝑓(𝒙~𝑖, 𝑥𝑖)
2] − 𝐸𝑥[𝑓(𝒙)]2

𝐸𝑥[𝑓(𝒙)2] − 𝐸𝑥[𝑓(𝒙)]2
 

[1] 

Monte Carlo approximation of the integrals over 𝑀 samples yields: 180 

𝐸𝑥[𝑓(𝒙)] = ∑ 𝑓(𝒙𝑚)

𝑀

𝑚=1

 

[2.1] 

𝐸𝑥[𝑓(𝒙)2] = ∑ 𝑓2(𝒙𝑚)

𝑀

𝑚=1

 

[2.2] 

𝐸𝑥𝑖
[𝑓(𝒙~𝑖, 𝑥𝑖)2] = ∑ 𝑓(𝒙~𝑖

(1)
, 𝑥𝑖

(1)
)𝑓(𝒙~𝑖

(1)
, 𝑥𝑖

(2)
)

𝑀

𝑚=1

 

[2.3] 

The final integral requires two sets of 𝑀 samples, so that 𝑥𝑖,𝑚
(1)

 is drawn from one 𝑿(1) ∈ ℝ𝑁,𝑀 and 𝑥𝑖,𝑚
(2)

 is 181 

drawn from one 𝑿(2) ∈ ℝ𝑁,𝑀. 𝑿(1) and 𝑿(2) were drawn by Latin hypercube sampling with 𝑀 = 1500 182 

(an investigation of the effect of sample size is presented as supplementary material). In this case, the 𝑓 183 

function is the mean-squared error between the model predictions and FluxNet observations.  184 

Total effect indices were calculated separately for each observation type (e.g., latent heat flux, soil 185 

moisture) and for each data year. This allowed us to have some idea of the inter-annual variability in 186 

sensitivity depending on different climatic conditions, and also of the variability in sensitivity relative to 187 

different biomes present at different sites. It is important to point out that the soil moisture measurements 188 

at each site were at different depths (see Table 1), and so each measurement was compared with the soil 189 

moisture content of the confining model layer (see section 2.2). In the case where soil moisture 190 

observations were at a layer boundary (e.g., the 10 cm measurements at Blodgett, Mopane, and Sylvania), 191 

we used the average of the modeled moisture content in the two layers. This worked at every site except 192 
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Hyytiala, where both soil moisture measurements were in the 2-3 cm to 5 cm of the soil column, which 193 

did affect results, as described in section 3.1. 194 

3. Results 195 

Figures 1 to 5 present results from a total of 608 sensitivity analyses (five observed variables over 196 

32 data-years using three configurations with dynamic vegetation, plus four observed variables over 32 197 

years using the default configuration without dynamic vegetation). Each figure presents results for a 198 

different model output (𝑄ℎ, 𝑄𝑙𝑒 , 𝑁𝐸𝐸, 𝜃1, 𝜃2). The different subplots in each figure represent the different 199 

model configurations (i.e., three different stomatal resistance functions, plus prescribed vegetation).  The 200 

mean total sensitivity index averaged over all years at each site is reported in each figure (grouped by 201 

color and symbol), as well as the fraction of variance in the sensitivity indices for each parameter and 202 

model configuration that is explained by differences between sites (this fraction of explained variance is 203 

called “EV” and represented by gray bars in the figures). The remaining unexplained fraction of variance 204 

is due differences between years at individual site – this was calculated as a straightforward application 205 

of the law of total variance. The site and year variance decompositions were calculated for any parameter 206 

with at least one site-year with 𝑇𝑖 > 0.1.  207 

3.1. Dynamic Vegetation Results 208 

The results from the CLM-type and SSiB-type soil moisture resistance factor configurations were 209 

essentially qualitatively identical in all output variables. Further, certain parameters displayed clear 210 

sensitivity over most observed variables (Figures 1-5) and in all three dynamic vegetation configurations 211 

(CLM-type, SSiB-type, and Noah-type). These included four vegetation parameters: QE25 (baseline light-212 

use efficiency), VCMX25 (baseline maximum rate of carboxylation), LTOVRC (leaf turnover rate) and 213 

SLA (single-side leaf area per kg), as well as two soil parameters: SMCWLT (wilting point) and BEXP 214 

(pore size distribution index). The two soil parameters control direct soil evaporation, soil conductivity 215 
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and diffusivity, and stomatal resistance in the CLM-type and SSiB-type configurations, and therefore act 216 

as direct controls on both soil moisture content and surface energy partitioning through the evaporative 217 

flux. QE25 and VCMX25 directly control light-limited and export-limited photosynthesis respectively 218 

(the export limit is mediated by local air pressure), and LTOVRC controls carbon exchange from plant to 219 

soil due to leaf and stem senescence. SLA is dependent on vegetation type and used in determining the 220 

leaf and stem area index. We would classify these six parameters as the most important user-specified 221 

parameters in the model (see also Mendoza et al., 2015).  Also, the observed soil moisture variables 222 

(Figures 3 and 4) have higher sensitivities to the SMCREF, SMCMAX, and DKSAT soil parameters for 223 

all three soil moisture stomatal resistance parameterizations, and to a lesser extent for fluxes 𝑄𝑙𝑒 (Figure 224 

1), 𝑄ℎ (Figure 2), and NEE (Figure 5), for the Noah-type parameterization only.  Cuntz et al. (2016) found 225 

SMCMAX (soil porosity) to be the most sensitive parameter across different fluxes and catchment areas, 226 

and to a lesser extent the SMCREF parameter, when transpiration is controlled more by soil moisture 227 

limitations.  In comparison to our study, they used the prescribed monthly LAI with constant shade fraction 228 

(option 4), the Ball-Berry (option 1) for stomatal resistance, and the Noah configuration for soil moisture 229 

factor for stomatal resistance. 230 

The surface fluxes 𝑄𝑙𝑒 and 𝑄ℎ at two sites - grassland (Fort Peck) and deciduous forest (Sylvania) 231 

-- exhibited some sensitivity to Z0MVT (momentum roughness length) and to HVT (canopy height) in 232 

the different model configurations (Figures 1 and 2). Roughness length controls surface advection 233 

potential, and the 3-D vegetation model in the radiation transfer scheme uses canopy height to compute 234 

total available energy at the soil and vegetation surfaces. Varying these controls has the greatest effect in 235 

the shortest (grassland) and tallest (deciduous forest) canopies. High sensitivity to HVT was also reported 236 

in Cuntz et al. (2016) for evapotranspiration. It is additionally interesting to note the high sensitivity of 237 

NEE (Figure 5) at Fort Peck and Amplero grassland sites, and to some extent the Krueger savanna site, to 238 
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the canopy height and roughness length parameters for net ecosystem exchange. Growing unrealistically 239 

tall grass causes a large divergence in the modeled carbon flux, and these parameters would be a large 240 

source of error in mis-specified grasslands. 241 

In the Noah-type configuration, SMCREF (field capacity) exerts a control on calculating plant 242 

water stress, and in the CLM-type and SSiB-type configurations, BEXP dominates the water stress 243 

calculation by acting as an exponential factor in the stomatal resistance calculation. Plant water stress 244 

determines both the amount of water available for transpiration (i.e., acts as a control on surface energy 245 

partitioning and root zone water uptake) and also total carbon assimilation. The result is that field capacity 246 

is an important parameter for determining all five states and fluxes in the Noah-type configuration, which 247 

was also shown in Cuntz et al. (2016) for transpiration.  In the CLM- and SSiB-type configurations, all 248 

five states and fluxes are more sensitive to pore size distribution index (BEXP) than in the Noah-type 249 

configuration. For the Noah-type configuration, the surface fluxes (Figures 1 and 2) were only marginally 250 

sensitive to BEXP and slightly more so with SMCDRY, especially at the savanna sites (Mopane and 251 

Krueger), which are both in semi-arid areas (Hanan et al., 2011, Veenendaal et al., 2004). Similarly at the 252 

Mopane and Kruger sites, and also at the El Saler 2 agricultural site, soil moisture, especially at the shallow 253 

measurement depth, was sensitive to certain plant-related parameters that determine vegetation 254 

productivity: light-use efficiency (QE25) and carboxylation (VCMX25).  These two vegetation 255 

parameters are mainly tied to Noah-MP’s photosynthesis processes, based on a modified version of 256 

Farquhar et al. (1980) C3 plant model (Collatz et al., 1991). Also for the same reason, the surface energy 257 

balances (𝑄𝑙𝑒 and 𝑄ℎ; Figures 1 and 2) at these water-limited sites were sensitive to PSISAT (saturated 258 

matric potential) in the CLM- and SSiB-type configurations. PSISAT is not used in the Noah-type 259 

configuration – it is used as a linear function (rather than exponential, like BEXP) in the CLM- and SSiB-260 
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type calculations of stomatal resistance.  These semi-arid sites are also much more sensitive to the pore 261 

size distribution index in the CLM-type and SSiB-type configurations than the other sites. 262 

In addition to the two universally sensitive soil parameters (wilting point and unsaturated 263 

conductivity exponent), soil moisture (Figures 3 and 4) was also sensitive to SMCMAX (porosity) and 264 

DKSAT (saturated hydraulic conductivity) in all model configurations, and SMCREF in the top soil 265 

moisture layer (Figure 3). In most land surface models, porosity is a dominant control on soil moisture 266 

(and here also on plant water availability and stress), since porosity influences both diffusion and 267 

advection in the soil, as well as total water holding capacity. Saturated conductivity is the primary 268 

influence on moisture transport between soil layers.  269 

Carbon flux (net ecosystem exchange; Figure 5) is a sum of plant carbon assimilation, plant 270 

respiration and soil respiration, and so it is sensitive to essentially the same set of factors as the surface 271 

energy balance terms and soil moisture states. The only additional parameter that showed sensitivity here 272 

(in all configurations) was RMF25 (leaf maintenance respiration). This parameter represents a baseline 273 

respiration rate that is modified by factors related to plant water stress, energy availability, and air 274 

temperature. Water stress and energy availability are the two main controls discussed that mediate the 275 

relationship between model parameters and the model-predicted surface energy balance and moisture 276 

states, and the baseline maintenance respiration is the parameter that translates these factors into estimates 277 

of actual plant respiration.   278 

3.2. Prescribed LAI Results 279 

The prescribed LAI simulations required a different parameter set than the dynamic vegetation 280 

simulations, although some of the parameters (soil parameters and those related to radiation transfer) are 281 

shared with the dynamic vegetation configurations as described above. In this case, however, there was 282 

clear sensitivity of sensible heat to several of the reflectance parameters – especially to the leaf reflectance 283 
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parameter in the near infrared wavelengths (RHOL-nir).  For this configuration, Cuntz et al. (2016) found 284 

sensible heat flux to be more sensitive to radiation parameters (RHOS and RHOL) and leaf optical 285 

properties (e.g., TAUL). Again, there was clear sensitivity in the surface energy fluxes to Z0MVT 286 

(momentum roughness length), and to a lesser degree for the soil moisture observations, mainly at the Fort 287 

Peck grassland site for the second level soil moisture. The Sylvania mixed deciduous forest site showed 288 

sensitivities for Z0MVT and HVT (canopy height), for the energy fluxes only.   289 

Further, the surface energy fluxes showed sensitivity to most of the vegetation parameters that are 290 

specific to this prescribed LAI configuration, except height of bottom of canopy (HVB), tree crown radius 291 

(RC), and maximum stomatal resistance (RSMAX). RSMAX controls the portion of canopy resistance 292 

due to incoming radiation, whereas TOPT (optimum transpiration) and HS (vapor pressure deficit) control 293 

the portion of canopy resistance due to air temperature and vapor pressure deficit, respectively. Both of 294 

the latter were more influential on the energy partitioning. Both the LAI and SAI multipliers also 295 

contributed substantially to the surface energy balance due to their role in determining total available 296 

energy at the surface (also noted similarly for LAI in Cuntz et al., 2016). 297 

In general, there was feedback from the soil state to the energy balance at the surface in this 298 

configuration, but much less feedback from the vegetation to the soil moisture state than in the dynamic 299 

vegetation configuration. Almost none of the vegetation parameters were important in determining soil 300 

moisture states. Generally, the same soil parameters were important in this configuration as in the dynamic 301 

vegetation configuration. Wilting point was important for energy partitioning due to its control on water 302 

that is available for transpiration. Porosity, field capacity, saturated hydraulic conductivity, and the 303 

infiltration exponent dominated the soil moisture sensitivity, which is a standard result in land surface 304 

models (e.g., Cuntz et al., 2016).  305 

3.3. Space vs. Time Dependence 306 
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To get some idea of how the calculated 𝑇𝑖  values are sensitive to intra-site vs. inter-annual 307 

differences, we calculated the fraction of variance over the 32 site-years for each parameter of each model 308 

configuration. Figures 1 to 5 report the fractions of variance due to intra-site differences for every 309 

parameter with at least one site-year of 𝑇𝑖 > 0.1. In most cases, greater than 80% of the total variance 310 

among the 32 site-years is due to different sensitivities at different sites; however, there are a few notable 311 

exceptions.  312 

In the 𝑄𝑒  and 𝜃2  results, the BEXP and SMCWLT parameters (and SMCREF in the static 313 

vegetation configuration) show >20% dependency on inter-annual differences between forcing data. 314 

These parameters are the primary controls on plant water uptake, and these differences are dominated by 315 

dry years at the two semi-arid sites. We did not see the same dependency on forcing data in the surface 316 

soil moisture at these two sites because plant water uptake processes do not act as the dominant control 317 

on evaporative flux in the surface layer – this is controlled by both root-water uptake and direct 318 

evaporation.  Inter-annual forcing differences had a larger effect on certain parameter sensitivities related 319 

to NEE than to the other modeled variables. In particular, the Amplero grassland site was highly sensitive 320 

to the HVB and RC canopy parameters and to the TAUL and TAUS leaf and stem transmittance 321 

parameters on two of the three years (2003 and 2006, but not 2004). All of these parameters directly 322 

control photosynthesis. We also see selective sensitivity (dependent on forcing) to plant (FRAGR, 323 

RMF25) and microbe (MPR) respiration parameters, especially at the water-limited sites. 324 

The main take-away from these results is that the functional response of the carbon cycle 325 

components of the dynamic vegetation model(s) is more sensitive to boundary conditions than are the soil-326 

water and energy partitioning components. Ruddell et al. (2016) makes a distinction between the 327 

macrostate and the microstate of a complex dynamical system, where the macrostate is the current (but 328 

time/space dependent) network and strengths of dynamic process interconnections between different 329 
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variables in the model or system (i.e., the model’s effective internal functional response surfaces at any 330 

given point in time), whereas the microstate is the current value of the different variables in the dynamical 331 

system or model. Ruddell et al. (2016) show how to measure the dynamic influence of nonstationary 332 

boundary conditions on determining a system’s macrostate. Here we see a similar phenomenon – Noah-333 

MP can be thought of as a dynamical system with a macrostate (i.e., strength of relationships between 334 

different simulated variables within the model) determined by the particular parameter values, and we see 335 

that the meteorological data has some impact on the sensitivity of model output to the effective macrostate. 336 

In particular, this sensitivity is more pronounced in the dynamic vegetation and carbon cycle components 337 

of the model than it is in the traditional hydrology (water and energy) components. We see clearly here 338 

that different aspects of the model structure become important for carbon flux simulation depending on 339 

differences in forcing data at individual sites. This indicates that it could be significantly more complicated 340 

to calibrate a land surface model with dynamic vegetation than one without. 341 

4. Conclusions 342 

To summarize, in the Noah-MP dynamic vegetation configurations, all outputs (surface heat 343 

fluxes, soil moisture, and net carbon flux) exhibited sensitivity to the (i) wilting point, (ii) unsaturated soil 344 

conductivity exponent, (iii) baseline light-use efficiency, (iv) baseline carboxylation, (v) leaf turnover, 345 

and (vi) single-sided leaf area. The surface fluxes are also especially sensitive to (vii) the momentum 346 

roughness length, water stress, which is determined either by (viii) field capacity or the conductivity 347 

exponent depending on the model configuration, and also in some cases to (ix) canopy height. Soil 348 

moisture was sensitive as well to (x) porosity and (xi) saturated soil hydraulic conductivity. Finally, the 349 

carbon flux was additionally sensitive to (xii) leaf maintenance respiration. These twelve primary 350 

parameters are highlighted in table 3. 351 



 17 

The major difference between the dynamic vegetation configurations and the prescribed LAI 352 

configuration was that the dynamic vegetation configurations exhibited greater control from vegetation 353 

on soil moisture states – that is, dynamic vegetation increased the sensitivity of soil moisture to vegetation 354 

parameters. This supports one of the primary conclusions by Yang et al.  (2011) that using a land surface 355 

model with a dynamic vegetation component may be beneficial to soil moisture modeling (e.g., NWP 356 

initial conditions, drought monitoring, etc.). In particular, these sensitivity results show that simulating 357 

photosynthesis (e.g., carboxylation and quantum efficiency, carbon leaf stress, leaf turnover) does have 358 

the potential to affect couplings between carbon and water processes at the land surface. This suggests 359 

that (correctly) parameterizing photosynthesis has the potential to add realism to land model simulations. 360 

By identifying key parameters which Noah-MP soil moisture and energy fluxes are most sensitive to, we 361 

can better target and modify these for future data assimilation studies, which could include satellite-based 362 

vegetation indices (e.g., NDVI, LAI) and higher resolution soils databases.  Since Noah-MP is planned to 363 

be the main model used by the U.S. National Water Center and currently used by the WRF community, 364 

knowing which parameters can affect land-atmospheric interaction, like the energy fluxes, and 365 

hydrological forecasts, like soil moisture, can save users much time. As shown in this study, there are 366 

dozens of parameters just for these couple of vegetation and soil schemes and thousands of combinations 367 

between the options. 368 

It is important to note that we only considered here parameters that the Noah-MP model developers 369 

have specified as to be defined by the user. There are several potentially important parameters that are 370 

hard-coded into the model, and this hard-coding has the potential to reduce the flexibility of the model in 371 

reproducing surface states and fluxes (Mendoza et al., 2015, Cuntz et al., 2016). It is also important to 372 

understand that an empirical sensitivity analysis, like what we have presented here, has the potential to 373 

miss certain thresholds that may not be activated with the data used for testing. We did see evidence of 374 
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this type of threshold behavior in the fact that certain site-years were water-limited in a way that affected 375 

plant stress, senescence, and ultimately parameter sensitivity. However, in general, the results were 376 

relatively consistent across sites and between the various model configurations. This study should be 377 

robust enough to provide general guidance on how to approach parameter estimation for simulation of 378 

dynamic vegetation using the Noah-MP LSM. 379 

That being said, there are a combinatorial number of possible Noah-MP configurations (see Table 380 

2), and each configuration at least has the potential for different parameter sensitivities. As such, the data 381 

and code used in this study is available publically on GitHub (https://github.com/greyNearing/NoahMP-382 

Sensitivity.git), so that anyone interested in running a Sobol’ analysis using this set of FluxNet data can 383 

do so with their own Noah-MP configuration(s). Re-running this analysis for a different configuration is 384 

relatively simple using this code base (written mostly in MatLab). The problem of sampling the parameter 385 

space for calculating Sobol’ indices is mostly a parallel problem, and our code is set up to run across 386 

multiple, distributed memory nodes using a SLURM scheduler. It can also be run on a single processor or 387 

single shared-memory node. 388 

Finally, the global variance-based method we used here (Section 2.4) is not the only option for 389 

conducting sensitivity analyses. This has become a routine component of model-based hydrological 390 

forecasting, data assimilation, and hypothesis testing (Razavi and Gupta, 2015), with many proposed 391 

methodologies. In particular, if we were to consider larger parameter spaces (e.g., Mendoza et al., 2015, 392 

Cuntz et al., 2015), it may be necessary to use more computationally frugal sensitivity analyses (e.g., 393 

Herman et al., 2013, Cuntz et al., 2015, Rakovec et al., 2014). Alternatively, we are sometimes interested 394 

in more specific questions related to model parameterization – for example, unlike the analysis presented 395 

here, which looked at global model sensitivity with respect to a variety of site-specific ground truth data, 396 

a more specific modeling problem (i.e., to a specific site or watershed) might come with a more 397 
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constrained parameter uncertainty distribution. In this case, we might want to use a more localized or 398 

subspace sensitivity analysis (e.g., Rakovec et al., 2014). 399 
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Tables 591 

 592 

Table 1: FluxNet sites and data-years used in this study. 593 

      Deptha 

Name Country Lat Lon Plant Type Years SM1 SM2 

Amplero Italy 41.90°N 13.61°E Grassland 2003, 2004, 2006 5 cm 10 cm 

Blodgett United States 38.90°N 120.63°W Evergreen Needleleaf 2000, 2001, 2002, 2003, 2004, 2005 10 cm 30 cm 

El Saler Spain 39.25°N 0.32°W Evergreen Needleleaf 1999, 2000, 2002, 2003 surficialb mediumb 

El Saler (2) Spain 39.28°N 0.32°W Cropland 2006 surficialb mediumb 

Fort Peck United States 48.31°N 105.10°W Grassland 2003, 2004, 2005 10 cm 30 cm 

Hyytiala Finland 61.85°N 24.29°E Evergreen Needleleaf 2001, 2004 2-3 cm 5 cm 

Kruger South Africa 25.02°S 31.50°E Savanna 2002, 2003 3 cm 7 cm 

Loobos Netherlands 52.17°N 5.74°W Evergreen Needleleaf 1999, 2003, 2004, 2005, 2006 3 cm 20 cm 

Mopane Botswana 19.92°S 23.56°E Woody Savanna 2000, 2001 10 cm 50 cm 

Sylvania United States 46.24°N 89.35°W Mixed Forest 2002, 2003, 2004, 2005 5 cm 10 cm 
a Depth from surface of soil moisture measurements 594 
b Soil moisture depths at the two El Saler sites are given as surficial, medium and deep. We treat the surficial moisture measurement as 595 
corresponding to the top modeled layer, and the medium measurement as corresponding to the second modeled layer. The justification for 596 
this is that we are only concerned here with the variation in the model response, not with the absolute difference between model response 597 
and measurement. 598 

 599 
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Table 2: Noah-MP parameterization options. For more information see Niu et al. (2011). 601 

Physical Process Available Options Option(s) Used 

Vegetation 

1. Prescribed LAI and shade fraction 

2. LAI and shade fraction calculated from dynamic simulation of 

carbon uptake and partitioning 

3. Shade fraction calculated from prescribed LAI 

4. Prescribed LAI and constant shade fraction 

1. Prescribed LAI and shade fraction 

2. Dynamic simulation 

Stomatal resistance 
1. Ball-Berry (Ball et al., 1987) 

2. Jarvis (Chen et al., 1996) 

1. Ball-Berry (required for dynamic vegetation) 

2. Jarvis (only for vegetation option 1) 

Soil moisture 

factor for stomatal 

resistance 

1. Noah-type (based on soil moisture) (Chen et al., 1996)) 

2. CLM-type (based on stomatal resistance) (Oleson et al., 2010) 

3. SSiB-type (based on stomatal resistance) (Xue et al., 1991) 

1. Noah-type (for vegetation options 1 and 2) 

2. CLM-type (only for vegetation option 2) 

3. SSiB-type (only for vegetation option 2) 

Runoff & 

groundwater 

1. SIMGM: based on TOPMODEL (Niu et al., 2007) 

2. SIMTOP: SIMGM with an equilibrium water table and zero-

flux lower boundary (Niu et al., 2005) 

3. Infiltration-excess surface runoff and free drainage (Schaake et 

al., 1996) 

4. BATS runoff and free drainage (Yang and Dickinson, 1996) 

1. SIMGM 

Surface layer drag 

coefficient 

1. Monin-Obukhov 

2. Noah-type (Chen et al., 1997) 
1. Monin-Obukhov 

Super-cooled 

liquid water 

1. Standard freezing point depression (Niu and Yang, 2006) 

2. Variant of standard (Koren et al., 1999) 
1. Standard 

Frozen soil 

permeability 

1. Uses total soil moisture to compute hydraulic properties (Niu 

and Yang, 2006) 

2. Uses only liquid water content to compute hydraulic properties 

(Koren et al., 1999) 

1. Total soil moisture 

Radiation transfer 

1. Modified two-stream scheme (Niu and Yang, 2004) 

2. Two-stream with a 3D canopy structure 

3. Two-stream with canopy gap equal to 1-(shade fraction) 

2. Two-stream with a 3D canopy structure 

Snow albedo 

1. BATS (considers variations in snow age, grain size growth, and 

impurity) (Yang et al., 1997) 

2. CLASS (only considers overall snow age) (Verseghy, 1991) 

2. CLASS 

Frozen/liquid 

partitioning 

1. Based on Jordan (1991) 

2. Based on the offset threshold: 𝑇𝑎𝑖𝑟 < 𝑇𝑓𝑟𝑧 + 2.2𝐾 where 𝑇𝑓𝑟𝑧 is 

a constant 

3. Based on the threshold: 𝑇𝑎𝑖𝑟 < 𝑇𝑓𝑟𝑧 

1. Based on Jordan (1991) 

602 
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Table 3: Noah-MP parameters for dynamic vegetation that are considered in this study. Parameters that dominate 603 
sensitivity are in bold italics. 604 

Parameter 

Name  Description Units Min Value Max Value 

Vegetation Parameters    

 Z0MVT Momentum roughness length [m] 0.06 1.10 

 HVT Height of top of canopy [m] 𝒎𝒂𝒙 (𝟏,
𝟏

𝟐
× 𝜶)a 

𝒎𝒊𝒏(𝟐𝟎, 𝟐 ×
𝜶)a 

 HVB Height of bottom of canopy [m] 0.1×HVT 0.9×HVT  

 RC Tree crown radius [m] 0.08 3.60 

 RHOL-vis Leaf reflectance in visible spectrum [~] 0 0.11 

 RHOL-nir Leaf reflectance in NIR [~] 0 0.58 

 RHOS-vis Stem reflectance in visible spectrum [~] 0 0.36 

 RHOS-nir Stem reflectance in NIR [~] 0 0.58 

 TAUL-vis Leaf transmittance in visible spectrum [~] 0 0.07 

 TAUL-nir Leaf transmittance in NIR [~] 0 0.25 

 TAUS-vis Stem transmittance in visible spectrum [~] 0 0.22 

 TAUS-nir Stem transmittance in NIR [~] 0 0.38 

 XL Leaf/stem orientation index [~] -0.30 0.25 

 LTOVRC Leaf and stem/organic turnover rate [1/s] 0 1.2 

 DILEFC Coefficient for leaf stress death related to carbon [1/s] 0 1.8 

 DILEFW Coefficient for leaf stress death related to water [1/s] 0 4 

 RMF25 Leaf maintenance respiration at 25℃ [𝝁mol/m2s] 0 4 

 SLA Single-side leaf area per Kg  [m2/kg] 10 80 

 FRAGR Fraction of growth respiration [~] 0 0.2 

 TMIN Minimum temperature for photosynthesis [K] 0 273 

 VCMX25 Maximum rate of carboxylation at 25℃ [𝝁mol/m2s] 0 80 

 TDLEF Characteristic temperature for leaf freezing [K] 268 278 

 BP Minimum leaf conductance [𝜇mol/m2s] 2000 1014 

 MP Slope of conductance-to-photosynthesis relationship [~] 6 9 

 QE25 Quantum efficiency at 25℃ [𝝁mol/m2s] 0 0.6 

 RMS25 Stem maintenance respiration at 25℃ [𝜇mol/m2s] 0 0.9 

 RMR25 Root maintenance respiration at 25℃ [𝜇mol/m2s] 0 0.36 

 FOLNMX Baseline foliage nitrogen concentration  [%] 0 1.5 

 WRRAT Wood to non-wood ratio [~] 0 30 

 MRP Microbial respiration parameter [𝜇mol/kg s] 0 0.37 

Soil Parameters    

CSOIL Volumetric soil heat capacity [J/m3K] 2x106 3x106 

BEXP Pore size distribution index [~] 4.26 11.55 

DKSAT Saturated soil hydraulic conductivity [m/s] 1x10-6 1.4x10-5 

DWSAT Saturated soil hydraulic diffusivity [m2/s] 5x10-6 1.4x10-5 

PSISAT Saturated soil matric potential [m/m] 0.036 0.468 

QUARTZ Soil quartz content [m3/m3] 0.25 0.82 

SMCDRY Soil moisture where direct evaporation stops [m3/m3] 0.01 0.12 

SMCMAX Porosity [m3/m3] 0.40 0.70b 

SMCREF Field capacity [m3/m3] 
𝟏

𝟑
×SMCMAX SMCMAXc 

SMCWLT Wilting point soil moisture [m3/m3] SMCDRY SMCREFc 

ZBOT Depth to deep soil temperature [m] 2 4 

TBOT Deep soil temperature [K] 274 300 
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a The 𝛼 parameter in the vegetation height parameter sampling ranges represents the default top-of-canopy vegetation height in the Noah-605 
MP parameter tables for the specific vegetation class. These values range from 1 m to 20 m, and the vegetation classes are listed in Table 1. 606 
b Maximum porosity in the STATSGO-FAO soil table is 0.468, which is too low to capture the dynamic range of many soils, so we 607 
extended the range of this variable to 0.70 [m3/m3].  608 
c These soil parameters were calculated from a hyperparameter that represented the percentage of the difference between the listed lower 609 
bound and the parameter listed as the upper bound. All sensitivity indices related to this parameter actually refer to the sensitivity of the 610 
hyperparameter. This was done to ensure that certain parameters did not exceed their dynamic ranges, as defined by other parameters that 611 
were allowed to vary. 612 

  613 



 29 

Table 4: Noah-MP parameters for prescribed LAI that are considered in this study. Parameters that dominate 614 
sensitivity are in bold italics. 615 

Parameter 

Name  Description Units Min Value Max Value 

Vegetation Parameters    

 Z0MVT Momentum roughness length [m] 0.06 1.10 

 HVT Height of top of canopy [m] 𝒎𝒂𝒙 (𝟏,
𝟏

𝟐
× 𝜶)a 𝒎𝒊𝒏(𝟐𝟎, 𝟐 × 𝜶)a 

 HVB Height of bottom of canopy [m] 0.1×HVT 0.9×HVT  

 RC Tree crown radius [m] 0.08 3.60 

 RHOL-vis Leaf reflectance in visible spectrum [~] 0 0.11 

 RHOL-nir Leaf reflectance in NIR [~] 0 0.58 

 RHOS-vis Stem reflectance in visible spectrum [~] 0 0.36 

 RHOS-nir Stem reflectance in NIR [~] 0 0.58 

 TAUL-vis Leaf transmittance in visible spectrum [~] 0 0.07 

 TAUL-nir Leaf transmittance in NIR [~] 0 0.25 

 TAUS-vis Stem transmittance in visible spectrum [~] 0 0.22 

 TAUS-nir Stem transmittance in NIR [~] 0 0.38 

 HS Vapor pressure deficit parameter [~] 36.25 1000 

TOPT  Optimum transpiration air temperature [K] 272 310 

 RGL Radiation stress parameter [~] 30 1000 

RSMAX Maximum stomatal resistance [m] 2000 5000 

 RSMIN Minimum stomatal resistance [m] 40 400 

LAIb Leaf area index multiplier [m2/m2] 0 5 

 SAIb Stem area index multiplier [m2/m2] 0 5 

Soil Parameters    

CSOIL Volumetric soil heat capacity [J/m3K] 2x106 3x106 

BEXP Pore size distribution index [~] 4.26 11.55 

DKSAT Saturated soil hydraulic conductivity [m/s] 1x10-6 1.4x10-5 

DWSAT Saturated soil hydraulic diffusivity [m2/s] 5x10-6 1.4x10-5 

PSISAT Saturated soil matric potential [m/m] 0.036 0.468 

QUARTZ Soil quartz content [m3/m3] 0.25 0.82 

SMCDRY Soil moisture where direct evaporation stops [m3/m3] 0.01 0.12 

SMCMAX Porosity [m3/m3] 0.40 0.70c 

SMCREF Field capacity [m3/m3] 
𝟏

𝟑
×SMCMAX SMCMAXd 

SMCWLT Wilting point soil moisture [m3/m3] SMCDRY SMCREFd 

ZBOT Depth to deep soil temperature [m] 2 4 

TBOT Deep soil temperature [K] 274 300 

     
a The 𝛼 parameter in the vegetation height parameter sampling ranges represents the default top-of-canopy vegetation height in the Noah-616 
MP parameter tables for the specific vegetation class. These values range from 1 m to 20 m, and the vegetation classes are listed in Table 1. 617 
b LAI and SAI are prescribed to the model as monthly time series, and we calculated sensitivity to time series multipliers instead of directly 618 
on the actual twelve LAI (SAI) values. 619 
c These parameters were calculated from a hyperparameter that represented the percentage of the difference between the listed lower bound 620 
and the parameter listed as the upper bound. All sensitivity indices related to this parameter actually refer to the sensitivity of the 621 
hyperparameter. This was done to ensure that certain parameters did not exceed their dynamic ranges, as defined by other parameters that 622 
were allowed to vary. 623 
d Maximum porosity in the STATSGO-FAO soil table is 0.468, which is too low to capture the dynamic range of many soils, so we 624 
extended the range of this variable to 0.70 [m3/m3].  625 



 30 

Figures 626 

 627 

 628 

 629 

Figure 1: Average total effect indices for latent heat flux over all the years of data at each FluxNet site. Different parameters were 630 
assessed for the three configurations of Noah-MP using dynamic vegetation versus the one configuration with static vegetation. Gray 631 
bars show the fraction of variance in the total sensitivity indices explained by site-by-site differences (EV = fraction of explained 632 
variance), whereas the remaining fraction of variance is due to inter-annual differences at individual sites.  633 
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 634 

Figure 2: Same as Figure 1 except for sensible heat flux. 635 

 636 
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 637 

Figure 3: Same as Figure 1 except for top-layer soil moisture. 638 
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 640 

Figure 4: Same as Figure 1 except for second-layer soil moisture. 641 

  642 
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643 
Figure 5: Same as Figure 1 except for net ecosystem exchange (NEE). The static-vegetation configuration of Noah-MP does not 644 
simulate NEE. 645 


