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Project Link! is a NASA-led effort to study the feasibility of multi-aircraft aerial docking

systems. In these systems, a group of vehicles physically link to each other during flight to form

a larger ensemble vehicle with increased aerodynamic performance and mission utility. This

paper presents a dynamic model and control architecture for a system of fixed-wing vehicles

with this capability. The dynamic model consists of the 6 degree-of-freedom fixed-wing aircraft

equations of motion, a spring-damper-magnet system to represent the linkage force between

constituent vehicles, and the NASA-Burnham-Hallock wingtip vortex model to represent the

close-proximity aerodynamic interactions between constituents before the linking occurs. The

control architecture consists of a guidance algorithm to autonomously drive the constituents

towards their linking partners and an inner-loop angular rate controller. A simulation was

constructed from the model, and the flight dynamic modes of the linked system were compared

to the individual vehicles. Simulation results for both before and after linking are presented.
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Nomenclature

r = position vector in ft

R = rotation matrix

B = vehicle body frame

I = inertial frame

x, y, z = Cartesian coordinates associated with a reference frame

u = x-direction component of velocity in B in ft/s

v = y-direction component of velocity in B in ft/s

w = z-direction component of velocity in B in ft/s

φ = roll angle in rad

θ = pitch angle in rad

ψ = yaw angle in rad

s = sine

c = cosine

t = tangent

m = mass in slug

FA = aerodynamic force in lbf

g = acceleration due to gravity in ft/s2

FT = thrust force in lbf

FL = linkage force in lbf

ω = angular velocity in B in rad/s

J = moment of inertia matrix

MA = aerodynamic moment in ft-lbf

ML = linkage moment in ft-lbf

q̄ = dynamic pressure in slug/(ft-s2)

S = wing area in ft2
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α = angle of attack in rad

CD = drag coefficient

CY = side force coefficient

CL = lift coefficient

b = wingspan in ft

c̄ = average chord length in ft

Cl = roll moment coefficient

Cm = pitch moment coefficient

Cn = yaw moment coefficient

δ = distance vector between two linkage mechanisms in ft

i, j = agent indices

rL = position of linkage mechanism in B

FLδ = linkage spring force in lbf

FLM = linkage magnetic force in lbf

K = spring constant in lbf/ft

C = damping constant in lbf/(ft/s)

µ = permeability of air in T-ft/A

q = magnetic pole strength in A-ft

Kτ = rotational spring constant in ft-lbf/rad

Cτ = rotational damping constant in ft-lbf/(rad/s)

Wwake = wake-induced downwash in ft/s

Wr, Wl = wake-induced downwash from right wingtip and left wingtip respectively in ft/s

Vwake = wake-induced sidewash in ft/s

Vr, Vl = wake-induced sidewash from right wingtip and left wingtip respectively in ft/s

rc = vortex core radius in ft

ρ = air density in slug/ft3
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V = free-stream velocity in ft/s

LW = left wingtip

RW = right wingtip

CG = center of gravity

β = sideslip angle in rad

p̃ = non-dimensional roll rate

ω̃ = non-dimensional angular velocity

D = desired vehicle body frame

rd = desired position in ft

d, Kd, KR = guidance parameters

Ψ = error function

e = attitude error

p = x-direction component of ω in B in rad/s

q = y-direction component of ω in B in rad/s

r = z-direction component of ω in B in rad/s

qcmd = command for q in rad/s

rcmd = command for r in rad/s

T = thrust magnitude in lbf

re = position error in ft

KpTV
= proportional speed error gain in lbf/(ft/s)

KpTr
= proportional position error gain in lbf/ft

KiTV
= integral speed error gain in lbf/ft

KiTi
= integral position error gain in lbf/(ft-s)

KdTV
= derivative speed error gain in lbf/(ft/s2)

KdTr
= derivative speed error gain in lbf/(ft/s)

δa = differential aileron deflection in rad
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Kpδa
= proportional roll gain in s

pcmd = command for p in rad/s

Kiδa
= integral roll gain in s2

Kdδa
= derivative roll gain

δe = elevator deflection in rad

Kpδe
= proportional pitch gain in s

Kiδe
= integral pitch gain in s2

Kdδe
= derivative pitch gain

Kpz = proportional altitude gain in rad/ft

Kiz = integral altitude gain in rad/(ft-s)

Kdz = derivative altitude gain rad/(ft/s)

δr = rudder deflection in rad

Kpδr
= proportional pitch gain in s

Kiδr
= integral pitch gain in s2

Kdδr
= derivative pitch gain

δaR = right aileron deflection in rad

δaL = left aileron deflection in rad

θ̂ = generic nonlinear aerodynamic model parameters

yδa = y-distance from CG to ailerons in B in ft

q̃ = non-dimensional pitch rate

r̃ = non-dimensional yaw rate

I. Introduction

Project Link! is a NASA-led effort to study groups of aerial vehicles with the capability of physically

linking to each other to form a larger structure with improved aerodynamic performance and mission utility
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compared to the individual constituents. This paper investigates dynamics and control for a group of fixed-

wing aircraft with this capability and provides simulation results for both the linked and unlinked phases of

flight. During the linking phase of flight, an autonomous leader-follower controller is employed such that each

vehicle is driven towards the point where its wingtip coincides with its partner vehicle’s wingtip. The main

contributions of this work are the dynamic models for the individual and linked vehicles and the simulation

results for the linking phase and linked flight.

Linked aircraft have the potential to drastically increase the mission capabilities of an aircraft system.

Such coordination could enable high altitude, long endurance (HALE) missions with vertical takeoff and

landing of component vehicles from unimproved sites. The same system could reconfigure to be capable of a

heavy lift mission. Furthermore, in-flight linking allows for multi-leg missions that consist of efficient flight

to a remote location followed by a distributed multi-agent leg.

Linked aircraft may find applications in missions such as search and rescue, cartography, reconnaissance,

package delivery, and atmospheric satellites. For observational missions, the aircraft would fly to the desired

location in an efficient, large fixed-wing mode. Then, the system would break apart into its individual units

to cover ground in an optimal distributed way. In a persistent atmospheric satellite mission, units would

break off for refueling and immediately be replaced by a new aircraft. In this manner, the ensemble craft

could stay airborne indefinitely. Additionally, HALE vehicles have high wing aspect ratios which make them

sensitive to atmospheric turbulence. This is what caused the crash of NASA’s Helios prototype [1]. A

system of linked aircraft would be capable of breaking off into individual agents during turbulence and then

re-linking once it is safe to do so.

Flight testing of linked aircraft was first performed in the 1950’s by the US Air Force with projects

TipTow [2] and Tom-Tom [3]. These projects were carried out in parallel with the objective of increasing

the range of fighter planes. Both involved linking the wingtips of the fighters to the wingtips of a larger

bomber aircraft. Several successful flights were performed during both projects. However, introducing an

autopilot to Project TipTow resulted in a failure which caused the loss of two planes and their crews. Project

Tom-Tom was canceled as a result of the link separating during flight due to wingtip vortices, although all
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crew members landed safely.

In the intervening years, research has been done on similar ideas such as the multibody transport concept

by Moore and Maddalon which consists of two passenger jet fuselages joined together by a wing between

them [4]. This design allowed for a lower weight than two individual planes, due to reduced bending moment

acting on the common wing and had a lift-to-drag ratio increase of 8-10%. Magill et. al. later studied the

effects of wingtip-docked flight. A method for stability analysis was given in [5] and a 20-40% performance

increase over individual flight was shown in [6].

With modern day increased capability of unmanned systems and control hardware, there has been

renewed interest in this problem. Several researchers have studied modular robotics over the last decade and

a half [7–10]. These systems consist of many small, often cube-shaped robots that are capable of arranging

themselves in various configurations to complete different tasks. Oung et. al. extended this concept to

aerial robots by developing an experimental platform known as the Distributed Flight Array [11]. This array

consists of many single rotor aircraft that dock with each other on the ground to form an arbitrarily-shaped

multi-rotor vehicle. The individual craft are, however, unstable in solo flight.

More recently, Montalvo and Costello investigated flight dynamic modes for linked fixed-wing aircraft

in wingtip-docked, nose-to-tail docked, and lattice configurations [12]. Troub and Montalvo have further

analyzed the controllability of these configurations in [13]. Montalvo’s dissertation addresses other aspects

of the problem including linkage mechanism design and controller design [14].

Under the auspices of Project Link!, Patterson, et. al. considered the conceptual design for a linked

vehicle ensemble for a distributed aerial presence or payload mission in [15]. Also as a Project Link! study,

Cooper and Rothhaar developed a potential field-based guidance algorithm for in-flight linking of a group

of multi-rotor vehicles in [16].

This paper establishes a guidance algorithm for in-flight linking of fixed-wing aircraft. A dynamic model

is constructed using the Generic Nonlinear Aerodynamic (GNA) model in [17]. The NASA Burnham-Hallock

Model [18] is implemented since wingtip vortex effects are a significant disturbance seen in the close-proximity

flight required for wingtip docking. The guidance algorithm developed here is adapted from the virtual leader
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path-following algorithm given in [19]. In our case, the virtual leader is replaced with a real leader aircraft,

and thus the path-wise speed of the vehicle is not decided by the algorithm, but matches that of the real

leader. The linkage forces and moments acting on the vehicles are modeled as a set a spring-damper systems

with an additional magnetic force contribution. The simulation results reveal the open-loop dynamic modes

of the linked-ensemble, the trajectories and aerodynamic forces during the linked phase, and the dynamic

response to doublet commands during linked flight. The paper is organized as follows: Section II develops

the dynamic model for the system, Section III presents the wingtip docking guidance algorithm, Section IV

defines the inner-loop attitude rate controller for each vehicle, Section V presents the simulation results, and

Section VI concludes the paper and discusses future work.

II. Fixed-Wing Aircraft Dynamics

We will adapt a standard rigid body dynamic model from [20] with the addition of forces and moments

due to linked vehicles. The translational and rotational kinematic equations of a fixed-wing aircraft are given

by

ṙ = RIB


u

v

w

 (1)


φ̇

θ̇

ψ̇

 =


1 sφtθ cφtθ

0 cφ −sφ

0 sφ/cθ cφ/cθ

ω (2)

where r is the position vector in the inertial frame, RIB is the rotation matrix from the body frame to inertial

frame,
[
u v w

]>
is the velocity vector in the body frame, φ, θ, and ψ are the roll, pitch, and yaw angles

respectively, s, c, and t denote the sine, cosine, and tangent of the subscripted angle respectively, and ω is

the body frame angular velocity vector. Note that the body frame, B {~x, ~y, ~z}, is defined with the x-axis

pointing forward, the z-axis pointing downward, and the body y-axis completing the triad pointing out of
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the right wing. The origin of B is located at the vehicle’s center of gravity. RIB is given in [21] by

RIB =


cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ

 (3)

The vehicle dynamic equations are given by
u̇

v̇

ẇ

 =
1

m

FA +mRBI


0

0

g

+ FT + FL

− ω ×

u

v

w

 (4)

ω̇ = I−1 [MA +ML − ω × (Jω)] (5)

where m is the vehicle mass, FA is the total aerodynamic force, RBI = RI >B is the rotation matrix from the

body frame to inertial frame, g is the acceleration due to gravity, FT is the propulsive force on the vehicle,

FL is the force due to linked vehicles, J is the vehicle moment of inertia matrix, MA is the total aerodynamic

moment, and ML is the moment due to linked vehicles.

The aerodynamic forces and moments are given by

FA = q̄S


−cα 0 sα

0 1 0

−sα 0 −cα




CD

CY

CL

 (6)

MA = q̄S


b 0 0

0 c̄ 0

0 0 b




Cl

Cm

Cn

 (7)

where q̄ is the dynamic pressure, S is the planform area of the wing, α is the wing angle of attack, CD, CY ,

and CL are the drag, sideforce, and lift coefficients respectively, b is the wingspan, c̄ is the chord length, and

Cl, Cm, and Cn are the roll, pitch, and yaw moment coefficients. The aerodynamic coefficients are obtained

using the generic nonlinear aerodynamic (GNA) model found in [17]. Details of the GNA are provided in

the Appendix.
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A. Linkage Mechanism Model

The force and moment from the linkage will be represented as a spring-damper system with translational

and rotational components. Additionally, we will model magnets at the wingtips which supply an attractive

force before the physical link is made. We will consider magnets at each vehicle’s wingtips with identical

pole strengths. Let the location of the linkage mechanism in the body frame be rL. Let the distance vector

between the two linkage mechanisms on two linked aircraft represented in the body frame of the vehicle we

are modeling be

δ = RBI i
(
RIB jrLj + rj −RIB irLi − ri

)
(8)

where the subscript i denotes the vehicle we are modeling, and the subscript j represents its linked partner.

Then δ̇ is given by

δ̇ = RIB j

ωj × rLj +


uj

vj

wj



−R
I
B i

ωi × rLi +RBI i


ui

vi

wi



 (9)

The translational spring-damper force is

FLδ = Kδ + Cδ̇ (10)

where K is the spring constant and C is the damping constant. The magnetic force is given by the inverse

square relationship

FLM =
µq2

4π||δ||2
δ

||δ||
(11)

where µ is the permeability of air, and q is the magnetic pole strength. δ
||δ|| is the unit vector in the direction

of δ, which specifies the direction of the magnetic force.

The rotational spring component is modeled as a moment that is proportional to the Euler angles that

define the rotation from vehicle i’s body to vehicle j’s body frame. This rotation matrix is

R
Bj
Bi

= RBI jR
I
B i (12)
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The Euler angles corresponding to RBjBi can be solved from (3) as

θi,j = − sin−1
(
R
Bj
Bi 3,1

)
(13)

φi,j = sin−1

(
R
Bj
Bi 3,2

cos (θi,j)

)

ψi,j = cos−1

(
R
Bj
Bi 1,1

cos (θi,j)

)

The rotational damping is proportional to angular velocity of vehicle j in vehicle i’s body frame. That is

ωj/i = RBiBjωj − ωi = R
Bj >
Bi

ωj − ωi (14)

The total moment on the vehicle due to the link consists of the rotational spring and damper torque as

well as a component resulting from the translational spring-damper force since the linkage mechanism is not

located at the vehicle’s center of gravity. The total linkage moment, ML is then given by

ML = −Kτ


φi,j

θi,j

ψi,j

+ Cτωj/i + rL × FL (15)

where Kτ is the rotational spring constant and Cτ is the rotational damping constant.

B. Wingtip Vortex Effects

Before the vehicles link, each vehicle experiences an induced velocity caused by the wingtip vortices of

the other aircraft in the system. To model this effect, the NASA-Burnham-Hallock Model is used to obtain
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a three-dimensional wake velocity field around the wingtips [18]. The model is defined as follows:

Wwake(x, y, z) = −Wr(x, y, z) +Wl(x, y, z)

Wr(x, y, z) =
Γ

4π

y − b/2
(y − b/2)2 + z2 + r2c

[
1− x√

x2 + (y − b/2)2 + z2

]

Wl(x, y, z) =
Γ

4π

y + b/2

(y + b/2)2 + z2 + r2c

[
1− x√

x2 + (y + b/2)2 + z2

]
Vwake(x, y, z) = −Vr(x, y, z) + Vl(x, y, z)

Vr(x, y, z) =
Γ

4π

−z
(y − b/2)2 + z2 + r2c

[
1− x√

x2 + (y − b/2)2 + z2

]

Vl(x, y, z) =
Γ

4π

−z
(y + b/2)2 + z2 + r2c

[
1− x√

x2 + (y + b/2)2 + z2

]
(16)

where Wwake and Vwake are the wake-induced downwash and sidewash respectively in the body frame of the

inducing aircraft, the subscripts r and l denote contributions from the left and right wingtips respectively,

x, y, and z are Cartesian coordinates in the same frame, rc is the core radius of the vortex, and

Γ =
4mg

ρV πb
(17)

where ρ is the air density and V is the free-stream velocity. We will establish an approximation of overall

wake-induced velocity experienced by aircraft i as the average of three points along the wingspan. For this

calculation, consider points at each wingtip and at the center of gravity of the vehicle. Then the total

wake-induced velocity field is given by
uwake

vwake

wwake

 =
n∑

j=1,j 6=i

RBiBj


0

Vwakej (xLW ,yLW ,zLW )+Vwakej (xRW ,yRW ,zRW )+Vwakej (xCG,yCG,zCG)

3

Wwakej
(xLW ,yLW ,zLW )+Wwakej

(xRW ,yRW ,zRW )+Wwakej
(xCG,yCG,zCG)

3

 (18)

where the subscripts LW and RW denote the left and right wingtips respectively, CG denotes the center of

gravity, and n is the number of vehicles in the system.

Figure 1 shows a cross-section of the wake velocity field induced by wingtip vortices of a single aircraft

according to the NASA-Burnham-Hallock model. Figure 2 shows the resulting velocity field when two vehicles

come in close proximity of each other. We can see that the upwash in between the wingtips increases, which

results in rolling moments on both vehicles that must be overcome by the inner-loop controllers.
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Fig. 1: Cross-section of wake-induced velocity flow field at x = 0. The red line represents the wing.
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Fig. 2: Cross-section of wake-induced velocity flow field at x = 0 for two vehicles in close proximity. The

red lines represents the two wings.

The wingtip vortices effect angle-of-attack, α, sideslip angle, β, and non-dimensional roll rate, p̃ of
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aircraft i according to

α = tan−1
(
w − wwake
u− uwake

)
(19)

β = sin−1

(
v − vwake√

(u− uwake)2 + (v − vwake)2 + (w − wwake)2

)
(20)

∆p̃ =


N∑

j=1,j 6=i

RBiBj


0

Vwakej (xLW , yLW , zLW )

Wwakej (xLW , yLW , zLW )


−

N∑
j=1,j 6=i

RBiBj


0

Vwakej (xRW , yRW , zRW )

Wwakej (xRW , yRW , zRW )



÷ V (21)

The total non-dimensional body axis angular velocity is given by

ω̃ =
1

2V


b 0 0

0 c̄ 0

0 0 b

ω +


∆p̃

0

0

 (22)

α, β, and ω̃ are inputs into a aerodynamic model used to obtain the aerodynamic coefficients, CD, CY , CL,

Cl, Cm, Cn.

III. Guidance Algorithm

A guidance algorithm is used to autonomously guide each aircraft towards its mate vehicle. This will be

adapted from the virtual leader path-following algorithm in [19].

First, a desired body frame is defined as D {~xd, ~yd, ~zd} with origin coincident with the origin of the actual

body frame at the vehicle’s center of gravity. Let rd be the desired aircraft position, which results in the

linkage mechanisms of both vehicles coinciding, and let rL be the position of a vehicle’s linkage mechanism

in its body frame. Then rd can be expressed as

rd = rj +RIB jrLj −RIB irLi (23)

The desired body frame unit vectors are defined by

~xd =
d~xj − (riy − rdy )~yj − (riz − rdz )~zj√
d2 + (riy − rdy )2 + (riz − rdz )2

~yd =
(riy − rdy )~xj + d~yj√
d2 + (riy − rdy )2

~zd = ~xd × ~yd (24)
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where d is a parameter which affects how aggressively the aircraft turns towards its mate. The smaller d is,

the more aggressive the maneuvers. d is determined as a function of the vehicle position error, rd − ri. d is

updated according to

d = Kd||rd − ri|| (25)

This allows for more aggressive maneuvers to close a small position error, and more benign maneuvers when

the distance to the desired position is large.

Let RDB be the rotation matrix from the body frame to the desired body frame. When the two frames

are aligned, RDB is equal to the identity matrix. We can then form an error function, Ψ, using RDB 1,1 as

Ψ =
(
1−RDB 1,1

)
(26)

Since −1 ≤ RDB 1,1 ≤ 1, Ψ is a positive semidefinite function. Also, the only time Ψ = 0 is when the body

frame and desired body frame are aligned. Thus, the guidance algorithm will be designed such that Ψ̇ ≤ 0.

Differentiating (26) results in

Ψ̇ = −ṘDB 1,1 (27)

The time derivative of RDB is given by

ṘDB = RDB
({
ωB/D

}
B

)∧ (28)

where
{
ωB/D

}
D

is the angular velocity of the desired frame with respect to the body frame expressed in the

body frame, and for any vector, x ∈ R3, (x)∧ denotes the skew-symmetric matrix,

(x)∧ =


0 −x3 x2

x3 0 −x1

−x2 x1 0

 (29)

From (28), we can write

ṘDB 1,1 =

[
RDB 1,3 −RDB 1,2

]0 1 0

0 0 1

{ωB/D}B (30)
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Next, we define the attitude error,

e =

[
RDB 1,3 −RDB 1,2

]>
(31)

The elements of e go to zero, only when Ψ also goes to zero. By substituting (30) and (31) into (27), we can

write

Ψ̇ = e>

0 1 0

0 0 1

{ωB/D}B (32)

{
ωB/D

}
B

can be expressed as

{
ωBi/D

}
Bi

=
{
ωBi/I

}
Bi
−RBiD

(
RDBj

{
ωBj/I

}
Bj

+
{
ωD/Bj

}
D

)
(33)

where RBD = RD>B . Note that
{
ωBj/I

}
Bj

= ωj from the definition in Section II. Letting ω =

[
p q r

]>
where p is roll rate, q is pitch rate, and r is yaw rate, we can rewrite (32) as

Ψ̇ = e>


q
r


i

−

0 1 0

0 0 1

RBiD (
RDBjωj +

{
ωD/Bj

}
D

) (34)

To make Ψ̇ negative semidefinite, we choose rate commands asqcmd
rcmd

 =

0 1 0

0 0 1

RBiD (
RDBjωj +

{
ωD/Bj

}
D

)
− 2KRe (35)

where qcmd is the commanded pitch rate, rcmd is the commanded yaw rate, and KR is a positive definite

gain matrix. (35) constitutes the guidance algorithm.

A. Convergence

Assuming an inner-loop controller is capable of tracking the commands defined in (35), we can substi-

tuting (35) back into (34) with q = qcmd and r = rcmd. This results in

Ψ̇ = −2KRe
>e (36)

Since e>e is positive semidefinite, Ψ̇ is thus negative semidefinite, which means the error function, Ψ is

always driven towards zero by the guidance law given in (35). Furthermore, Ψ reaches steady state when

the attitude error, e is the zero vector. Since Ψ is decrescent, the magnitude of e must also be decrescent.

Thus, (35) ensures that the vehicle body frame always rotates towards the desired body frame.
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IV. Inner-Loop Controller

Thrust is used to match the mating vehicles’ velocities and longitudinal separation. Assume that the

vehicle thrust vector is aligned with the body x-axis. Then we have FT =

[
T 0 0

]>
, where T is the thrust

magnitude. The position error between the two vehicles is given by

re = RBiI (rj − ri) (37)

and the longitudinal separation is the first element of re, re1 . A proportional-integral-derivative (PID)

controller is implemented with error signals for both speed and longitudinal separation as

T = KpTV
(Vj − Vi)KpTr

re1 +KiTV

∫ t

0

(Vj − Vi) dτ +KiTr

∫ t

0

re1dτ +KdTV

d

dt
(Vj − Vi) +KdTr

dre1
dt

(38)

where KpTV
, KiTV

, and KdTV
are the proportional, integral, and derivative gains respectively on the speed

error and KpTr
, KiTr

, and KdTr
are the proportional, integral, and derivative gains respectively on the

longitudinal separation.

Attitude is controlled via the following control surfaces: a pair of differentially moving ailerons for roll,

elevator for pitch, and rudder for yaw. A PID controller is implemented for each rotational axis to generate

the desired control surface deflection. The elevator is additionally affected by a PID controller on the z-

position error between the mating vehicles. This provides additional robustness to the guidance algorithm

in Section III. The inner-loop controllers are given as

δa = Kpδa
(pcmd − p) +Kiδa

∫ t

0

(pcmd − p)dτ +Kdδa

d

dt
(pcmd − p) (39)

δe = Kpδe
(qcmd − q) +Kiδe

∫ t

0

(qcmd − q)dτ +Kdδe

d

dt
(qcmd − q) (40)

+Kpz (rjz − riz ) +Kiz

∫ t

0

(rjz − riz )dτ +Kdz

d

dt
(rjz − riz )

δr = Kpδr
(rcmd − r) +Kiδr

∫ t

0

(rcmd − r)dτ +Kdδr

d

dt
(rcmd − r) (41)

where δa, δe, and δr are the aileron, elevator, and rudder deflections respectively, Kpδa
, Kiδa

, and Kdδa
are

the are the proportional, integral, and derivative gains respectively on the roll angle error, Kpδe
, Kiδe

, and

Kdδe
are the are the proportional, integral, and derivative gains respectively on the pitch angle error, Kpz ,

17



Table 1: GTM properties

Parameter m J b c̄ S

Value 49.6 lbm


1.327 0 0.120

0 4.254 0

0.120 0 5.454

 slug ft2 6.849 ft 0.915 ft 5.902 ft

Table 2: Linkage parameters

Parameter K C Kτ Cτ µ q

Value 100 lbf/ft 62 lbf/(ft/s) 100 ft-lbf/rad 62 ft-lbf/(rad/s) 4.12 ×10−6 T-ft/A 26.2 A-ft

Kiz , and Kdz are the proportional, integral, and derivative gains respectively on the z-position error, and

Kpδr
, Kiδr

, and Kdδr
are the are the proportional, integral, and derivative gains respectively on the yaw

angle error.

A. Control Allocation During Linked Flight

When a group of vehicles is linked, the ensemble vehicle becomes over-actuated in the sense that the three

angular rates are then controlled by 4n control surfaces, where n is the number of vehicles in the ensemble.

This allows freedom for the optimization of some criteria in the control allocation. For the purposes of this

paper, a simple linked allocation scheme of the outboard-most ailerons for roll, all elevators for pitch, and

all rudders for yaw will be utilized. However, we note that optimization of the bending moment at the point

of linkage is an interesting problem for future work.

V. Simulation

A simulation was performed for three fixed-wing vehicles. The dynamic model for each vehicle represents

the NASA Generic Transport Model (GTM). The GTM properties are given in Table 1, and the linkage

mechanism parameters are shown in Table 2.

All three vehicles were trimmed for straight and level flight at 1200 ft altitude. All lateral parameters
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Table 3: Trim values

State Trim Value Input Trim Value

u 124.6 ft/s T 4.119 lbf

w 10.72 ft/s δe 0.0165 rad

θ 0.0858 rad

were trimmed to zero, and the longitudinal parameters were trimmed according to Table 3.

A. Flight Dynamic Modes

The linked aircraft model was linearized about the trim point using the MATLAB/Simulink Control

Design Toolbox for a single vehicle, two, and three linked vehicles. The poles associated with each of the

flight dynamic modes are shown in the complex plane in Figure 3. Note that there exist several higher

frequency modes associated with the spring and damper states. Those modes have been omitted from this

plot in order to focus on the traditional flight dynamic modes.

It is noted that the short period and phugoid modes are unaffected by adding wingtip-docked vehicles

since the longitudinal dynamics remain identical. Only the lateral dynamics are altered.

We can see that the roll mode slows down when more vehicles are added. Typically, an increase in

span results in a faster roll mode. However in the case of this linked aircraft system, the roll inertia of the

linked configuration is drastically increased. This effect dominates the locus of the roll mode pole in the

complex plane. It is also noteworthy that the pole moves much further when going from 1 to 2 vehicles

versus going from 2 to 3 vehicles. This implies that as more vehicles are added, the effects of adding span

versus adding inertia cancel each other out. Furthermore, the flight dynamics of a two-vehicle ensemble are

not very different than those of a three-vehicle ensemble. This means a single roll controller can be used for

any ensemble composed of wingtip-docked identical vehicles.

The spiral mode moves similarly to the roll mode, however, this pole becomes unstable. The unstable

spiral mode of the linked configuration is very close to the imaginary axis, which is easily stabilized with

feedback control. These results are in accordance with previous literature [12].
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Fig. 3: Flight dynamic modes for one vehicle and two and three linked vehicles
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Table 4: Inner-Loop Control Parameters

Speed Longitudinal Separation Roll Rate Pitch Rate Yaw Rate Altitude

Proportional Gain 10 10 10 10 10 10

Integral Gain 10 10 1 1 1 1

Derivative Gain 10 10 0 0 0 1

B. Linking Phase

The three vehicles were initialized with a lateral separation of 20 ft and no longitudinal separation. The

vehicle in the middle of the initial formation served as the mothership. The two vehicles on either side of the

mothership were autonomously guided toward it via the guidance algorithm of Section III. The vehicles were

considered linked when the distance between wingtips became less than or equal to 0.15 ft. The guidance

algorithm parameters were Kd = 20 and KR =

0.1 0

0 0.1

. The inner-loop control parameters are shown in

Table 4.

Figure 4 shows the trajectories of the centers of mass of the three vehicles during the linking phase.

Note that the majority of motion is in the x-axis, thus the x-axis is scaled by 1/50 so that the motion in all

three axes is visible. Vehicle 2 is the mothership, and Vehicles 1 and 3 are the followers. The stars on the

plot denote the locations where wingtips became linked.

It can be seen in Figure 4 that the two follower vehicles initially lose altitude as they turn in towards the

mothership. This is due to the buildup of sideslip as they maneuver via a yaw rate. The altitude is regained

as the wingtips close in on linking and the sideslip is eliminated by realigning their body axes with the

mothership’s. The altitude hold portion of the inner-loop controllers also plays a role in restoring altitude.

Once the vehicles are linked, the altitude hold portion of the inner-loop is switched off, and the wingtip

vortex effects go to zero. As the wingtips come together, a transient aerodynamic force is generated by flying

through the wake vortex of the neighboring vehicle. This results in the ensemble vehicle experiencing a slight

altitude climb after linking.
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Figure 5 shows the aerodynamic forces and moments on each vehicle during the linking phase. As the

vehicle wingtips approach the linkage point, the maneuvers they undergo become more aggressive as a result

of definition of d in (25). Oscillations are also present because each vehicle is moving through the wake

vortices of the other two. The forces and moments seen in this simulation can help drive structural design

requirements for linking aircraft.

C. Linked Flight Phase

Figure 6 shows the response of the linked ensemble to a series of attitude rate doublet commands. Rate

tracking, Euler angles, and control surface deflections are shown. Note that the differential aileron deflection

plot shows the total differential aileron deflection for the ensemble. As described in Section IVA, only the
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Fig. 5: Aerodynamic forces and moments during the linking phase
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outboard-most ailerons are used to control roll. Therefore the signal shown in Figure 6 is

δa = δaR3 − δaL1 (42)

We note that in all three axes, all three constituent vehicles are able to track the commanded rates, and most

importantly, the responses of all constituent vehicles are very similar. This means that the linked ensemble

is behaving as a single vehicle. While the inertia about the pitch axis increases threefold when the vehicles

are linked, the ensemble vehicle has three times the control power of the individual constituents. Thus the

closed-loop pitch dynamics of the ensemble vehicle are the same as that for the constituents. This is why the

pitch rate tracking is much tighter than the roll and yaw rate tracking. It is also worth noting that actuator

dynamics are not included in this simulation. Therefore, the fast response of the control surfaces shown in

Figure 6 may not be achievable in a real system. We leave the inclusion of actuator dynamics as a possible

future path for increasing the fidelity of these methods.

As the linked ensemble rolls, the y and z-positions of Vehicles 1 and 3 rise and sink. Figure 7 shows the

differences between the outboard constituent vehicle y and z-positions and the mothership y and z-position

during the doublet maneuvers. These distances are measured in a coordinate frame with y and z-axes

aligned with the inertial frame, and x-axis aligned with Vehicle 2’s body frame. In other words, the inertial

measurements are rotated about the inertial z-axis by ψ2. The y-distances change very little as a result of

the rolling maneuver from 5-10 seconds because they depend on the cosine of a relatively small angle (13◦

from Figure 6). The change in y-distance is apparent for Vehicle 1 in Figure 7, but this effect for Vehicle 2

is dominated by the linkage dynamics. In contrast, the changes in z-positions are obvious for both vehicles.

Vehicle 1 ascends by about 1.5 ft while Vehicle 2 descends by the same amount. Figure 7 also shows the

changes in z-position that results from the roll-yaw coupling during the yaw doublet from 25-30 seconds.

Figure 8 shows the aerodynamic forces and moments on the linked vehicle as well as the forces and

moments from the linkages experienced during the doublet maneuvers. It is shown that all three constituents

experience approximately the same aerodynamic forces and moments. The linkage forces and moments result

from the fact that the outboard constituents pull on the mothership for roll control of the ensemble since

only the most outboard ailerons of the total system are utilized. The largest linkage force experienced is
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Fig. 7: Difference in y and z−positions of the outboard constituents and the mothership

approximately 7 lb, and the largest linkage moment is approximately 20 ft-lb. This simulation data could

be used to drive the linkage mechanism design requirements. The model presented here does not account

for the weight of the linkage mechanism itself, which would presumably scale with the load it must carry.

A 7 lb force constitutes approximately 14% of the vehicle weight. This is a reasonable load to design to,

but it remains to be seen how this number would scale to larger aircraft. It is expected that there is some

upper bound on vehicle weight for which the linkage load becomes unfeasible to design a mechanism for.

Therefore, the set of missions that can most readily benefit from linked aircraft systems are those where the

constituent vehicles can be small and light.

VI. Conclusions and Future Work

This paper has presented an approach to dynamic modeling, guidance, and control for in-flight wingtip

docking of a group of fixed-wing aircraft. The NASA-Burnham-Hallock model for wingtip vortices was

introduced to a generic fixed-wing rigid body aerodynamic model to capture the close-proximity aerodynamic

interactions between vehicles in the group. A spring-damper-magnet model was introduced to describe the

forces exerted as a result of linked flight. An autonomous guidance algorithm and inner-loop control were

developed so that the constituent vehicles behave in a leader-follower manner during the unlinked phase of

flight. These models were implemented in a simulation representing NASA’s GTM aircraft, and the resulting
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linearized dynamic modes were identified for the constituent vehicles as well as a linked ensemble consisting

of two and three constituents. Dynamic simulations were performed for both the unlinked and linked phases

of flight.

The modeling presented in this paper, while appropriate for the exploratory nature of this work, is

admittedly low fidelity. Future work would seek to more accurately characterize the close-proximity aerody-

namic interactions between vehicles via wind tunnel experiments or computational fluid dynamic analysis.

Similarly, a higher fidelity linkage model could be developed based on a detailed mechanism design. Finally,

future modeling efforts would seek to describe an aircraft concept built specifically for a linked flight mission,

such as the vehicle described in [15]. This concept is a vertical takeoff and landing vehicle, and thus the

model (and control system) would need to be extended to the hover and transition flight regimes.

Another goal for future work is to implement the algorithms presented here in actual flight hardware.

This requires an investigation into the necessary sensors, communication, and state estimation schemes such

that the constituent vehicles have access to the appropriate feedback signals. Some examples of sensors that

will be investigated are GPS, computer vision [22, 23], LIDAR [24], and ultra-wideband radios for close-range

localization of member vehicles [25]. Another aspect of implementation that must be addressed is the design

of a linking mechanism that can be outfitted onboard the vehicles and the switching of control allocation

amongst the various control surfaces under ensemble flight.

Appendix

The GNA model is given by

CD = θ̂1 + θ̂2α+ θ̂3αq̃ + θ̂4αδe + θ̂5α
2 + θ̂6α

2q̃ + θ̂7α
2δe + θ̂8α

3 + θ̂9α
3q̃ + θ̂10α

4 − b

2yδa
θ̂42 (δaR + δaL)

CY = θ̂11β + θ̂12p̃+ θ̂13r̃ + θ̂14δa + θ̂15δr

CL = θ̂16 + θ̂17α+ θ̂18q̃ + θ̂19δe + θ̂20αq̃ + θ̂21α
2 + θ̂22α

3 + θ̂24α
4 − b

2yδa
θ̂27 (δaR + δaL)

Cl = θ̂24β + θ̂25p̃+ θ̂26r̃ +
1

2
θ27δaR −

1

2
θ̂27δaL + θ̂28δr

Cm = θ̂29 + θ̂30α+ θ̂31q̃ + θ̂32δe + θ̂33αq̃ + θ̂34α
2q̃ + θ̂35α

2δe + θ̂36α
3q̃ + θ̂37α

3δe + θ̂38α
4

Cn = θ̂39β + θ̂40p̃+ θ̂41r̃ +
1

2
θ42δaR −

1

2
θ̂42δaL + θ̂43δr + θ̂44β

2 + θ̂45β
3 (43)
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Table 5: GNA parameters

Element of θ̂ Value Element of θ̂ Value Element of θ̂ Value

1 0.019 2 -0.078 3 -27.420

4 0.293 5 3.420 6 288.200

7 -0.040 8 1.819 9 -355.300

10 -6.563 11 -1.003 12 0.033

13 0.952 14 -0.009 15 0.253

16 0.0160 17 15.343 18 30.780

19 0.396 20 12.030 21 0.506

22 -36.300 23 46.130 24 -0.109

25 -0.366 26 0.061 27 -0.079

28 0.021 29 0.182 30 -1.782

31 -44.340 32 -1.785 33 374.000

34 -1748.000 35 2.439 36 1949.000

37 -0.0380 38 0.803 39 0.2031

40 -0.220 41 -0.405 42 -0.009

43 -0.129 44 0 45 0.0064

where θ̂ are the model parameters and yδa is the y-distance from the vehicle CG to the center of each

aileron, and q̃ and r̃ are the non-dimensional pitch and yaw rates respectively. Note that the GNA has

been slightly modified from its presentation in [17] to account for effects of individual aileron deflections.

This is a necessary modification to model the linked control allocation described in Section IVA. The GNA

parameters are given in Table 5.
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