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Abstract 16 

The evolution of atmospheric organic carbon (OC) as it undergoes oxidation has a controlling influence 17 
on concentrations of key atmospheric species, including particulate matter, ozone, and oxidants. 18 
However, the full characterization of OC over hours to days of atmospheric processing has been stymied 19 
by its extreme chemical complexity.  Here we study the multigenerational oxidation of α-pinene in the 20 
laboratory, characterizing products with several state-of-the-art analytical techniques. While 21 
quantification of some early-generation products remains elusive, full carbon closure is achieved (within 22 
uncertainty) by the end of the experiments. This enables new insights into the effects of oxidation on OC 23 
properties (volatility, oxidation state, and reactivity), and the atmospheric lifecycle of OC. Following an 24 
initial period characterized by functionalization reactions and particle growth, fragmentation reactions 25 
dominate, forming smaller species. After approximately one day of atmospheric aging, most carbon is 26 
sequestered in two long-lived reservoirs, volatile oxidized gases and low-volatility particulate matter.  27 
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Organic compounds play a central role in the chemistry of the atmosphere, by contributing to ozone 28 
formation,1,2 serving as the primary sink for oxidants in the atmosphere,3,4 and constituting a substantial 29 
fraction of global submicron particulate matter.5,6 Organic carbon (OC) enters the atmosphere primarily 30 
as high-volatility gases. Oxidation of these compounds yields a large number of products, including 31 
organic species in the gas phase (gas-phase OC, gOC), organic species in the condensed phase (particle-32 
phase OC, pOC), and inorganic carbon-containing species (CO and CO2). All of these products (other than 33 
CO2) may themselves undergo further oxidation, continuing this process over multiple generations to 34 
produce a highly complex, chemically dynamic mixture of compounds that spans a wide range in 35 
chemical composition and properties (e.g., volatility).7–11 Oxidation continues until OC is either 36 
converted to CO2, or removed from the atmosphere through deposition to the Earth’s surface, thereby 37 
transporting a wide range of organic compounds into other components of the Earth system. Our ability 38 
to track the oxidative evolution of OC over its entire atmospheric lifetime therefore controls not only 39 
our ability to understand critical issues in air quality and atmospheric chemistry, but ultimately to 40 
understand the impacts of organic emissions on human health, ecosystems, and Earth’s climate. 41 

The comprehensive measurement of all oxidation products from a given chemical system has been 42 
elusive due to the analytical challenges associated with detecting, characterizing, and quantifying 43 
compounds within complex organic mixtures. Only studies of the simplest organic compounds have 44 
achieved “carbon closure,” fully characterizing the product mixture throughout oxidation.12 For larger 45 
species, a large fraction of the products has remained unmeasured and/or uncharacterized, even in the 46 
early stages of reaction (first 1-2 generations of oxidation).13,14 As a result, there is substantial 47 
uncertainty as to the fate and impact of OC over timescales longer than several hours after emission. For 48 
example, the possibility of substantial unmeasured “pools” of OC has major implications for the 49 
formation of particle-phase mass through the gas-to-particle partitioning of condensable gases. It has 50 
traditionally been assumed that such unmeasured carbon will not condense to contribute to particle-51 
phase mass. However, if instead unmeasured carbon in experiments is irreversibly lost to chamber walls 52 
via vapor deposition15 before reacting to form lower-volatility gases or oxidizes to form low-volatility 53 
species over multiple generations not typically accessed in laboratory studies,9,16 then formation of pOC 54 
from many precursors may be substantially higher than understood. The properties and reactivity of 55 
organic oxidation products formed over multiple generations will also impact ozone production, removal 56 
pathways (e.g. wet and dry deposition) of pollutants, and reactivity and cycling of oxidants. A 57 
quantitative, predictive description of these processes across all spatial scales relies critically on the 58 
measurement of the chemistry of such species, and more generally on our ability to measure and track 59 
all OC in a reactive system. 60 

Here we apply recent advances in analytical instrumentation to characterize the full mixture of products 61 
formed in hydrocarbon oxidation with the goal of achieving “carbon closure,” enabling a more complete 62 
understanding of the chemical properties and transformation processes of atmospheric OC. We access 63 
the entire range of expected chemical properties of suspended products17 with an array of state-of-the-64 
art analytical instruments: an aerosol mass spectrometer18 (AMS) and scanning mobility particle sizer 65 
(SMPS) to measure pOC, a proton transfer reaction mass spectrometer19,20 (PTR-MS) and two chemical 66 
ionization mass spectrometers21 (I- CIMS and NO3

- CIMS22–25) to measure gOC, and two tunable infrared 67 
laser differential absorption spectrometers (TILDAS) to measure C1 compounds (CO, formaldehyde, and 68 
formic acid). We combine the data from these instruments to present a unified, time-resolved 69 
description of the chemical composition of two oxidation systems: initial oxidation of α-pinene (a 70 



monoterpene) through photo-oxidation by hydroxyl radicals (OH) in the presence of NO, and ozonolysis 71 
in the absence of NO, followed in both cases by continued high-NO OH oxidation. See Methods and 72 
Supplementary Information Section S1 for details on instrument operation and reaction conditions. 73 
These systems were chosen because their initial chemistry has been subject to extensive theoretical and 74 
experimental characterization,26–30 but the subsequent multi-generational oxidation (“aging”) of the 75 
reaction mixture (particularly gOC) has received substantially less study.31 By the end of the 76 
experiments, all carbon is measured to within uncertainty, enabling a coherent and detailed picture of 77 
the chemical evolution of the product mixture, and providing new insights into the lifecycle and fate of 78 
atmospheric OC. 79 

Results 80 

Carbon closure 81 

All products measured in the OH-initiated oxidation of α-pinene are shown in Figure 1. Results are 82 
qualitatively similar to those in the ozonolysis experiment, so those results are given in the 83 
Supplementary Information (Figure S1). Initial reaction of α-pinene is immediately accompanied by a 84 
concomitant rise in oxidation products in both gOC and pOC. Particle-phase OC is formed in the first 85 
generations of oxidation, with only minor additional formation after the α-pinene is fully consumed, and 86 
accounts for 14±3% of the total carbon by the end of the experiment (~24 hours of equivalent 87 
atmospheric oxidation). Identified gas-phase products include CO, formaldehyde, formic acid, acetic 88 
acid, acetone, and pinonaldehyde (identified as described in Supplementary Information Section S5). 89 
Concentrations of each identified product vary over the course of the experiment, but in total account 90 
for 41±5% of the carbon by the end. CO2 is not measured here but is expected to be similar in 91 
concentration to CO (~4%).32  92 

In addition to known compounds, there are a large number of ions (370) in the PTR-MS and I- CIMS mass 93 
spectra for which molecular formulas are known but structures cannot be unambiguously assigned. 94 
These “unidentified ions” are treated as gas-phase species of the known molecular formula. The 95 
dominant contributor is C3H4O4 (yield of ~5%), which has previously been observed in the atmosphere 96 
and identified as malonic acid;33,34 however, its ion cluster strength (Figure S4a) indicates that it is not 97 
malonic acid but rather some isomer thereof (highlighting the difficulty in assigning identities to ions 98 
based only on their molecular formula). Species measured by the NO3

- CIMS (extremely low volatility, 99 
highly oxidized gases)35 account for <0.5% of the total carbon (Figure S3), so are not shown in Figure 1. 100 
Together unassigned species comprise  47± %20

17  of the carbon at the end of the experiment. Less than 20 101 
ppbC (4% of carbon) is from ions with molecular formulas detected by multiple instruments, so 102 
instrument overlap has little effect on total carbon accounting. 103 

The total measured carbon yield is 102% by the end of the experiment. Uncertainty (1σ) is -22/+30%, 104 
and dominated by uncertainty in quantification of lightly functionalized oxidized gases, which may be 105 
reducible in future work to ±20% (see Supplementary Information Section S4 for details). Thus, “carbon 106 
closure” is achieved in this experiment within instrument uncertainties, demonstrating that the suite of 107 
instruments allows for complete quantification and characterization of reaction products formed over 108 
these timescales. This also indicates that the loss of condensable carbon to chamber walls or other 109 
surfaces is not a major sink for reaction products in this experiment, as expected given the fast rate of 110 
oxidation and the use of seed particles as a condensation sink,36–38 and supported by modeled gas-111 
particle-wall partitioning (Supplementary Information Section S6). 112 



 113 

Figure 1. Measured species throughout the photo-oxidation of α-pinene (dark gray) in the presence of NO. Each 114 
product ion is colored by the instrument by which it was measured (green: AMS/SMPS, purple: PTR-MS, light gray: 115 
TILDAS, orange: I- CIMS). Unlabeled species measured by TILDAS are formic acid and formaldehyde. Uncertainty 116 
range for each instrument shown on right. Total expected carbon in the system (after accounting for dilution of the 117 
precursor) shown as light gray dashed line at ~550 ppbC. All concentrations are corrected for dilution; pOC is also 118 
corrected for particle deposition to the chamber walls. Bottom panel: modeled OH concentration (red line) and 119 
approximate photochemical age in the atmosphere (blue dashed line), assuming an average OH concentration of 120 
2×106 molec cm-3. The corresponding plot for the α-pinene ozonolysis experiment is given in Figure S1. 121 

Not all carbon is measured throughout the entire experiment, however, with some “missing” carbon (up 122 
to ~40%) left unmeasured early in the experiment. The time dependence of this unmeasured carbon 123 
suggests it is made up of early-generation products that quickly react away (with a ~4h timescale) to 124 
yield measured products, leading to the observed carbon closure by the end of the experiment. These 125 
unmeasured species may be compounds that are not readily detected by the instrument suite. For 126 
example, the one peak in the I- CIMS mass spectrum that is above the detection limit but substantially 127 
below the threshold for reliable instrument calibration (and hence not included in Figure 1) is C10H17NO4 128 
(Figure S5). This likely corresponds to α-pinene hydroxynitrate, a first-generation oxidation product 129 
known to be formed in high yields (~15%), but that is not sensitively measured by any of the present 130 
instruments.28,39 Importantly, the temporal behavior and ion intensity of this species (after applying an 131 
approximate calibration factor40) matches the unmeasured carbon well (Figure S10). Since “missing” 132 
carbon is also observed in the ozonolysis experiment (Figure S1), for which no nitrate formation is 133 
expected, the poor sensitivity of this instrument suite to lightly-oxidized, lower-volatility gases 134 
(Supplementary Information Section S7) leads to poor carbon closure in the early generations of 135 
oxidation. In addition, these compounds may reversibly partition to reactor or inlet walls (Figure S9) and 136 
re-volatilize upon reaction of their gas-phase component with OH, which could also contribute to 137 
unmeasured carbon early in the experiment (Figure S10). Thus, despite uncertainties related to its 138 
molecular identity, the unmeasured carbon is likely comprised of lightly oxidized, intermediate-volatility, 139 
early-generation products. Moreover, the majority of the OC (and all of it by the end of the experiment) 140 



is fully quantified and chemically characterized, providing a unique opportunity to examine the 141 
evolution of the composition and chemistry of OC over multiple generations of oxidation.  142 

Evolving properties of the carbon 143 

The changing composition of this complex mixture with oxidation is shown in Figure 2, as three 144 
“snapshots” of the product distribution, shown in “two-dimensional volatility basis set” space (carbon 145 
oxidation state, OSC, vs. volatility, expressed as saturation concentration, c*).41,42 Suspended carbon in 146 
the first hour of the experiment (panel a) is dominated by the precursor, α-pinene, and the formation of 147 
products with intermediate volatility (c* = 103-106 µg m-3), as well as some higher-volatility gases (e.g., 148 
acetone, acetic acid), and particle-phase mass. By the end of the initial oxidation, after nearly all α-149 
pinene has reacted (panel b), the product mixture spans a wide range of volatilities and oxidation states. 150 
Upon further oxidation (panel c), the distribution of products changes further, indicating the importance 151 
of continuing oxidation chemistry beyond the initial α-pinene oxidation.  152 

 153 

Figure 2. Distribution of measured carbon across in the OSC-vs-c* chemical space. Circle area is proportional to 154 
carbon concentration. Hollow: α-pinene, light gray: gas-phase species, dark gray: pOC, shown at average OSC of 155 
each volatility bin. Gas-phase species containing nitrate groups (defined as containing nitrogen and ≥3 oxygen 156 



atoms) are outlined. Distributions are provided after approximately (a) 1 hour, (b) 4 hours, and (c) 24 hours of 157 
equivalent atmospheric age. The full time evolution of these data is available as a video in the Supplementary 158 
Information online.  159 

In this chemically dynamic system, the behavior of different products is determined by their formation 160 
pathways as well as their lifetime versus further oxidation by OH. Some early-generation products, 161 
including most IVOCs (e.g., pinonaldehyde and multi-functional nitrates), exhibit rapid decreases in 162 
concentration after formation, consistent with their high reactivity.43,44 By contrast, concentrations of 163 
some of the volatile compounds (e.g., CO and acetone) consistently increase throughout the 164 
experiment. These are formed both from the initial oxidation of α-pinene (panel a) as well as from the 165 
multigenerational oxidation of reaction products (panel c), and their slow reaction rates with OH 166 
preclude any significant decay over the timescales of the experiment. This category of less-reactive 167 
products also includes pOC, which increases throughout the experiment with only relatively minor 168 
changes in average properties, consistent with the long lifetime of particulate carbon against 169 
heterogeneous oxidation by gas-phase oxidants.45,46 170 

The evolution of the organic mixture as a whole can be described in terms of changes to key chemical 171 
properties of the measured products. Figure 3 shows the evolving distributions of three such properties: 172 
carbon number (nC), OSC, and c*. The nC of observed products (Figure 3a) exhibits a clear and dramatic 173 
change with oxidation: C10 species make up a large fraction (~50%, likely an underestimate since the 174 
early-generation unmeasured species are likely C10), indicating the importance of functionalization 175 
reactions (addition of oxygen-containing groups) early in the reaction, as well as their contribution to 176 
pOC formation. However further oxidation depletes the C10 compounds, which account for only 12% of 177 
the carbon by the end of the experiment. Their oxidation produces species with smaller carbon numbers 178 
(in particular C1-3), suggesting that later-generation oxidation is dominated by fragmentation reactions. 179 
The OSc distribution of the product mixture (Figure 3b) is initially dominated by species with low (<-0.5) 180 
oxidation states, but further oxidation leads to the formation of higher oxidation state products, 181 
including very oxidized products with oxidation state >+1 (e.g. formic acid and CO) and a few less-182 
oxidized species (mostly acetone). The volatility distribution (Figure 3c) also undergoes major changes, 183 
with initial products dominated by IVOCs, C10 products formed by the addition of 1-3 functional groups 184 
to the carbon skeleton of the precursor. However, as these species oxidize and fragment, the 185 
distribution of volatilities shifts away from IVOCs, toward both higher- and lower-volatility products. By 186 
the end of the experiment, IVOCs represent a small fraction of the total carbon, which is instead 187 
dominated by high-volatility gases (formed from fragmentation reactions) or pOC (formed mostly from 188 
functionalization reactions). The trends observed in Figure 3 are further enhanced by including α-pinene 189 
(Figure S2) or unmeasured species, as those have similar chemical properties as early-generation 190 
products (large, moderately volatile, and lightly oxidized). The ozonolysis experiment (Figure S1) exhibits 191 
the same trends as the OH experiment, only with fewer changes during the initial oxidation, since the 192 
reaction ceases after the oxidation of the double bonds. 193 



 194 

Figure 3. Evolution of the chemical properties of gas- and particle-phase products from α-pinene photo-oxidation, 195 
shown as time-dependent distributions of total measured carbon. The properties of only the oxidation products 196 
(and not of the α-pinene precursor) are shown; the plots in which α-pinene is included is provided in Figure S2. 197 
Properties shown are (a) number of carbon atoms, nC, (b) oxidation state of carbon, OSC, and (c) volatility in terms 198 
of saturation concentration, c*, each denoted by the color scale shown. Trends in the carbon-weighted average of 199 
each property are shown in bottom panels. 200 

The evolution of the organic mixture, in which the early-generation species (mostly large, lightly-201 
oxidized, intermediate volatility species) react to form small, volatile species in the gas phase and low-202 
volatility species in the particle phase, has important implications for the evolving reactivity and lifetime 203 
of atmospheric OC. Figure 4a shows the changes to the distribution of the atmospheric lifetime against 204 
reaction with OH (τox) of the product mixture; unlike Figure 3, this includes unmeasured species, since 205 
their lifetime can be directly estimated from their observed rate of decay (see Figure S10). The lifetimes 206 
of the initial products are generally short. Functionalized IVOCs have lifetimes of only a few hours,45 so 207 
observation of a similar lifetime (~4 hours) for the unmeasured carbon further supports its assignment 208 
as reactive IVOCs. However some of the other products are extremely long-lived with respect to OH 209 
oxidation, such as CO (τox = 39 days47), acetone (τox = 34 days48), and pOC (τox = 69 days46). Over the 210 
course of the experiment, the IVOCs react away and these longer-lived species continue to grow in, 211 
increasing the average lifetime of products in the mixture from 5 hours to 2 days. By the end of the 212 
experiment, more than half of the carbon is in species that are sufficiently long-lived (τox > 20 hrs) to be 213 
unreactive on the timescale of the experiment. This tendency toward long-lived species is a natural 214 
consequence of any multigenerational reaction system, since less-reactive products represent “kinetic 215 
bottlenecks” and hence will necessarily accumulate. In the present system, this tendency is closely 216 
correlated with the evolving volatility distributions, since long-lived species tend either to be small gas-217 
phase oxygenates (e.g., CO, acetone), or present in the condensed phase (as pOC). Thus, within 218 
approximately a day of atmospheric aging, the volatility distribution of the product mixture is bimodal, 219 
dominated by particles and long-lived high-volatility gases (Figure 4b). This decrease in reactivity 220 
through sequestration of carbon in “low-reactivity pools” occurs roughly exponentially, with a 221 
characteristic time of ~3 hours (Figure 4c); this timescale matches the lifetime of the first-generation 222 
products that drive the initial reactivity of the product mixture. 223 



 224 

Figure 4. Evolution of atmospheric lifetime against oxidation by OH (τox) and its impacts. (a) Time-dependent 225 
distribution of τox including unmeasured carbon (for which τox = 4 h) and (bottom panel) time-dependent trends in 226 
the carbon-weighted average τox. (b) Volatility distribution of carbon at two points in the experiment, denoted by 227 
arrows in panel (a), relatively early (top) and late (bottom) in the reaction. Volatility bins are colored by τox with the 228 
same color scale as in panel a. Unmeasured carbon is assumed to be distributed evenly across c*= 102-104 µg m-3 229 
(hashed bars) for illustrative purposes. (c) Carbon-weighted average OH reactivity (assuming average OH 230 
concentration of 2×106 molec cm-3). Exponential fit (black dashed line) has a decay constant, 𝜏𝜏𝑘𝑘𝑂𝑂𝑂𝑂������, of 2.8 hours. 231 

Discussion 232 

By characterizing all the products formed in a complex oxidation system, we have demonstrated that 233 
atmospheric OC evolves through multi-generational oxidation to become sequestered in long-lived 234 
reservoirs of volatile gases and low-volatility particles. Initial oxidation occurs through the addition of 235 
functional groups to form pOC mass and large, intermediate-volatility gases, but upon further oxidation 236 
gas-phase products quickly fragment into high-volatility compounds. Particulate carbon and some 237 
oxidized volatile gases are resistant to further oxidation by OH, so carbon effectively becomes 238 
sequestered in these two pools. The present results data are limited to the oxidation of a single 239 
precursor hydrocarbon, under a limited set of reaction conditions, and other chemical systems may 240 
exhibit somewhat different behavior. However, known long-lived products (e.g., pOC, formic acid, CO, 241 
etc.) are formed by a wide range of oxidation systems, and longer-lived species will necessarily 242 
accumulate over the course of multiple generations of oxidation. Thus the general trends shown in Fig 4 243 
– the eventual decrease in reactivity and the bifurcation in volatility – are likely to be common features 244 
of the oxidation of most atmospheric organic species. 245 

The observed timescale for oxidative removal of reactive gases and formation of long-lived species has 246 
broad implications for understanding the fate of atmospheric OC on global and regional scales. Near 247 
emission sources, the diverse and complex mixture of functionalized gases formed from emissions are 248 
likely to comprise a significant fraction of suspended carbon, playing a critical role in particle growth, OH 249 
reactivity, and depositional loss.11,16,49–53 However, farther from emissions, IVOCs will be substantially 250 
depleted and most mass will be comprised of relatively few long-lived constituents, so composition and 251 
removal of OC in remote regions will be dominated by particles and C1-3 gases. Where an airmass is on 252 
the continuum between near- and far-field is a function of both the inherent timescales for oxidation of 253 
a given chemical system and the “average age” of the OC. Some approaches to quantify the average age 254 



of an airmass have been developed, but are generally limited to anthropogenically-influenced 255 
chemistries.54,55 The oxidation processes studied here compete with wet and dry deposition to 256 
determine the fate of atmospheric OC. The relative timescales of each govern the extent to which 257 
emitted carbon is deposited as lightly-functionalized species before being sequestered by oxidation. The 258 
timescales of oxidation measured in this work need to be complemented by better observational 259 
constraints on average age of OC and timescales of removal in order to improve understanding of the 260 
lifecycle and fate or OC under a range of atmospheric conditions. 261 

 262 

Methods 263 

Reaction conditions 264 

Studies were carried out using a fixed-volume temperature-controlled 7.5 m3 Teflon environmental 265 
chamber in which was mixed α-pinene (60 ppb), ammonium sulfate aerosol (~70 μg m-3), and a non-266 
reactive tracer used to measure dilution rate (hexafluorobenzene). Oxidant was introduced as HONO (50 267 
ppb) in the presence of ultraviolet light (300-400 nm) to produce OH radicals, or ozone (~350 ppb). 268 
Multi-generational oxidation occurred through the introduction of ~2 ppb/min HONO in the presence of 269 
ultraviolet light. All data are corrected for dilution due to instrument sampling. Reported particle mass 270 
concentration is corrected for loss to the walls using a rate calculated from the loss rate of seed particles 271 
prior to reaction. Additional details provided in the Supplementary Information Section S1. 272 

Measurements 273 

Four high-resolution (m/Δm ≈ 4000) time-of-flight mass spectrometers (HTOF; Tofwerk AG) were used in 274 
this work: PTR-MS19,20 (Ionikon Analytik), two CIMS21 (Aerodyne Research Inc.) using I- and NO3

- as 275 
reagent ions,22–25 and an AMS18 (Aerodyne Research Inc.). The latter sampled downstream of a 276 
ThermalDenuder57 to measure volatility distribution of particles.  Two TILDAS58 (Aerodyne Research Inc.) 277 
instruments measured C1 compounds. Particle-phase composition was measured by the I- CIMS using a 278 
“FIGAERO” inlet.59 Particle size distributions measured by Scanning Mobility Particle Sizer (TSI Inc.) was 279 
converted to mass concentration by an assumed density. Detailed operation conditions and calibration 280 
methods are provided for all instruments in the Supplementary Information Section S1. Calibration and 281 
data analysis was performed where possible through previously published techniques and with 282 
commercially available software. Detailed information regarding the comprehensive calibration of I- 283 
CIMS data, and identification and quantification of known species in PTR-MS data are described in the 284 
Supplementary Information Sections S4-5. 285 

Concentrations and associated chemical properties (see below) are available upon request for all report 286 
species. 287 

Calculation of chemical parameters  288 

Gas-phase mass spectrometers measure individual ions with a known molecular formula, while the TD-289 
AMS provides bulk measurements of chemical properties. To explore chemical evolution, volatility must 290 
be inferred from molecular composition and vice-versa. Interconversion between c* and nC is based on 291 
previously published relationships.60 OSC is calculated from elemental composition.41  292 



Lifetime against atmospheric oxidation for a compound, i, is calculated from its rate constant for 293 

reaction with OH as 𝜏𝜏𝑜𝑜𝑜𝑜,𝑖𝑖 = �𝑘𝑘𝑂𝑂𝑂𝑂,𝑖𝑖[OH]�������−1 assuming an average OH concentration of 2×106 molec cm-3: 294 
OH rate constants for known compounds (those labeled in Figures 1-2) are obtained from the NIST 295 
Chemical Kinetics Database.44 Rate constants for unidentified ions are calculated from molecular 296 
formula as described by Donahue and co-workers,45 which spans an atmospheric lifetime of 13 hours for 297 
small (high-volatility) gases to ~2 hours for larger (IVOC) gases. Lifetime of unmeasured mass is 298 
estimated from its time dependence (~4 hours, Figure S10). Carbon is assumed to be lost from the 299 
particle phase with a lifetime of 69 days, as determined by Kroll and co-workers,46 the conclusions in this 300 
work are insensitive to uncertainties in this value. 301 

Uncertainty in carbon closure 302 

Most uncertainties in all instrument calibrations are uncorrelated, so total uncertainty is calculated by 303 
adding in quadrature the uncertainty in each ion concentration. The largest source of uncertainty in the 304 
total measured concentration is in the calibration of the I- CIMS, which in this work is ~60% for total 305 
carbon concentration (see Supplementary Information Section S4), though expected to be reduced to 306 
20% in future work. The other main source of uncertainty in this work is the predicted bias in PTR 307 
measurements caused by the loss of carbon as neutral fragments in the mass spectrometer. Spectra of 308 
oxygenated and non-oxygenated compounds previously published61–64 and measured as part of this 309 
work demonstrate that compounds containing more than a few carbon atoms can lose 20% of their 310 
carbon as neutral fragments (Tables S1,2 in Supplementary Information Section S5). The consequent 311 
predicted underestimation of carbon measured as unknown PTR ions is represented in the asymmetry 312 
of the uncertainty estimate. Fragmentation during analysis is also expected to somewhat bias the 313 
chemical characterization of the product mixture toward ions with lower carbon numbers. This bias 314 
cannot explain the observed decrease in nC, as this trend is also observed in the I- CIMS, which does not 315 
undergo increased fragmentation with increasing oxidation. 316 

Gas-particle-wall partitioning 317 

Deposition of vapors to the walls was modeled as equilibrium gas-particle-wall partitioning of the 318 
observed carbon volatility distribution using parameters to match the conditions of these experiments, 319 
using a similar approach to that of La and coworkers.65 Details of this approach are provided in the 320 
Supplementary Information (Section S6). Briefly, the fraction of a volatility bin expected to be on the 321 
wall was modeled as a function of equilibration time with parameterized competition between, gas-wall 322 
partitioning, gas-particle partitioning, and reaction with OH to form a gas-phase product that does not 323 
partition. Time evolution of carbon on walls was simulated by modeled phase partitioning of the 324 
observed time-evolving volatility distribution of carbon. 325 

 326 
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