

HPC Lunch and Learn

March 2019 Deep Learning Applications in Manned Spaceflight

Matthew NoyesNASA JSC - Advanced Operational Concepts LabLawrence HessburgLui WangGraduate StudentAR Lead

- Deep Learning Overview/Definitions
- Intelligent Personal Coach
 - Use of open source datasets for space applications
- Safety Analysis with Deep Learning
 - Use of open source datasets for space applications
- 6DOF Object Pose Estimation with Virtual Training Dataset
 - Doing deep learning with hard-to-generate datasets
- Potential Areas of Research/Future Needs for Space Applications

Intro - What is "Deep Learning"?

- Artificial Intelligence a simulation of intelligent systems
- Machine Learning Self-modifying Al
- **Deep Learning** Self modifying AI with multiple hidden layers
- Neural Networks/Deep Learning attempt to replicate the structure of the human brain on a rudimentary level

What is "Training"?

- Basic steps of training:
 - Weights are initially randomized
 - Feed training examples through network and compute Loss at output
 - Reinforce "good" weights through backpropagation
 - Evaluate performance on test examples
 - Repeat
- Must have accurate Loss function and large, diverse, *labeled* training set

Useful Definitions

Loss - How far is the prediction from the truth?

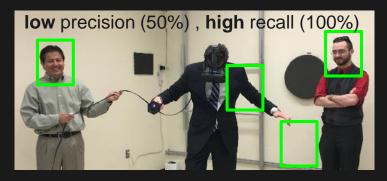
Precision - How many of the predictions are correct?

Recall - How many of the objects were found?

<u>Mean Average Precision</u> - Takes into account both Precision and Recall

Ground Truth - Known, labeled example

	apple	banana	lime	orange	lemon
truth	0	0	0	1	0
prediction	0.05	1e-4	0.08	0.7599	0.11



Intelligent Personal Coach

Intelligent Personal Coach - Background

- Exercise is vital
- Communication delay
- Characteristics of Intelligent Personal Coach:
 - Health/Performance monitoring
 - Workout/Lesson Planning
 - Remediation real-time guidance during exercise

Intelligent Personal Coach - Requirements

- Real-time feedback
- Intuitive UI, easy to act upon
- No wearables visual or audio feedback only
- Initially focused on simple squat exercise:
 - Keep upper back straight
 - Keep chest up
 - Keep correct bar path during range of motion

Intelligent Personal Coach - openpose

- Openpose: deep-learning based human pose estimation framework developed by CMU
- Accurate keypoint detection for desired joints
- Works on any image/video feed (i.e. webcam)
- But: joint keypoints in image-space isn't enough to accurately judge exercise form

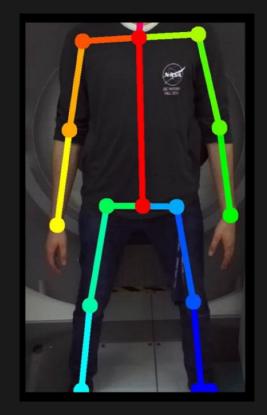
NASA

Intelligent Personal Coach - ZED camera

- Uses dual-camera parallax to estimate depth in an image/video
- Realtime depth map at full camera resolution
- Combine depth map with joint keypoints to determine form

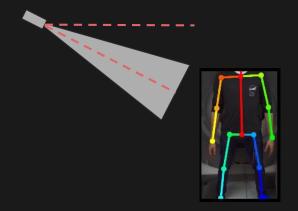
Intelligent Personal Coach - BodyModel

- BodyModel class to integrate pixel-space keypoints from openpose with depth info from ZED camera.
- ZED video stream feeds to openpose network
- Underlying layer visualizations can be built upon

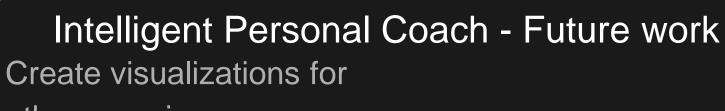


Intelligent Personal Coach - Design

- Single ZED camera mounted directly in front of subject on the ceiling.
- Short throw projector on opposing wall for visualization
- Software automatically compensates for camera pitch angle



Intelligent Personal Coach - Results



other exercises

- Utilize more robust UI framework for visualization
- Gamification

• Hardware optimization

Safety Analysis with Deep Learning

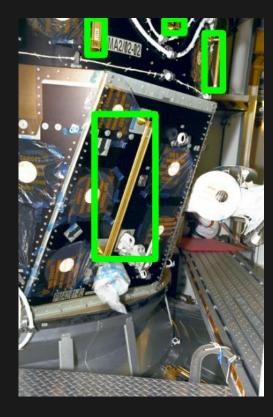
DML Safety Analysis - Motivation

- Micrometeoroid and Orbital Debris (MMOD) damage identification on the ISS:
 - MMODs on handrails can tear spacesuit gloves.
 - Tedious process: human in front of the screen zooming and inspecting images manually for hours
 - Introduces opportunity for human error due to fatigue, attention span, etc.
- Develop a system to identify handrails in images
 - Goal: assist imagery team by automating this manual and laborious process.

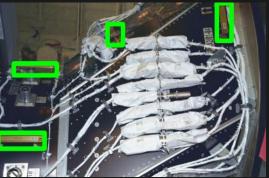
Faster R-CNN - 2D Case

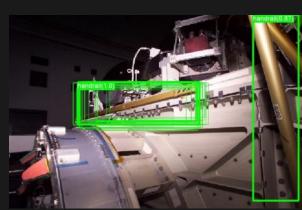
- Trains to predict bounding boxes around image objects
 - 2 steps: localization, and classification
- Training data: both images and bounding box coordinates
- Network will predict 4 points in pixel space and a class for each object it finds

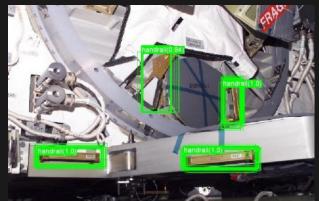
DML Safety Analysis – Training Pictures

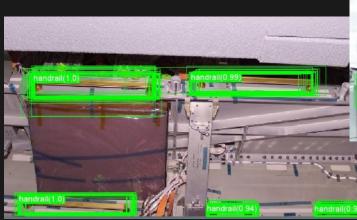


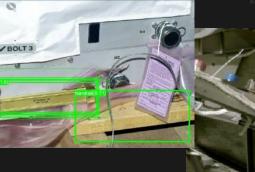


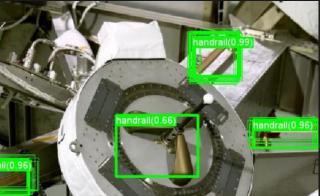




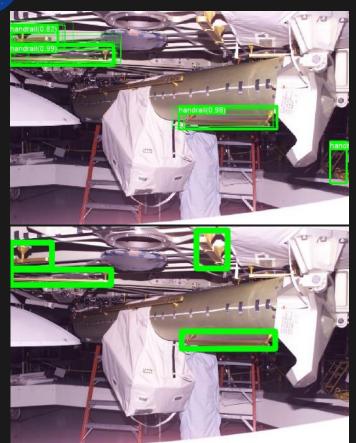




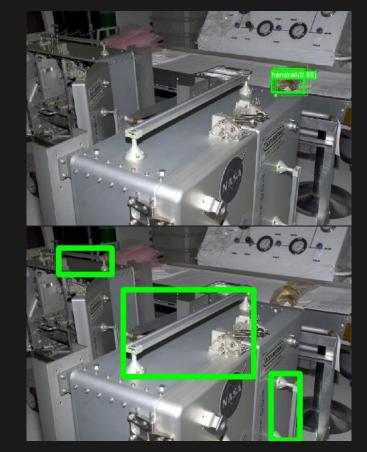




DML Safety Analysis – False Negatives

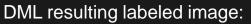


NASA

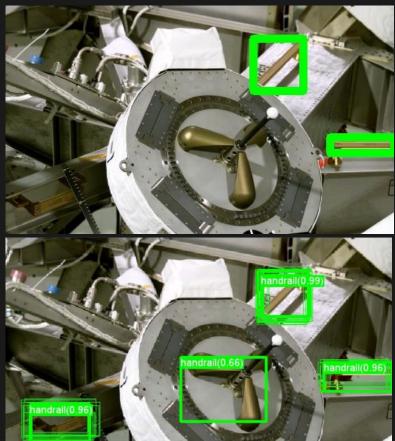


Better and Worse than Human

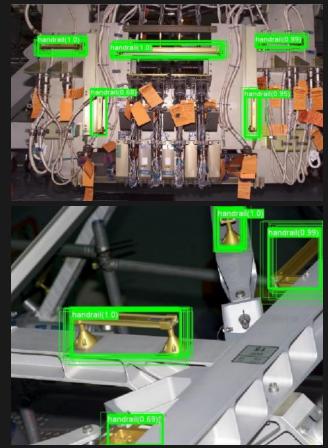
Human labeled image

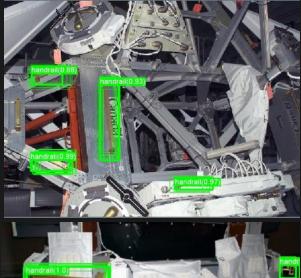


- Found a missing handrail from human labeled image
- Found a False Positive

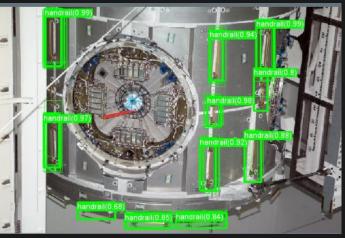


Success in Complex Images

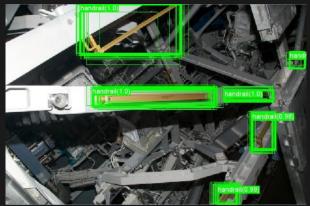


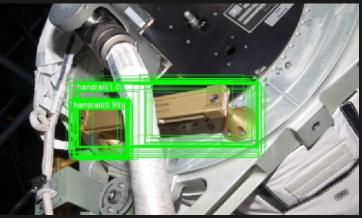


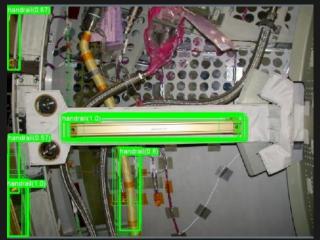
Success in Complex Images



NASA







DML Safety Analysis - Issues

- Number of images for training and validation too low
- Existing labels of images not accurate
- Labeling images is manual intensive

6DOF Object Pose Estimation with Virtual Training Dataset

Object Pose Estimation - Background

• Motivation - AR Object Alignment

- AR procedure assistant needs to align a
 3D model with reality
- Traditionally done with sticker anchors
- Main Problems
 - If the object moves relative to the sticker, the AR model cannot compensate.
 - Can only register by looking directly at the sticker
 - Inertial drift

Object Pose Estimation - Background

- Goal eliminate the need for stickers using deep-learning based pose estimation.
 - "Continuous" object registration to eliminate drift
 - Support for partial occlusion, many more viewpoints
 - Support for different geometries

Requirements

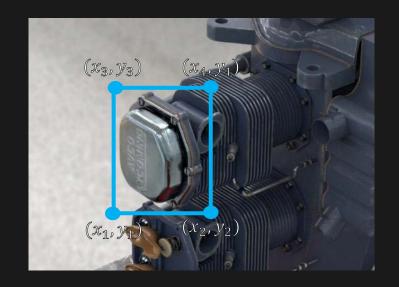
- NN that takes RGB image as input, produces 6-DOF pose estimation as output
- Large, diverse training dataset of 6-DOF labeled images.

Object Pose Estimation - Approach

- Acquiring and manually labeling a large enough dataset to be useful is a near-impossible task
- Instead, use photorealistic renderings from CAD model as training data
 - Generate thousands of pre-labeled images quickly
 - Easily vary parameters (background, clutter, distortion, lighting, etc)
- Two problem phases:
 - \circ ~ Test viability of synthetic training data on simplified 2D case
 - Advance to full 6-DOF predictions
- Can we generate synthetic images with high enough quality to train on for a real test set?

Object Pose Estimation - 2D Case

- Detecting piston covers on Ellington Field airplane engines:
 - 3k-5k synthetic images rendered for each iteration
 - Bounding boxes automatically generated in Maya
 - ~50 photographs and several videos for testing
 - Trained TensorFlow implementation of Faster R-CNN
 - Relatively rapid series of small scale tests



Object Pose Estimation - 2D Case

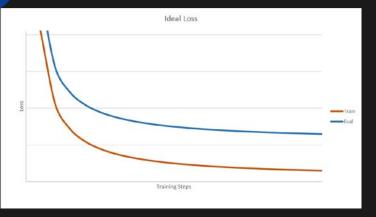
- Identified sensitivities of network through many training iterations
- Gradually added complexity to dataset (clutter, colors, reflectiveness, lighting, etc..)
- Gradually tuned hyperparameters of network (batch size, learning rate, data preprocessing etc..)
- Eventually reached >90% accuracy

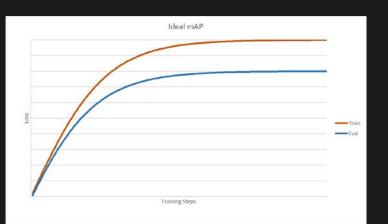


Object Pose Estimation - 2D case

© Red Bull Air Race / https://www.youtube.com/watch?v=OtdiLc_wajg

Implications – Ideal Case

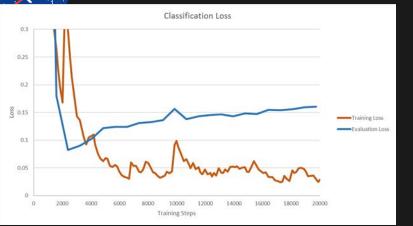




Key observations:

- Steep at first, then follows a shallow gradient
- Both sets have the same general shape, even though the eval set has worse performance
- Our configuration:
 - 1000 synthetic training images
 - ~30 manually labeled test photographs

Our Results



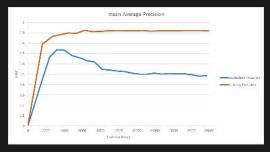
Key observations:

- Evaluation set reaches optimal values at ~2k steps
- Training set performance converges quickly, while evaluation set diverges

What does this mean?

Model is quickly overfitting to training set

Our Results



Step 20000



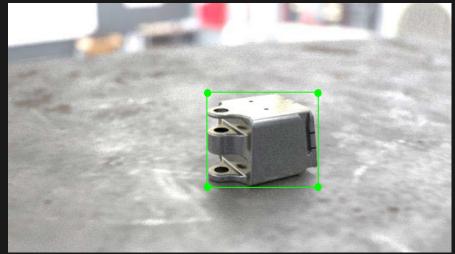
Object Pose Estimation - 3D case

- Larger training set
 - ~10k images or more
- More diverse training set
 - Lighting
 - Materials
 - Background
 - Occlusion
 - Color
 - Focus
 - More negative examples

- Other considerations
 - More photos for evaluation
 - Trying different algorithms and cross training
 - Explore data augmentation with random filters, distortion and scaling

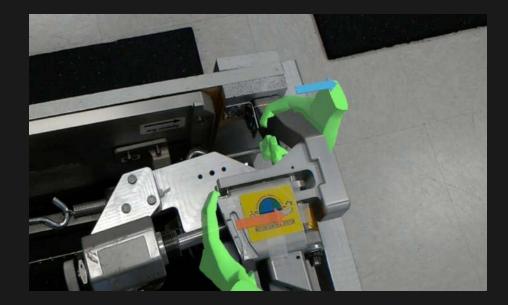
Object Pose Estimation - 3D case

- 6-DOF pose estimation is a much harder problem than 2D bounding boxes
- Singleshotpose new algorithm developed by Microsoft
 - Based on the same principle as 2D bounding box estimation
 - Instead, train to predict 2D *projection* of 3D bounding box
- Divides the image into a series of boxes, with identified centroids in a box, along with point offsets relative to the centroid (YOLOv2).



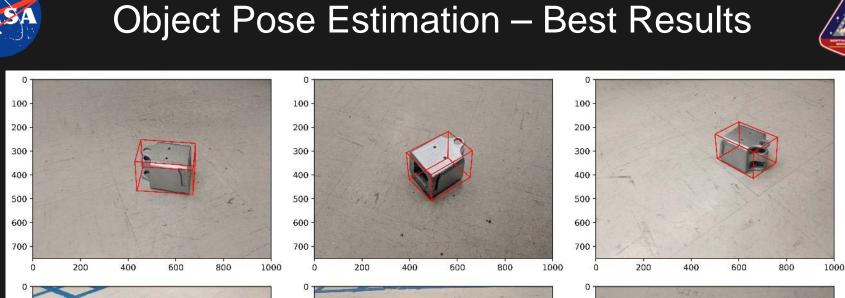
Object Pose Estimation - PnP

- Use PnP algorithm to recreate 3D coordinates with respect to camera
- 3D points can be used in AR procedure assistants

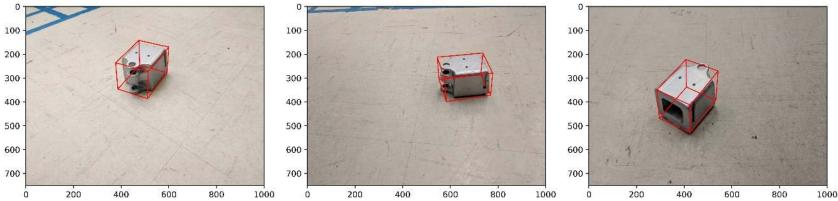


Object Pose Estimation - 3D case

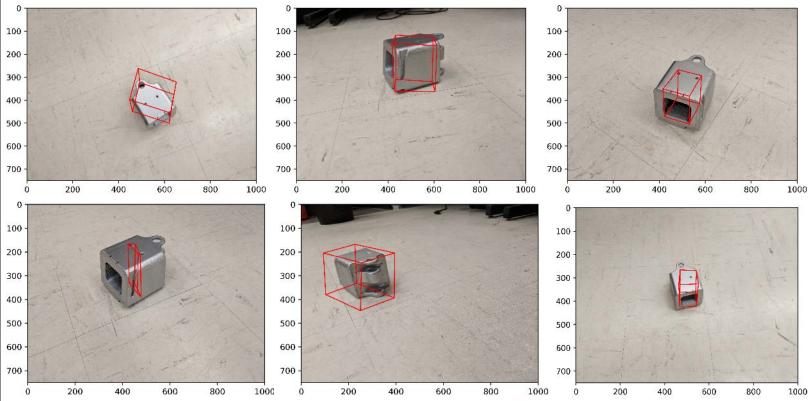
- Snubber-cup pose estimation:
 - 3k synthetic images rendered
 - 3D bounding boxes and 2D projections automatically generated with Maya
 - 3D printed model for testing
 - Trained slightly modified reference implementation of singleshotpose



NAS



Object Pose Estimation – Worst Results...



Object Pose Estimation - Future Work

- Provide clearly defined metric for accuracy
 - Planned out workflow for using stickers as ground-truth for future iterations
- Gradually add complexity to system
 - Realistic background, lighting, partial occlusion, camera noise, etc.
- Create pipeline for future use cases
 - CAD model as input trained network as output

Bigger Picture - DML at NASA

- Biometric Monitoring
 - Pupillometry, EEG, fNIR
 - Predict physical and mental health problems
- Vehicle Systems Management
 - Augmented Reality Procedure Assistants
 - Autonomous Surface Vehicles and Navigation
 - Mission Control AI

Acknowledgements

- Lawrence Hessburg Graduate Student
- Lui Wang Augmented Reality Expert
- Frank Delgado Advanced Operations Concepts Lab Manager

Questions