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Abstract 9 

Heterogeneity in warm-season (May-August) land-atmosphere (LA) coupling is quantified with the 10 

long-time, multiple-station measurements from the U.S. Department of Energy Atmospheric Radiation 11 

Measurement (ARM) program and the moderate-resolution imaging spectroradiometer (MODIS) 12 

satellite remote sensing at the Southern Great Plains (SGP). We examine the coupling strength at 7 13 

additional locations with the same surface type (i.e., pasture/grassland) as the ARM SGP central facility 14 

(CF). To simultaneously consider multiple factors and consistently quantify their relative contributions, 15 

we apply a multiple linear regression method to correlate the surface evaporative fraction (EF) with 16 

near-surface soil moisture (SM) and leaf area index (LAI). The observations show moderate to weak 17 

terrestrial segment LA coupling with large heterogeneity across the ARM SGP domain in warm-season. 18 

Large spatial variabilities in the contributions from SM and LAI to the EF changes are also found. The 19 

coupling heterogeneities appear to be associated with differences in land use, anthropogenic activities, 20 

rooting depth, and soil type at different stations. Therefore, the complex LA interactions at the SGP 21 

cannot be well represented by those at the CF/E13 based on the metrics applied here. Overall, the LAI 22 

exerts more influence on the EF than does the SM due to its overwhelming impacts on the latent heat 23 

flux. This study complements previous studies based on measurements only from the CF and has 24 

https://ntrs.nasa.gov/search.jsp?R=20180006459 2019-09-26T19:25:47+00:00Z
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important implications for modeling LA coupling in weather and climate models. The multiple linear 25 

regression provides a more comprehensive measure of the integrated impacts on LA coupling from 26 

several different factors. 27 

 28 

1. Introduction 29 

Land-atmosphere (LA) coupling has been identified to play an important role in both current (Betts, 30 

2004, 2009; Ferguson et al., 2012; Koster et al., 2004; Taylor, de Jeu, et al., 2012) and future climate 31 

(Dirmeyer et al., 2012, 2013; Seneviratne et al., 2006) through its impacts on the energy and water 32 

cycles (Seneviratne et al., 2010 and references therein) in the Earth climate system. Numerous studies 33 

aim to evaluate and quantify the overall strength or the degree of LA coupling (e.g., Koster et al., 2002, 34 

2006) as well as its individual interactions and feedback components (e.g., Dirmeyer, 2011; Wei & 35 

Dirmeyer, 2010) using numerical models (e.g., general circulation models, land surface models, and 36 

single column models) and observations (in situ, ground and satellite remote sensing). However, the 37 

driving mechanisms of how the land states (e.g., soil wetness and vegetation) impact the surface 38 

turbulent fluxes (i.e., latent and sensible heat fluxes) to the atmosphere are not well understood. 39 

Classical hydrology (Budyko, 1974) provides conceptual first-order definitions of evapotranspiration 40 

(ET) regimes and predicts strong coupling at dry-wet transitional zones due to soil moisture-limited 41 

conditions. These coupling “hot spots” are confirmed by multiple-model experiments in an ensemble-42 

mean sense (Koster et al., 2004; Seneviratne et al., 2006). The United States (US) Southern Great 43 

Plains (SGP) is identified as one of these coupling hot spots in terms of the relationship between soil 44 

moisture (SM) and precipitation. Note that large inter-model differences exist for individual model 45 

results (e.g., Fig. 1 in Koster et al., 2004) and suggest large uncertainties in the simulated SM-46 

precipitation interactions. 47 

 48 
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Observational constraints are required to evaluate how well these SM-precipitation coupling hot spots 49 

are represented in the model and to provide insights to reduce modeling uncertainties in the coupling. 50 

Land-atmosphere coupling is recognized as a two-segment process: land states link to surface fluxes 51 

(the terrestrial leg); and surface fluxes connect to atmosphere states (the atmospheric leg) (Guo et al., 52 

2006; Santanello et al., 2011). The terrestrial leg is a critically important part of the larger SM-53 

precipitation loop. Several recent studies focus on establishing observational evidence of the terrestrial 54 

coupling strength at the SGP with daily average data collected by the US Department of Energy 55 

Atmospheric Radiation Measurement (ARM) program. This observational evidence of the terrestrial 56 

component of LA coupling, especially the relative contributions from different factors, is largely 57 

confined to the SGP central facility (CF) due to the paucity of coincident land/soil and atmosphere 58 

observations. Based on long-term (1997-2008) ARM program observations at the SGP CF site near 59 

Lamont, Oklahoma, Phillips & Klein (2014) found that during the May-August warm season, the 60 

coupling between the top-layer (10 cm) SM and the surface evaporative fraction (EF, the ratio of latent 61 

heat (LH) flux to the sum of latent and sensible heat (SH) fluxes) is modest, as measured by the 62 

contemporary covariance (r = 0.48). Using observations at two adjacent sites (near the CF), however, 63 

Williams & Torn (2015) estimated much stronger (r = 0.81) LA coupling at the SGP by replacing SM 64 

with the leaf area index (LAI) in the conventional r(SM, EF) metric, thus highlighting the significant 65 

impact of vegetation. More recently Bagley et al. (2017) demonstrated with the ARM data that the 66 

surface energy partitioning was greatly influenced by the green leaf area on the two major SGP land 67 

covers (grassland and winter wheat). Their statistical analysis at the CF identified the LAI as the most 68 

important driver of the EF among various factors, including the near-surface SM. Phillips et al. (2017) 69 

reported substantial variabilities in the LA coupling with the r(SM, EF) metric when extending their 70 

analysis from the SGP CF site to multiple nearby (up to 150 km) ARM extended sites. 71 

 72 
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All the above observational studies emphasize the daily mean EF, which has great implications for 73 

different SGP cloud regimes (Zhang & Klein, 2013). The long-standing SGP summertime warm and 74 

dry biases in climate models are related to the surface energy biases and the LA coupling (Klein et al., 75 

2006). Recent research (Ma et al., 2018) separated the land (EF) vs. atmosphere (radiation) 76 

contributions to the surface temperature biases, and found larger land contributions in most of the 77 

Coupled Model Intercomparison Project Phase 5 (CMIP5) (Taylor, Stouffer, et al., 2012) Atmospheric 78 

Model Intercomparison Project (AMIP) simulations. The studies by Ma et al. (2018) and 79 

Van Weverberg et al. (2018) highlight the critical role that the terrestrial coupling segment plays in this 80 

climate modeling puzzle. 81 

 82 

In the present work, we extend the CF-centric observational studies in literature to multiple ARM SGP 83 

sites. The goal is to provide more robust and comprehensive, observationally based warm-season 84 

estimates of the terrestrial segment LA coupling strength at the SGP, and to determine how well the 85 

ARM SGP-CF measurements represent the coupling over the SGP domain. This study is motivated by 86 

the need to improve current knowledge of the driving mechanisms of daily mean EF variations, and to 87 

provide novel observational constraints on modeling physical processes of the terrestrial coupling 88 

segment at the SGP. In Section 2, we describe the sites, data, as well as the methods used in this study. 89 

In Section 3, we first show the spatial variations in the analyzed coupling variables, then quantify the 90 

strength of coupling with the EF and the turbulent fluxes at different locations, as well as the relative 91 

contributions of the SM and the LAI. Section 4 provides further discussions on the enhanced LA 92 

coupling metric, followed by sensitivity analysis of LA coupling to flux fetch, temporal averaging 93 

scale, and dry vs. wet years in Section 5. The discussions and conclusions are summarized in Section 6. 94 

 95 

2. Sites, data, and methods 96 
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2.1 Sites 97 

The ARM Climate Research Facility provides comprehensive observations of important atmosphere, 98 

surface, and land/soil variables to the climate research community. At the SGP, ARM deploys a dense 99 

surface network with multiple observational stations within a 3.5ox3.5o domain centered at the central 100 

facility (CF). The site locations reflect heterogeneity in land cover, vegetation types, soil types etc. 101 

More importantly, many of these ARM sites provide coincident measurements of soil moisture, LH and 102 

SH fluxes, which offer a unique opportunity to study the terrestrial component of LA coupling. To 103 

minimize the number of impacting factors and enhance the robustness of analyses, we opted to use 8 104 

sites (see Fig. 1 and Table 1), including the CF (i.e., E13), located on the same land cover 105 

(pasture/grassland) with relatively complete long-time, coincident measurements from the same 106 

instruments (i.e., Energy Balance Bowen Ratio (EBBR) systems). Differences among the 8 sites (see 107 

Table 1) include grass species, human activities (e.g., grazed vs ungrazed), and soil types. 108 

 109 

2.2 Data 110 

In this study, we use the hourly averaged SM (at 2.5-cm depth), surface LH and SH fluxes in the warm 111 

season (May—August) of years 2004-2011 from the ARM Best Estimate (ARMBE) (Xie et al., 2010) 112 

station-based surface data (ARMBESTNS) (Tang & Xie, 2015b) 113 

(https://www.arm.gov/capabilities/vaps/armbestns, doi: 10.5439/1178332). Soil moisture, LH and SH 114 

fluxes are measured by EBBR systems (Cook, 2018). Following Betts (2009) and Phillips & Klein 115 

(2014), our analyses emphasize daily averages, but also include the sensitivity to different temporal 116 

averaging intervals. The daily mean SM is calculated from 00:00 to 23:00 UTC, and the daily daytime 117 

mean of the EF from 12:00 to 23:00 UTC (6:00 to 17:00 LST). Leaf area index (LAI) is from the 118 

MCD15A3H (version 6) data product (Myneni, 2015) 119 
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(https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd15a3h_v006, doi: 120 

10.5067/MODIS/MCD15A3H.006), which combines the measurements from the two moderate-121 

resolution imaging spectroradiometer (MODIS) instruments on NASA satellites Terra and Aqua to 122 

create a 4-day composite data set at a 500 m horizontal resolution. The LAI of the pixels closest to the 123 

ARM stations (see Fig. 1) are used in our site-specific analyses. Ideally, we need the LAI that matches 124 

the footprint (about 100 m x 100 m) of EBBR flux measurements. Such high-resolution LAI data 125 

require ground-based measurements, which are not available. Figure 1 also shows the mean warm-126 

season geographic patterns of EBBR SM and MODIS LAI for the years 2004—2011. The latitude-127 

longitude SM data are taken from the ARMBE 2-dimensional Gridded Surface data (ARMBE2DGRID) 128 

(Tang & Xie, 2015a) (https://www.arm.gov/capabilities/vaps/armbe2dgrid, doi: 10.5439/1178331), 129 

which interpolates the station-based ARMBESTNS data to a 0.25o x 0.25 o grid over the SGP domain 130 

(35oN—38.5oN and 95.5oW—99.5oW) with the Barnes scheme (Barnes, 1964). Both patterns in Fig. 1 131 

display a general increasing gradient from northwest to southeast. 132 

 133 

2.3 An enhanced land-atmosphere coupling metric 134 

For the terrestrial segment, the correlation between top-layer soil water content and the EF focuses on 135 

the influence of bare soil evaporation, whereas the correlation between the LAI and the EF emphasizes 136 

the impact of evapotranspiration (ET) from vegetation, which is largely controlled by the soil moisture 137 

in the root zone rather than near the surface. Since on a daily or longer scale surface net radiation is 138 

roughly balanced by the sum of LH and SH fluxes (neglecting ground heat storage), we can focus on 139 

the LH flux and infer the SH flux from the surface energy balance. The surface LH flux consists of two 140 

major components: evaporation from bare soil, and ET by plants (Seneviratne et al., 2010). A robust 141 

coupling metric is expected to simultaneously capture the contributions from multiple factors, as the 142 

coupling processes occur at the same time in reality. However, the traditional simple correlation metrics 143 
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examine interactions between pairs of variables, such as SM-EF, SM-SH flux, SM-lifting condensation 144 

level, SM-planetary boundary layer height, LAI-EF, etc. (Betts, 2009; Ford et al., 2014; Phillips & 145 

Klein, 2014; Santanello et al., 2007; Williams & Torn, 2015), and hence are only able to quantify the 146 

influence from one factor at a time, in a partial derivative sense. In this study, we instead employ a 147 

multiple linear regression method to study the integrated impact of top-layer SM and vegetation to the 148 

surface energy partitioning. Although it would be desirable to incorporate in root-zone SM due to its 149 

obvious connection to the transpiration, root-zone SM measurements are not available at the selected 8 150 

sites. Williams & Torn (2015) examined the soil-depth dependency of the SM coupling with EF at an 151 

SGP grass site, and only found a slight increase in the SM-EF correlation with increasing depth. It is 152 

reasonable to assume that similar soil-depth dependency in r(SM, EF) applies to the 8 SGP grassland 153 

sites analyzed here, and that the SM dependency is largely captured by our multiple linear regression 154 

model. 155 

 156 

Multiple linear regression reveals the relationship between two or more explanatory or predictor 157 

variables and a response variable by fitting a line through data points in a least squares sense. Previous 158 

studies (e.g., Betts et al., 2015) applied multiple linear regression to study the coupled LA system on 159 

daily timescales. The novelties of the present work are the application to the relationships between EF 160 

or the turbulent fluxes and SM and LAI, and to quantify the relative importance of SM versus LAI 161 

coupling (see details below). To account for the impacts of soil moisture and vegetation on the partition 162 

of surface turbulent fluxes simultaneously, we construct the following multiple linear regression: 163 

𝐸𝐹 = 𝑏(0) + 𝑏(1) ∗ 𝑆𝑀 + 𝑏(2) ∗ 𝐿𝐴𝐼         (1) 164 

where b is the partial regression coefficient. It should be noted that while not a mathematical pre-165 

condition, it is important to use independent or weakly correlated predictor variables in the regression 166 

model to ensure that the multiple linear regression is applied in a physically meaningful way. To this 167 
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end, it is necessary to examine the dependencies between predictor variables before applying the 168 

multiple linear regression metric. The LA coupling strength is defined as the multiple correlation 169 

coefficient (Kutner et al., 2004) 170 

𝑅 =
√𝑟2(𝐸𝐹,𝑆𝑀)+𝑟2(𝐸𝐹,𝐿𝐴𝐼)−2∗𝑟(𝐸𝐹,𝑆𝑀)∗𝑟(𝐸𝐹,𝐿𝐴𝐼)∗𝑟(𝑆𝑀,𝐿𝐴𝐼)

√1−𝑟2(𝑆𝑀,𝐿𝐴𝐼)
       (2) 171 

in which r denotes the Pearson’s correlation coefficient between two variables. The multiple regression 172 

Eq. 1 can be extended to more than two predictor variables (see Supporting Information), and hence 173 

can include other potentially important variables. By adding more variables to the regression, no matter 174 

whether significantly correlated with the EF or not, R will always increase by definition. Therefore, one 175 

cannot determine the importance of a newly added variable, based merely on an enhanced R value. 176 

This limitation is addressed by examining the standardized regression coefficient and its significance 177 

test, as follows. 178 

 179 

The multiple regression and correlation quantify the combined effects of the SM and LAI to the EF. 180 

Moreover, these tools allow us to disentangle and examine their separate influence on the EF (see 181 

Section 3.2.2 for more details). The standardized regression coefficients 182 

𝐵𝑖 = 𝑏𝑖 ∗ 𝜎𝑥𝑖/𝜎𝑦           (3) 183 

can be used to evaluate the sensitivity of the variability in the EF (i.e., y in Eq. 3) to the variation in 184 

the SM or the LAI (i.e., xi in Eq. 3), respectively, where  denotes the standard deviation. For simple 185 

regression (i.e., only one predictor variable), the standardized regression coefficient is identical to the 186 

correlation coefficient r. It is also helpful to define the sensitivity index (I = b*x) to quantify the 187 

potential of soil moisture oscillations to cause variations in surface fluxes (Dirmeyer, 2011). For 188 

multiple regression, the sensitivity index (I) can still be used to assess the relative influence from 189 

different predictors at the same location, but it cannot be applied across different locations because the 190 
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least squares fitting depends on the EF observations, which change with location. The standardized 191 

regression coefficient (B) breaks this limitation of I by considering the standard deviations in both the 192 

predictor and response variables, and thus it can be directly compared among different variables at 193 

different locations to quantify the spatial variability of their relative importance to the EF fluctuation. 194 

 195 

The soil moisture index (SMI) [SMI = (SM - SMmin)/(SMmax - SMmin)] is useful to study the correlation 196 

with the EF (Betts, 2009; Phillips & Klein, 2014), facilitating comparisons between sites with different 197 

soil and vegetation types, and hence different field wetness capacity and wilting point. In this study, 198 

because years 2004—2011 cover a wide range of wet and dry conditions, we approximate the SMI at 199 

each station using the multiyear local maximum (SMmax) and minimum (SMmin) for field capacity and 200 

wilting point, respectively. Note that the correlation coefficients remain the same no matter whether 201 

SM or SMI is used. 202 

 203 

The statistical significance of the multiple regression is assessed using the variance analysis together 204 

with the two-tailed F-test. The significance of partial regression coefficients is examined by the two-205 

tailed t-test. The significance of the difference between two correlation coefficients is tested with the 206 

Fisher’s r to z transformation (Fisher, 1921) and the null hypothesis of p1 – p2 = 0. In all cases, a 207 

significance level of p = 0.05 (95% confidence level) is used. The degrees of freedom are assumed as 208 

(N-2) in the t-test and as (N-3) in the F-test and the Z-test. These degrees of freedom take into account 209 

the possible serial correlation in the time series of observations in a similar way as in previous studies 210 

(Dirmeyer et al., 2012; Phillips & Klein, 2014), for example the N numbers in Table 1 pertain to 211 

sampling once every four days. (Missing values in coincident measurements of SM or turbulent fluxes 212 

will lower the sampling frequency.) 213 

 214 
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3. Results 215 

3.1 Spatial variabilities in LA coupling related variables 216 

Figure 2 shows the Taylor diagrams (Taylor, 2001), a concise summary of how closely one dataset 217 

matches the other, for observations of important LA coupling variables (i.e., LH, SH, EF, SM, and LAI) 218 

at the extended SGP sites relative to the CF. The mean biases in the Taylor diagrams are denoted by the 219 

size and shape of the symbols in addition to the three statistics – the temporal correlation (angle), the 220 

normalized standard deviation (radius, normalized by that of the CF), and the normalized centered root-221 

mean-square (RMS) difference (distance to the (1, 0) reference point, also normalized by the 222 

corresponding CF value). The more similar the extended observations are to those at the CF, the closer 223 

their symbols are to the (1, 0) point. The spread of SGP sites on the same Taylor diagram reveals the 224 

spatial heterogeneity at those locations. 225 

 226 

In general, these important LA coupling variables at most of the ARM extended sites have a rather 227 

weak correlation (< 0.6) and large RMS differences from those measured at the CF. Large RMS 228 

differences are indicated by the large distances between the data points and the reference point in Fig. 229 

2. The variance of these variables also shows large differences from that measured at the CF. All the 230 

sites show a smaller standard deviation in SH and EF than at CF. Among these variables, the LAI (Fig. 231 

2e) shows the least similarities to that at the CF: weak correlations (statistically insignificant at E4 and 232 

E7) and large variances (off the chart at E7 and E12), suggest that the LAI is the most localized 233 

property. There also are quite large differences in these statistics across different sites. 234 

 235 

3.2 Heterogeneity in LA coupling strength 236 

Large spatial heterogeneities in the individual measurement of the coupling variables do not 237 

automatically translate to great spatial variations in the coupling strength among these variables. In this 238 
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section, we examine the terrestrial segment of the LA coupling strength at the 8 SGP stations, as 239 

estimated by the traditional simple regression metrics and by the multiple regression metric. The results 240 

of simple regression methods facilitate comparisons with previous studies, whereas the multiple 241 

regression metric provides new insights by overcoming some limitations of the conventional metrics 242 

(see Section 2.3 for details). 243 

 244 

3.2.1 Strength of coupling with the evaporative fraction at different SGP sites 245 

The evaporative fraction (EF) plays a crucially important connection role between the land surface 246 

properties and the atmospheric states. It has great impacts on the atmospheric boundary layer 247 

conditions (Findell et al., 2011; Williams & Torn, 2015), and hence processes (e.g., convection, clouds, 248 

and precipitation) in the free atmosphere (Findell & Eltahir, 2003; Gentine et al., 2013). We first 249 

compare the summertime coupling strength with the EF at 8 ARM SGP stations assessed with 3 250 

different metrics (see Fig. 3). To make consistent comparisons, we use only the data when 251 

measurements of all 3 variables (i.e., EF, SMI, and LAI) are available. The surface and soil types of 252 

these 8 stations are summarized in Table 1. The LA coupling strength is examined by using the daily 253 

anomalies of EF, SMI, and LAI relative to the climatological monthly means of years 2004--2011. We, 254 

therefore, minimize the impact of seasonal covariations, such as that between the EF and the LAI, on 255 

these temporal correlation-based coupling estimations. The daily to sub-monthly and inter-annual 256 

variabilities are retained by this process. As a result, variables in Fig. 3 have both positive and negative 257 

values. Note that from a physical point of view, it is important to use independent or weakly correlated 258 

predictor variables (i.e., right side variables of Eq. 1 and S1) in the multiple linear regression method. 259 

The fourth column of Table 1 verifies that the correlations between the top-layer SM and the LAI at 8 260 

SGP stations are generally very weak (mostly below r = 0.20, three of which are not statistically 261 

significant). This suggests that the application of the multiple linear regression method is justified. 262 
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 263 

First, focusing on the CF site, our result confirms that there is only a moderate correlation between the 264 

EF and the SMI plotted as a scatter diagram in Fig. 3a. A positive correlation indicates an SM-limited 265 

regime. However, our correlation coefficient (r = 0.41) is smaller than those estimated in previous 266 

studies, such as 0.48 in Fig. 5a of Phillips & Klein (2014) and 0.46 in Fig. 1a of Williams & Torn 267 

(2015). Such small differences in the correlation coefficients are not statistically significant. There are 268 

three major reasons for these differences: 1) Whether or not the climatological monthly means are 269 

removed; 2) Data measured by different instruments at different depths (e.g., 2.5-cm EBBR in the 270 

present study vs. 10-cm Soil Water And Temperature System (SWATS) SM in Phillips & Klein (2014) 271 

and Williams & Torn (2015)); and 3) Analysis of different time periods, during which large inter-annual 272 

variations exist in r(EF, SMI) (Ford et al., 2014). The moderate SM-EF correlations suggest that the 273 

top-layer (2-10 cm below the surface) SM only partly drives the changes in the EF at the CF. In 274 

addition, retaining the monthly climatological means weakens the correlation to r = 0.37 in our 275 

calculation. Similar slight correlation reductions (mostly statistically insignificant) are generally found 276 

at other extended sites by retaining the monthly means, implying weaker EF-SM covariations on the 277 

seasonal scale than on the daily scale. 278 

 279 

Substituting LAI for SMI in the correlation with the EF, Fig. 3b illustrates a slightly enhanced 280 

correlation (r = 0.42) at the CF. This result is consistent with the conclusion of Williams & Torn (2015) 281 

that vegetation plays an important role in the LA coupling at the CF. It is worth noting that the r(EF, 282 

LAI) is much smaller with the satellite LAI in Fig. 3b than with the ground-based LAI (r > 0.7 found 283 

by Williams & Torn (2015) and Phillips et al. (2017). This difference suggests that the uncertainties in 284 

the coarse satellite-retrieved LAI can cause an uncertainty of 0.3 in r(EF, LAI). We then employ the 285 

new application of multiple linear regression (Eq. 1) to quantify the integrated influence of SM and 286 
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LAI on the EF (see Fig. 3c). The multiple correlation coefficient (R = 0.51) is larger than both simple 287 

correlations. In addition, both partial regression coefficients (b(1) and b(2) in Eq. 1) are statistically 288 

significant at the 95% level. These results suggest that both SM and vegetation are important factors in 289 

the LA coupling at the CF and their combined impact is greater than individual ones. Existing metrics, 290 

e.g., r(EF, SMI) and r(EF, LAI), only consider parts of the processes involved in the coupled system, 291 

and hence both underestimate the coupling strength. Applying the sensitivity index (I) with the partial 292 

regression coefficients of SMI and LAI, respectively, we find that vegetation plays a slightly more 293 

important role than the SM in affecting the partition of surface turbulent fluxes at the CF. 294 

 295 

Next, we expand our analysis to the ARM extended facilities (see Fig. 3d-x) to examine the spatial 296 

variability of LA interactions across the SGP region. These extended stations are in the mesoscale 297 

vicinity (60--167 km) of the CF. Large spatial variabilities are found across the small SGP domain in all 298 

3 metrics. The correlations range from insignificantly small (E9, Fig. 3j and E12, Fig. 3m) to 0.55 299 

(E20, Fig. 3v) for r(EF, SMI), 0.19 (E9, Fig. 3k) to 0.51 (E20, Fig. 3w) for r(EF, LAI), and 0.23 (E9, 300 

Fig. 3l) to 0.70 (E20, Fig. 3x) for R(EF; SMI, LAI). It is noted that the coupling strength at the CF is 301 

modest among these stations by all three metrics. These results suggest that generally the coupling 302 

strengths assessed with different correlation coefficients qualitatively agree with each other. Note that 303 

the grass at the CF has been ungrazed for a long time (23 years) and has been mowed, resulting in 304 

denser and healthier vegetation than at other grassland locations, except E12. At E12, the EF-SMI 305 

coupling is insignificant, and thus the coupling at E12 is insensitive to the 2.5-cm SM. EF and LAI are 306 

marginally correlated at E12, however, because the tall grass prairie vegetation has much deeper roots 307 

than the grazed or ungrazed pasture cover that are common at other stations. Other factors, such as 308 

human activity (whether to graze or not) and soil type, may also contribute to the differences between 309 

different stations. In summary, the LA coupling across the SGP region is quite heterogeneous, with 310 
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moderate coupling at the CF. These results suggest that the LA coupling at CF may not be 311 

representative of that across the SGP domain. 312 

 313 

3.2.2 Relative contributions from SM and LAI to EF at different SGP locations 314 

Besides the coupling strength, it is important to identify the relative contributions from various factors, 315 

such as the SM and the LAI, based on observations. Such information provides critical guidance to 316 

improve the representation of the LA coupling in weather and climate models. As described in Sect. 317 

2.3, the multiple regression metric calculates the standardized regression coefficients (B) for the SMI 318 

and the LAI, respectively. The importance of the SMI vs. the LAI to the coupling with EF is diagnosed 319 

by the relative magnitudes of these B coefficients. 320 

 321 

The BSMI and BLAI values at different stations are labeled in the third column of Fig. 3. Surprisingly 322 

different from the traditional view, but consistent with the recent studies of Williams & Torn (2015) and 323 

Bagley et al. (2017), the EF of the majority (6 out of 8) of these stations show stronger correlations 324 

with LAI than with SM. These results emphasize the importance of vegetation impacts on the EF via 325 

stomatal controls on transpiration at these grassland SGP stations. These results also suggest that bare 326 

soil evaporation (tightly correlated to the top-layer SM) contributes less to the LH flux than does ET by 327 

vegetation, which is more controlled by the root zone SM. There is apparent association between the 328 

root zone and the top-layer soil wetness, but the degree may vary depending on the soil and vegetation 329 

types. Moreover, photosynthesis is not only controlled by the root zone SM. Other factors, such as leaf 330 

temperature, solar radiation, relative humidity, and carbon dioxide concentration, also influence 331 

photosynthesis (Govindjee, 2012), and hence the ET through plants. Due to these additional factors, our 332 

results imply different degrees of decoupling between top-layer vs. root-zone SM controls on the EF at 333 

stations surrounding the CF. 334 
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 335 

The two stations (E7 and E20) where the EF is more strongly coupled to SM than LAI are located on 336 

pasture and silty loam soil. With the same soil type (silty loam), but ungrazed pasture vegetation, the 337 

LA coupling is more influenced by the LAI than by the SM at E19, or is influenced nearly the same by 338 

both factors at the CF. It is expected that bare soil evaporation becomes more important than ET by 339 

plants after grazing occurs. These results suggest that anthropogenic activities might play an important 340 

role in affecting the LA coupling. Additionally, at E7 the sensitivity of the EF to the SM (ISMI = 0.04) is 341 

2 times larger than that of the LAI (ILAI = 0.02). This sensitivity difference would be underestimated as 342 

1.3 times if simple correlations were used, because the regression slopes change with the regression 343 

model when the explanatory variables (SMI and LAI in this case) are not totally independent of each 344 

other. Therefore, the multiple regression metric shows advantages over the single-variable metric in 345 

assessing the sensitivities of EF to either SM or LAI by taking into account the weak correlations 346 

between SM and LAI. 347 

 348 

More importantly, the standardized regression coefficient can be used to compare the sensitivities of the 349 

EF to the SM or the LAI at different places, and therefore to evaluate the spatial variability of the SM 350 

and the LAI contributions. For example, it is interesting to compare the SM sensitivities at the extended 351 

facilities to that at the CF. Both the single and multiple variable metrics (see Fig. 3, first and third 352 

columns) reveal qualitatively consistent results of modest SM sensitivity at the CF amongst the 353 

analyzed ARM stations. Overall, the third column of Fig. 3 exhibits a wide spatial range of 354 

contributions of the SM and the LAI: from statistically insignificant BSMI at E9 and E12 to a maximum 355 

of BSMI = 0.49 at E20. The CF numbers fall within the ranges of both BSMI and BLAI over the other 356 

ARM SGP stations. 357 

 358 
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3.2.3 Strength of domain-mean coupling with evaporative fraction 359 

Given the large spatial variability in LA coupling strength across the ARM SGP domain, information 360 

from a single station may not be suitable for evaluating global climate models because model results 361 

represent means over a model grid box with a typical scale of 100 km. The single point measurement 362 

will be more useful when parameterization schemes can better represent the sub-grid variability in 363 

models in the future. To examine the coupling strength over the SGP domain, we repeat the same 364 

analysis on the domain-mean values of EF for the 8 stations (see Fig. 4). The points are less dispersed 365 

on the EF-LAI scatter plot (Fig. 4b) than on the EF-SMI plot (Fig. 4a). Consequently, the mean EF is 366 

correlated more with the mean LAI (r(EF, LAI) = 0.52) than with the mean SMI (r(EF, SMI) = 0.39). 367 

The correlation further increases to R=0.60 with the multiple variable regression. In other words, 36% 368 

(R2) of the mean EF variance can be explained by the mean SM and LAI together. As for the 369 

sensitivities, the mean EF is more responsive to the mean changes in the LAI than in the SM, no matter 370 

which metric is used. As shown in Figs. 3 and 4, it is evident that the measurements at the CF cannot 371 

well represent the domain-mean LA coupling over the SGP region, due to the great spatial 372 

heterogeneity. Given the important role that vegetation plays in the domain-mean LA interactions, it is 373 

critical for models to better simulate the vegetation impacts on LA coupling. 374 

 375 

3.2.4 Coupling with turbulent fluxes 376 

Understanding which factor (LH or SH) dominates the EF variances can provide valuable information 377 

on the surface energy partitioning and some guidance for model development. Although the driving 378 

processes of LH and SH fluxes are largely connected, the physical processes are often represented by 379 

different parameters or parameterizations in the model (Moene & van Dam, 2014; Oleson et al., 2013). 380 

Observational evidence separating the impacts on these two fluxes on the LA interactions will be more 381 

likely to shed light on how to improve the LA coupling in the model. In this section, we replace EF 382 
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with LH and SH in the multiple regression model (Eq. 1) to examine how the SM and the LAI interact 383 

with each of these two turbulent fluxes respectively. 384 

 385 

The multiple regression results for the LH and the SH are shown in Figs. 5 and 6. As the SGP is a SM-386 

limited area in summer, the slopes of the LH fitting line are positive and thus negative for the SH fitting 387 

lines. The coupling strength generally decreases when switching from the EF (see Fig. 3 third column) 388 

to turbulent fluxes, except for the E9 site. The coupling strengths with the LH and the SH both vary 389 

from statistically insignificant to R = 0.57, but the weakest and strongest interactions occur at different 390 

locations: E7 and E20 for the LH, and E9 and E19 for the SH. The minimum and maximum coupling 391 

locations are also different from those for the EF: E9 and E20, resulting from the competing 392 

relationship between the LH and the SH in determining the EF. 393 

 394 

All the sites (except for E7 with insignificant statistics) and the domain mean (Fig. 5i) show larger 395 

contribution from the LAI than from the SM to the LH variance (see Fig. 5). Moreover, only 2 sites (E4 396 

and E20) have statistically significant SM contributions to the LH. Over SGP grassland, it is obvious 397 

that the impact on EF by ET dominates over bare-soil evaporation. As for the SH (see Fig. 6), the SM 398 

and the LAI show comparable impacts: almost half the sites are SM-dominant and the remaining are 399 

LAI-dominant. The SM exerts stronger control on the SH domain average than does the LAI. 400 

Therefore, the overall greater control of the LAI on the EF is largely through its overwhelming 401 

influence on the LH. Regarding the spatial patterns, Figures 5 and 6 demonstrate similarly large 402 

variations in the strength of the coupling with turbulent fluxes compared to that with EF (refer to Fig. 403 

3). The coupling strength at the CF is also moderate relative to other analyzed SGP locations. 404 

 405 

4. Further discussion of the enhanced LA coupling metric 406 
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We have demonstrated a new application of multiple linear regression to enrich the current arsenal of 407 

land-atmosphere (LA) coupling metrics. Since the LA coupling strength reflects the integrated effect of 408 

interactions between the surface and the atmospheric boundary layer (Ek & Holtslag, 2004), compared 409 

to traditional single-variable metrics, one obvious advantage of this new application is that it provides a 410 

more comprehensive measure of the integrated impacts of multiple factors such as soil moisture or 411 

vegetation on variables such as EF or turbulent fluxes. By taking into account the standard deviations 412 

in both the predictor and response variables, the standardized regression coefficient (B) exceeds the 413 

sensitivity index (I) as a means to separate the impacts of each individual driver, and quantify the 414 

spatial patterns of their relative contributions to the overall coupling strength. We argue that the 415 

standardized regression coefficient is closer to reality since it reflects multiple impacts, and thus is a 416 

better measure than the conventional simple regression-based sensitivity. By examining the cumulative 417 

influences from all factors, we could renew or confirm our current understanding of the controlling 418 

mechanisms of the coupling for different locations and times. Since the new multiple linear regression 419 

application evaluates different mechanisms in a consistent manner, it overcomes the possible 420 

inconsistency that would otherwise arise in the application of single-variable regression, due to the 421 

dependencies among the explanatory variables. Moreover, besides near-surface SM and LAI, we can 422 

include more predictor variables (e.g., root-zone SM or other atmosphere variables) in the regression 423 

model. The left side of the regression model is also flexible. The general matrix forms of Eq. 1, the 424 

regression coefficients, and the multiple correlation coefficient are given in the Supporting Information. 425 

While here we demonstrate the application of multiple linear regression to the terrestrial segment of LA 426 

coupling, it is worth noting that this method can also be applied to the atmospheric segment, or to both 427 

the terrestrial and atmospheric segments. 428 

 429 

5. Coupling sensitivity to flux fetch, temporal averaging scale, and dry vs. wet years 430 
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The terrestrial component of LA coupling strength assessed from observations is expected to be 431 

sensitive to a number of factors, such as the turbulent flux fetch, the temporal averaging length, and dry 432 

vs. wet years (Qian et al., 2013). It is useful to demonstrate the sensitivity of multiple linear regression 433 

metrics to these factors. More importantly, we would like to verify the robustness of large 434 

heterogeneities in LA coupling over pasture/grassland revealed in previous sections by incorporating 435 

these factors. 436 

 437 

The accuracy of EBBR flux measurements depends on wind direction, because the fetch can be 438 

insufficient for some directions at most sites (Cook, 2018). Table 1 last column lists the wind directions 439 

for which there is sufficient grassland to ensure high quality flux measurements. The multiple linear 440 

regression coefficients R(EF; SMI, LAI) calculated without and with the wind direction filter are 441 

plotted in the first and second columns in Fig. 7a. Both columns use the daily means on the days when 442 

the data for all 3 quantities are available. It should be noted that to make consistent comparisons with 443 

other columns for longer averaging intervals, here we do not remove the climatological monthly 444 

averages as in previous sections. The impacts of applying the wind direction filter on the correlations 445 

are small at all locations with the largest change from R=0.67 to R=0.54 at E4. Although there are some 446 

subtle changes in the relative magnitude at different sites, the overall spatial variation of the LA 447 

coupling as indicated by the spread of R values remains almost the same after filtering out the degraded 448 

flux data. The corresponding standardized regression coefficients (BSMI and BLAI) of 1-day averaging 449 

length are shown in Fig. 7b. Color symbols represent results with the wind direction filter, while black 450 

symbols indicate those without the wind direction filter. Since the sign of B values can be arbitrary 451 

when they are statistically insignificant, we plot their absolute values in Fig. 7b. Similar to R values, 452 

the B values are not sensitive to the wind filter. The vegetation still shows stronger influence than the 453 

SM on the LA coupling strength at all sites except E7 and E20. At E20, the relative importance of the 454 
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LAI and SM to the coupling changes whether surface fluxes are filtered with wind directions (Fig. 7b) 455 

or whether the climatological monthly averages are removed (see Fig. 3x and Fig. 7b).  456 

 457 

The terrestrial segment of LA coupling occurs at various time scales. The second to fifth columns of 458 

Fig. 7a illustrate the dependence of EF coupling with LAI and SM on different temporal averaging 459 

lengths. Since the MODIS LAI data are reported at a 4-day interval, we calculate the correlations from 460 

EF, LAI, and SMI running means of 8, 16, and 32 days centered on the day when LAI data are 461 

available. As expected the correlation increases with averaging length. Nevertheless, the R range stays 462 

almost as a constant, suggesting that the heterogeneity in coupling strength does not change with 463 

different averaging scales. As to their relative contributions, the vegetation plays a more important role 464 

than the SM in the coupling to the EF at most locations at different time scales (Fig. 7b-e). Both R and 465 

B values are generally more insensitive when the averaging length exceeds the weekly scale. 466 

 467 

Figure 8 shows the results of 16-day averages for dry vs. wet years. Results for other averaging 468 

intervals (not shown) are similar to those in Fig. 8. Based on the Palmer Hydrological Drought Index 469 

(Heim, 2002) data from NOAA’s National Centers for Environmental Information 470 

(https://www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp), the warm season of years 2006 and 471 

2011 are relatively dry, while 2007 and 2008 are relatively wet. Stronger coupling strength to the EF 472 

can be found at all stations except for E9 during dry years than wet years (Fig. 8a). This result confirms 473 

the expectation that coupling strength enhances under drier SM condition in the SM-limited regime. 474 

However, the SM contribution (BSMI) displays nonmonotonic changes between dry and wet conditions 475 

(Fig. 8b). For instance, BSMI is larger at the CF and E20, but is smaller at E7 and for the domain mean 476 

during the wet years. Nonetheless, most sites show greater contribution from LAI than from SM 477 

regardless of wetness conditions. 478 
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 479 

Parallel results of coupling with individual turbulent flux (not shown) are similar to those of coupling 480 

with the EF. Overall, the main conclusions regarding the large LA coupling heterogeneities and the 481 

greater vegetation impact on the coupling over the same surface type (i.e., pasture/grassland) are still 482 

valid when taking into account additional factors, such as turbulent flux fetch, temporal averaging 483 

scale, and wetness condition. 484 

 485 

6. Conclusions 486 

Heterogeneity in the terrestrial segment of land-atmosphere (LA) coupling in the warm season (May—487 

August) at SGP is studied with multi-year (2004—2011) observations of the near-surface soil moisture 488 

(SM) and surface turbulent fluxes from the DOE ARM program and the leaf area index (LAI) from the 489 

NASA MODIS instruments. The LA coupling strength is quantified with a new application of multiple 490 

linear regression that correlates the surface EF with near-surface SM and LAI. Theoretically, our 491 

enhanced LA coupling metric is based on the multidimensional nature of EF-SM relationship, which is 492 

consistent with a new framework for differentiating SM-limited and energy-limited evaporation 493 

regimes (Haghighi et al., 2018). Our analysis focuses on the daily mean anomalies relative to the 494 

climatological monthly averages. This study complements the observational LA coupling database of 495 

the traditional SM-EF relationship (Ford et al., 2014; Phillips & Klein, 2014; Phillips et al., 2017) and 496 

the recently established LAI-EF relationship (Williams & Torn, 2015; Bagley et al., 2017). Relying on 497 

the measurements over the same land type of pasture/grassland, we quantify large spatial variabilities 498 

in key coupling variables (e.g., LH, SH, EF, SM, and LAI), in the interaction strength between these 499 

variables, and in the relative contributions from the SM and the LAI to the coupling. These large 500 

heterogeneities exhibited in various aspects of the LA coupling over the same land type suggest that it 501 

may not be appropriate to assume the same LA coupling behaviors over the same land cover at the 502 
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SGP. More importantly, these results highlight the challenges in accurately representing surface 503 

heterogeneity and LA coupling in regional and global models, as it requires accurate, high resolution, 504 

and timely information on soil texture (hydraulic parameters; SM and evapotranspiration (ET)), land 505 

cover type, and vegetation health (e.g., LAI) that are difficult to obtain (particularly soils). If any of 506 

these are incorrect, it will result in deficiencies in SM-LAI-ET relationships as will be the coupling 507 

deduced from the model. Additionally, it is also important to keep in mind the large spatial variabilities 508 

in the LA coupling when evaluating global or regional models against domain-mean observations. 509 

 510 

This study reveals moderate to weak LA coupling strengths at the analyzed SGP locations. Stronger LA 511 

coupling strength is found at all locations by the multi-variable method than by the individual 512 

correlations between EF and SM or LAI. Most of their individual regression coefficients of the multi-513 

variable method also are statistically significant, suggesting that both SM and LAI are important factors 514 

for the coupling with EF. The relative importance of these two factors, however, varies at different SGP 515 

sites due to differences in land use, anthropogenic activities, rooting depth, and soil type. Most sites (6 516 

out of 8) show stronger influence of vegetation than of near-surface SM on the EF. Furthermore, when 517 

we examine the impacts on the LH and the SH separately, the LAI dominates the control on the LH 518 

oscillations, while the SM and the LAI exert comparable influence on the SH fluctuations. Therefore, 519 

the overall greater LAI control on the surface energy partitioning at the SGP is mainly obtained through 520 

the LH pathway. This observational evidence implies that better vegetation controls on the EF should 521 

be reflected in climate models, and such modifications may contribute to reducing the longstanding LA 522 

coupling associated model biases over the SGP (Phillips et al., 2017). An attempt in this direction by 523 

Williams et al. (2016) enhances the modeled ET by plants and suppresses the near-surface bare soil 524 

evaporation in the off-line Community Land Model 4.5 and the Community Earth System Model 1.2.2 525 

single-column model. Introducing such model changes shows encouraging results (more realistic SM-526 
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EF and LAI-EF relationships as well as smaller surface temperature and precipitation biases) and might 527 

also be effective in a global or regional modeling framework. 528 

 529 

At the CF, we find moderate coupling strength, and LAI is indeed an important factor besides SM in 530 

affecting EF, which is consistent with previous studies (Williams & Torn, 2015; Bagley et al., 2017) in 531 

highlighting the vegetation controls in the terrestrial leg of the LA coupling. However, the coupling at 532 

the CF cannot represent the range of the SGP sites well due to their great heterogeneity (R: 0.23--0.70). 533 

We should note that large uncertainties may exist due to the coarse MODIS LAI data used in the 534 

calculation. These findings are insensitive to the wind direction-based flux fetch filter, temporal 535 

averaging scale (1 day to 32 days), and dry vs. wet year conditions. Our result emphasizes the pressing 536 

need for a better, denser observational network, including point observations of LAI and Normalized 537 

Difference Vegetation Index (NDVI), for evaluation of the terrestrial LA coupling in models. 538 

Furthermore, the denser network will greatly reduce the risk of sampling biases, which could exist for 539 

single-point measurements, due to the naturally large heterogeneities in LA interactions. 540 

 541 

It remains largely unclear what mechanisms drive this spatial variability. The differences in the 542 

vegetation and soil types, soil depth (surface vs. root zone), and anthropogenic activities can partly 543 

explain the variability in coupling. The mesoscale circulation also might be a potentially important 544 

factor, as implied by the transition in climate from warmer and drier at the southwest corner of the 545 

ARM SGP domain to cooler and moister at the northeast corner. The nonlinear relationship in the LA 546 

coupling pathways remains an issue for the multiple linear regression, which may be partly solved by 547 

conditional sampling (Ford et al., 2014). 548 

 549 

This assessment focused on the terrestrial leg (SM-EF) of LA coupling at the SGP. The metrics 550 
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established here can be readily applied to measurements at other locations, such as the FLUXNET 551 

network (http://www.fluxdata.org), to study LA coupling globally. The statistical approach and metrics 552 

demonstrated here are likely to be even more useful for extended LA coupling studies that include the 553 

atmosphere and PBL feedback, entrainment, ambient temperature and humidity, and clouds and 554 

precipitation, and their relationship with the land surface (SM-EF-LAI) variables of interest. Finally, 555 

although the new multiple linear regression application is illustrated here with observational data, it can 556 

also be applied readily to model simulations. 557 

 558 
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 719 
 720 
Figure 1. Mean warm-season (May—August) geographic patterns of years 2004—2011 for (a) EBBR soil 721 
moisture (unit: volumetric m3/m3) at 0.25o x 0.25o resolution and (b) MODIS LAI (unit: m2/m2) at 500m x 500m 722 
resolution. Site locations used in the study are marked by circles. See Table 1 for site names. 723 
 724 
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Figure 2. Taylor diagrams for key LA coupling variables: (a) latent heat (LH) flux, (b) sensible heat (SH) flux, (c) 726 

evaporative fraction (EF), (d) soil moisture index (SMI), and (e) leaf area index (LAI) at different SGP sites 727 

compared to the CF, which is denoted by the reference point (1, 0). Standard deviations are normalized by 728 

that of the CF. Biases are indicated by the size and shape of the markers (top left of each panel). All the 729 

correlations pass the two-tailed t-test at a 95% confidence level except for the LAI at sites E4 and E7. The 730 

normalized standard deviations of LAI at E7 and E12 are off the charts, and hence their numbers are 731 

labeled on the bottom of panel (e). 732 
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Figure 3. Scatter plots of daily averages (May—August of years 2004—2011) of evaporative fraction 734 

(EF) vs. soil moisture index (SMI) (first column), leaf area index (LAI) (second column), and SMI 735 

and LAI (third column) at the 8 ARM SGP sites (rows). The climatological monthly means are 736 

subtracted from the raw time series. Red lines represent the least squares regression lines. Simple 737 

(r) and multiple (R) correlation coefficients, sensitivity indices (I), and standardized regression 738 

coefficients (B) are denoted on each panel. For the multiple regression metric, the larger I or B 739 

numbers are highlighted in blue (note that SMI and LAI values may appear the same due to round 740 

off errors). Statistically insignificant quantities at a 95% confidence level are in red. 741 

 742 

 743 

Figure 4. Same as Fig. 3, but for domain means averaged over the 8 ARM SGP sites. 744 
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 746 

Figure 5. Same as Fig. 3, but for scatter plots of latent heat (LH) vs. SMI and LAI for the 8 stations as well as the 747 
domain averages. The domain-mean results are shown on panel (i). 748 
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Figure 6. Same as Fig. 5, but for scatter plots of sensible heat (SH) flux vs. SMI and LAI. Note that the I and B 751 
numbers with larger absolute values are in blue. 752 

 753 

 754 

Figure 7. (a) Multiple correlation coefficient R(EF; SMI, LAI) for (May—August of years 2004—2011) as a 755 
function of averaging intervals. All columns show results with wind direction filter except for the first column. 756 
Scatter plots of absolute values of standardized regression coefficients BLAI vs. BSMI with a (b) 1-day, (c) 8-day, 757 
(d) 16-day, and (e) 32-day averaging length. Color symbols represent results with the wind direction filter, 758 
while black symbols indicate those without the wind direction filter. The black lines denote the 1:1 line. 759 
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 761 
Figure 8. Same as Fig. 7ab, but for comparisons of 16-day averaging results between dry (2006 and 2011) and 762 
wet (2007 and 2008) years. In panel (b), results from dry years are in red, whereas those from wet years in 763 
blue. 764 
 765 
 766 

Table 1. Summary of correlation coefficients between SMI and LAI denoted by r(SMI, LAI), number of data 767 
points denoted by N, surface vegetation, soil types, and wind directions for better EBBR flux measurements at 768 
different locations. Data point numbers in Figs. 3--6 are the same as shown here because we apply the same 769 
screening algorithm for all methods. Statistically insignificant numbers at a 95% confidence level are in red. 770 

Sites 
N 

r(SMI, 
LAI) 

Surf. Type Soil Type 
Wind direction (degree) 
(Cook, 2018) Abbr. Location 

CF/E13 Lamont, OK 208 0.30 Pasture (ungrazed) Silty Loam 0—52, 142—194, 328—360 
E4 Plevna, KS 228 0.15 Rangeland (ungrazed) Fine Sandy Loam 0—158, 202—360 
E7 Elk Falls, KS 179 0.21 Pasture Silty Loam 0—244, 296—360 
E9 Ashton, KS 215 0.07 Pasture Loam 0—360 

E12 Pawhuska, OK 208 0.03 Native Tallgrass Prairie Sandy Loam 0—360 
E15 Ringwood, OK 216 0.28 Pasture Sandy Loam 133—360 
E19 El Reno, OK 174 0.08 Pasture (ungrazed) Silty Loam 0—133, 151—360 
E20 Meeker, OK 221 0.15 Pasture Silty Loam 0—230, 310—360 

Mean  246 0.18    
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