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ABSTRACT 
The Honeywell Uncertified Research Engine (HURE), a 

research version of a turbofan engine that never entered 

production, was tested in the NASA Propulsion System 

Laboratory (PSL), an altitude test facility at the NASA Glenn 

Research Center. The PSL is a facility that is equipped with water 

spray bars capable of producing an ice cloud consisting of ice 

particles, having a controlled particle diameter and concentration 

in the air flow. To develop the test matrix of the HURE, 

numerical analysis of flow and ice particle thermodynamics was 

performed on the compression system of the turbofan engine to 

predict operating conditions that could potentially result in a risk 

of ice accretion due to ice crystal ingestion. The goal of the test 

matrix was to have ice accrete in two regions of the compression 

system:  region one, which consists of the fan-stator through the 

inlet guide vane (IGV), and region two which is the first stator 

within the high pressure compressor. The predictive analyses 

were performed with the mean line compressor flow modeling 

code (COMDES-MELT) which includes an ice particle model.  

The HURE engine was tested in PSL with the ice cloud over 

the range of operating conditions of altitude, ambient 

temperature, simulated flight Mach number, and fan speed with 

guidance from the analytical predictions. The engine was fitted 

with video cameras at strategic locations within the engine 

compression system flow path where ice was predicted to 

accrete, in order to visually confirm ice accretion when it 

occurred. In addition, traditional compressor instrumentation 

such as total pressure and temperature probes, static pressure 

taps, and metal temperature thermocouples were installed in 

targeted areas where the risk of ice accretion was expected.  

The current research focuses on the analysis of the data that 

was obtained after testing the HURE engine in PSL with ice 

crystal ingestion. The computational method (COMDES-MELT) 

was enhanced by computing key parameters through the fan-

stator at multiple span wise locations, in order to increase the 

fidelity with the current mean-line method. The Icing Wedge 

static wet bulb temperature thresholds were applicable for 

determining the risk of ice accretion in the fan-stator, which is 

thought to be an adiabatic region. At some operating conditions 

near the splitter-lip region, other sources of heat (non-adiabatic 

walls) were suspected to be the cause of accretion, and the Icing 

Wedge was not applicable to predict accretion at that location. A 

simple order-of-magnitude heat transfer model was implemented 

into the COMDES-MELT code to estimate the wall temperature 

minimum and maximum thresholds that support ice accretion, as 

observed by video confirmation. The results from this model 

spanned the range of wall temperatures measured on a previous 

engine that experienced ice accretion at certain operating 

conditions. 

 
INTRODUCTION 
 Ice crystals ingested into turbofan engines during the 

operation of commercial aircraft at high altitudes can result in 

ice accretion in the compression system (Refs. 1, 2). As ice 

crystals are ingested into the fan, a portion of the ice crystals melt 

due to the rising static temperature of the air. It is hypothesized 

that the ice-water mixture then impacts and cools the surfaces 

through evaporation and ultimately ice accretes on the 

compressor components. The accreted ice can cause one or more 

of the following modes of failure: uncommanded loss of thrust 

control, compressor surge or stall, ice shedding which can result 

in structural damage to the compressor blades, and possible 

combustor flameout. To improve understanding of the causes of 

ice accretion within an engine, full engine testing with ice crystal 

ingestion has been performed in the NASA Propulsion Systems 

Laboratory (PSL) (Refs. 3, 4, 5), as well as fundamental ice 

crystal testing (Refs. 6, 7). 

This study focuses on the analysis of the test data obtained 

from the Honeywell Uncertified Research Engine (HURE). The 

engine was tested in the PSL with ice crystal cloud ingestion over 

a range of simulated altitudes and operating conditions. The test 

took place in January 2018, as part of the engine icing research 

supported by the NASA Advanced Aircraft Icing Subproject, 

under the NASA Advanced Air Transport Technology Project. 
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Since the HURE was never in production, it has not experienced 

in-flight events that have been attributed to ice crystal ingestion. 

The engine was installed into the PSL altitude facility with a 

direct connect duct that mates to the engine flange, such that it 

utilizes the full flow capacity of the PSL altitude wind tunnel as 

illustrated in the right photo of Figure 1. There was no flight 

nacelle installed in this test configuration. The PSL is an altitude 

engine testing facility located at NASA Glenn Research Center. 

The PSL features the Escort data acquisition system. Each engine 

data point is stored in the system and is referred to as an Escort 

data point number. The Escort system records the data at a 

frequency of approximately one scan per second. This test 

facility features water spray bars that can produce a fully 

glaciated ice crystal cloud with controllable ice particle size and 

concentration per unit volume of air. The spray bars (left photo) 

and the direct-connect inlet duct piping are shown below in 

Figure 1 with the engine and test stand (right photo).  

   

 
Figure 1. Engine Testing in PSL at Simulated Altitude and ice 
crystals. Direct connect duct (right), spray bars (left). 
 

The purpose of the test was to determine if ice would accrete 

within the compressor components at the predicted operating 

conditions outlined in Reference 8. The HURE engine (cross-

section illustrated in Figure 2) was heavily instrumented with 

traditional pressure and temperature gauges, as well as video 

cameras aft of the fan and near the splitter-lip, as well as inlet 

guide vane (IGV) regions. 

 

 
Figure 2. Honeywell Uncertified Research Engine (Courtesy 
Honeywell Engines). 

Prior to the test, an extensive study utilizing a mean-line 

compressor flow analysis code was performed to determine the 

operating conditions where a risk of ice accretion would be 

expected (Ref. 8). The study resulted in numerous operating 

conditions and altitudes where the ice would be expected to 

form, at several locations within the compression system. The 

computational tool that was utilized consisted of an enhanced 

version of the COMDES compressor flow code (Ref. 9). This 

tool was previously applied to analyze icing data from other 

engines tested in PSL with ice crystal ingestion (Refs. 10-16). 

That research resulted in determining values for key parameters 

that can indicate whether there is a risk of ice accretion. These 

key parameters form the basis of the Icing Wedge. The Icing 

Wedge is defined by thresholds of static wet bulb temperature, 

ice-water flow rate to air flow rate, and a non-zero particle melt 

ratio. Leveraging from the previous analytical studies, it was 

hypothesized in Reference 8 that the Icing Wedge is universally 

applicable to other turbofan engines. The primary focus of the 

study in Reference 8 was to determine the engine operating 

conditions and ambient temperatures at various altitudes, that 

would result in ice accretion between the fan-stator, splitter-lip, 

and the inlet guide vane (IGV) of the high-pressure compressor 

(HPC). The secondary focus of that study was to enable accretion 

to occur in the variable stator of the HPC first stage (stator 1), 

however this analysis is not included in this paper, but is included 

in References 17 and 18. These targeted areas where the ice was 

expected to occur and the associated station numbers from the 

compressor flow simulation are illustrated in Figure 2. 

The current study is focused on the analysis of 57 Escort test 

points that were taken at distinct operating conditions in PSL at 

altitudes between 5K and 45K feet. The computer analyses 

results for these data points with the Customer Deck as well as 

with the COMDES-MELT codes are listed in the Appendices A, 

B, and C in Reference 17. The results of the HURE testing 

confirmed by the video that ice accreted and, or collected at all 

altitudes in the general targeted regions of the fan-stator, splitter-

lip, and the IGV, confirming most of the predictions made in 

Reference 8. During testing, it was observed that ice accreted at 

the fan-stator in accordance with the icing parameter thresholds 

governed by the Icing Wedge. Note that this fan-rotor is highly 

loaded, causing a significant rise in total temperature, which is 

adequate to partially melt the incoming ice particles. 

Ice accretion was observed on the front frame components 

near the splitter-lip at lower static wet bulb temperatures than 

was expected, based on the Icing Wedge minimum threshold of 

492R. In addition, the accretion occurred at static air 

temperatures well below freezing, thus no particle melting could 

have occurred due to heating from the air alone. The aluminum 

front frame may have received heat from additional sources 

besides the air, but this process is not well understood for this 

engine. It is possible that the ice accretion in that region was not 

an adiabatic process. During testing, in order to compensate for 

the lack of a heat transfer model in the COMDES-MELT code, 

the target static wet bulb temperature (Twbs) for ice to accrete in 

the front frame region was reduced to 468R. This was 24R below 

the Icing Wedge minimum threshold of 492R. The new target 
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Twbs was determined by the analysis of one of the operating 

points where ice accreted at the splitter-lip and shroud region. 

Using COMDES-MELT, new testing conditions were rapidly 

derived prior to further testing, and the test matrix was modified. 

This was successful in enabling ice to accrete in the front frame 

components (splitter-lip and shroud region). For post-test data 

analysis, a simple bulk heat transfer model was developed to 

estimate the wall metal surface temperature. This was done in 

order to compare it to previous engine tests which had measured 

wall temperatures between 492R to 501R during ice accretion.  

Video observation indicated that ice collected on the 

variable inlet guide vane (IGV) of the high-pressure compressor. 

This may have been due to partially melted particles flowing 

along the shroud wall from upstream, that collected on the IGV 

surface. This appeared to be different from the ice accretion 

observed at the upstream regions. Due to the possible non-

adiabatic process upstream of the IGV, the Icing Wedge 

thresholds, as an indicator of accretion risk, are not applicable in 

this region.  

The testing of the HURE indicated that ice accreted or 

collected at all altitudes tested and was confirmed by video 

cameras at the three targeted locations of fan-stator, splitter-lip-

strut, and IGV. Note that the accretion in those locations occurred 

at different operating conditions. Those test points are 

superimposed onto the historical engine icing events reported in 

References 1 and 2, as illustrated in Figure 3. The historical icing 

events occurred on commercial airlines (Figure 3) during flight 

through clouds with high ice-water content. Those events have 

been attributed to ice crystal ingestion and subsequent ice 

buildup in the engine, but the exact location within the 

compression system is unknown. The plot in Figure 3 includes 

reference lines indicating the International Standard Atmosphere 

(ISA) temperature, with +18F and +36F above ISA, versus 

altitude. Ice accretion within the HURE engine spanned the 

entire range of the reported historical icing events for 

commercial engines. The PSL test conditions at 5K feet altitude 

were set to inlet temperatures on the order of -25F, which are 

offset by -45F from the ISA temperature, in order to induce ice 

accretion in the targeted location of the compression system. 

Note that this condition does not occur in nature, but was 

artificially set in PSL for icing research and code modeling 

development. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. The confirmed operating points with ice accretion or 
collection in the HURE engine during PSL testing, superimposed 
onto the reported commercial engine icing events (Ref. 1). 

 

Post-test analysis showed differences between the engine 

thermodynamic system model and the measured engine 

performance data. These comparisons between the system model 

and the tested engine performance were based on data prior to 

ice-cloud ingestion. These variances that were on the order of 

6% may be partially responsible for uncertainties in the post-test 

analyses with the COMDES-MELT code, which depends on the 

engine system model as well as the measured test data for 

boundary conditions.  

NOMENCLATURE 
CD  customer deck 

Delta ISA offset temperature from ISA 

ISA  International Standard Atmosphere 

IWAR ice-water flow rate to air flow rate ratio 

IWC ice water content (glaciated crystals), g/m3 

m  mass flow rate of air, lbm/s 

PT1  engine inlet total pressure 

Tamb ambient temperature, static 

TT1  engine inlet total temperature 

Twbs static wet bulb temperature 

u  micron 

COMPRESSOR CODE CALIBRATION 
Prior to testing in PSL, the COMDES code was compared 

to the design point performance results from a customer deck, as 

well as more detailed results from a two-dimensional streamline-

curvature analysis code for the fan and the four axial compressor 

stages of the HPC. These two results were provided by 

Honeywell for the purpose of calibrating the COMDES code at 

the design point. These are listed in Appendix A of Reference 17, 

and include the summary of the HURE fan and HPC geometry, 
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as well as the streamline-curvature analysis results, and the 

COMDES flow code results at each blade edge.  

After testing the HURE engine, in order to further verify the 

accuracy of the COMDES compressor code in being able to 

model the flow through the full fan and fan-core region, six test 

data points without ice cloud ingestion were analyzed with the 

COMDES code (Appendix B of Ref. 17). The purpose was to 

confirm that the compressor aerodynamic performance predicted 

by the flow model matched the measured aerodynamic 

performance test data of the compressor within the engine. In 

addition to calibrating the rotor and stator losses within the flow 

model, the effects of the aerodynamic instrumentation installed 

in the compression system could also potentially influence the 

measured performance. The effect of the instrumentation was not 

significant, since the measured and the fan and compressor aero 

performance (total temperature and pressure, and static pressure) 

modeled with the CD and COMDES were all in good general 

agreement (see Figures 42-47 in Appendix B of Ref. 17). 

Therefore there was no compressor code calibration required to 

accurately model the fan, flow splitter, and IGV regions. During 

testing even in an ice cloud environment, it was observed that the 

total pressure and the wall static pressure measurements in the 

fan-stator and core strut regions remained unaffected by the 

particles. However, the cascading aerodynamic effects of even 

small differences in the fan performance can propagate through 

the HPC and affect the compressor exit conditions (Pt and Tt) 

through the stage matching. This effect may be responsible for 

the observed differences in engine performance parameters of up 

to 6% between the CD engine system model and measured 

Escort test data. Even though the compressor exit plane is well 

downstream of any ice accretion sites, the differences in 

conditions there may influence the calculation of core mass flow 

in the CD system model. 

FAN-STATOR ANALYSIS; RISK OF ACCRETION 
GOVERNED BY THE ICING WEDGE THRESHOLDS 

The analysis of the HURE test data was performed with the 

similar computational process shown in Figure 4 that was 

utilized in the predictions of icing risk of Reference 8. The 

computational process is further detailed in Appendix C of 

Reference 17, with the description of the input parameters for the 

engine thermodynamic cycle code (CD) as well as for the 

COMDES-MELT code. Initially the CD is executed at the tested 

altitude, ambient temperature, flight Mach number, and fan 

speed. The results from the engine CD model are utilized as 

boundary conditions to the subsequent execution of the 

compressor flow analysis code (COMDES-MELT). The 

compressor flow analysis is performed to determine the 

aerodynamic flow field as well as the thermodynamic state of the 

ice particle, in addition to computing the key icing parameters of 

wet bulb temperature and IWAR. These analyses assumed that 

the ice particles were distributed uniformly through the bypass 

as well as the engine core, even though this engine has a “hidden 

core.” As part of the ice particle thermodynamic state, the melt 

ratio is calculated to determine the existence of liquid water 

content, which is a requirement for there to be ice accretion. 

Since there is no particle break up model in the code, the analyses 

was performed over a range of possible particle sizes from 3 – 

10 microns.  

 

 
 

Figure 4. Computational process for the test data analysis for 
the fan stage of the HURE turbofan engine 

 

The calculated icing parameters are then compared to the 

minimum and maximum threshold limits of the Icing Wedge 

shown in Figure 5 and the video images of the compressor 

components are evaluated to determine if ice accreted on the 

component. Note that the 3-dimensional Icing Wedge shown in 

Figure 5 was derived from a previous turbofan engine test, where 

the blockage growth rate due to ice accretion was iteratively 

determined to match the measured wall static pressure and the 

total pressure ratio. This study only utilizes the minimum and 

maximum threshold values of the static wet bulb temperature 

(Twbs) of the Icing Wedge that indicate the risk of accretion on 

the fan-stator. Estimates of blockage growth rate due to accretion 

and boundary layer growth are not part of this current study. 

 

 
 

Figure 5. The Icing Wedge defined by the thresholds of Twbs 
between 492R – 498R for a risk of accretion (Reference 16). 
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The values of the static wet bulb temperature (Twbs) in the 

fan-stator are utilized as a verification of accuracy for predicting 

the risk of ice accretion. If the value of Twbs falls between the 

Icing Wedge thresholds, then there is a risk of ice accretion. The 

static wet bulb temperature is calculated from the local values of 

static air temperature and the relative humidity. 

The location of ice accretion on the fan-stator was observed 

in the video to be at discrete radial locations at each operating 

condition (Escort test point), but for some test points the 

accretion appeared to be at a higher span than the notional 

streamline of the fan-core. It became apparent that a full fan flow 

analysis was also required to determine the Twbs at the higher 

RMS radius of the full fan.  

For this reason two models were created of the fan-stator. 

The first model was of the full fan-rotor and fan-stator. This 

analysis resulted in computing the aerodynamic parameters at 

the root-mean-square (RMS) radius of the full fan stage, as 

illustrated in Figure 6. The computed parameters included: 

relative and absolute velocities, static and total pressures and 

temperatures, absolute and relative flow angles, including the 

static wet bulb temperature and the particle melt ratio at the 

leading and trailing edges. The second model was of the fan-core 

region through the splitter-lip, and the variable IGV. In this 

analysis, a notional stream line was assumed that divided the 

flow between the bypass and the core, as illustrated in Figure 6. 

The notional streamline was used as the fan-core flow path outer 

wall. Likewise that analysis resulted in modeling all the 

aerodynamic parameters, including the static wet bulb 

temperature (Twbs) and the particle melt ratio at the RMS radius 

of the fan-core stage, through the IGV.  

 

 
Figure 6. Two flow models of the fan stage: (a) Full fan; (b) Fan-
core, with its outer flow path wall indicated by the notional 
streamline. The numbers 1 – 6 refer to the meridional stations. 

The computed Twbs and IWAR of the Escort test points 

analyzed in the fan stator region are illustrated in Figure 7. The 

symbols connected by dotted lines represent the values of Twbs 

at the full fan and at the fan-core RMS radii. The span wise work 

distribution in the fan rotor resulted in a gradient of static 

temperature, resulting in a large variation of Twbs. The minimum 

and maximum Twbs thresholds (492R – 498R) of the Icing 

Wedge from Reference 16 are represented by two horizontal 

lines. These are superimposed onto the calculated values of Twbs 

obtained from the HURE test data analyses. Figure 7 represents 

the static wet bulb temperature at station 5 shown in Figure 6. 

The black symbols in Figure 7 indicate the Escort test points 

where ice accretion on the fan stator was confirmed by video 

observation. For most of the test points that experienced 

accretion, the range of Twbs spanned the minimum and 

maximum thresholds of the Icing Wedge. The combined analysis 

of the fan-core and full fan results had a 94% success rate of 

spanning the Icing Wedge for all data points analyzed which had 

ice accretion in the fan-stator.  

The test data points where ice accretion was not observed by 

video in the fan-stator, were outside the Icing Wedge thresholds, 

as indicated by the red symbols in Figure 7. The analysis results 

had a 100% success rate of being outside the Icing Wedge for all 

data points analyzed which had no ice accretion in the fan-stator. 

In summary, there was good agreement between the Twbs 

thresholds of the Icing Wedge and the analysis of the HURE test 

results. However, it was necessary to have both the full fan and 

the fan-core models to determine the range of Twbs along the full 

span of the fan-stator.  

 

 
 

Figure 7. Range of static wet bulb temperature at the fan-core 
stator and full fan-stator root-mean-square radii, relative to the 

Icing Wedge thresholds. 

The static wet bulb temperature is based on accurate 

calculations of the local static air temperature as well as the local 

relative humidity within the flow field of the fan as well as the 

four axial stages in the core. A sample data point is shown in 

Figure 8, where the inlet relative humidity is 100%, illustrates 

the rapid drop in relative humidity. The specific humidity 

increases due to the sublimation, melting, and evaporation of the 

ice particles. The accretion at station 5 (fan-stator trailing edge) 

occurs at approximately 10% relative humidity as shown in 

Figure 8. 
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Figure 8. Distribution of relative and specific humidity. 

The operating conditions for two sample Escort data points 

are listed in Table 1. Escort data point 121 is the case with ice 

accretion in the fan-stator, while Escort data point 287 had no ice 

accretion. The computer analyses results for all the data points 

analyzed with the Customer Deck as well as with the COMDES-

MELT codes are included in Appendix C of Reference 17 and 

listed by Escort data point number. These include all data points 

with and without ice accretion in the fan-stator. 

 
Table 1: Fan-Stator: Ice Accretion (121); No Ice Accretion (287) 
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121 45 0.81 427 484 3.28 1.48 0.0058 487- 498 0.0 - 0.16 

287 36 0.61 412 443 4.22 2.48 0.0066 467- 484 0.0 - 0.0 

 

The above Tables 1 show the static wet bulb temperature and 

the corresponding particle melt ratio for a 5 micron particle at 

the trailing edge of the fan-stator. 

Figure 9 shows the view of the fan-stator from the video 

camera mounted on the engine shroud facing radially inward 

towards the hub. The image shows a typical case (Escort 121) 

where the ice accretion was observed on the fan-stator through 

the video cameras.  

 

 
 

Figure 9. Video camera view of the fan-stator showing that ice 
accretion occurred there during Escort data 121. 
 

Figure 10 illustrates the static wet bulb temperature 

distribution for Escort data point 121 through the full fan 

(represented by blue lines), and the fan-core and the four stage 

axial compressor (represented by black lines), as well as the 

particle melt ratio, over a range of particle size from 3-10 

microns.  

 

 
 

Figure 10. Ice accretion occurred in the fan-stator during Escort 
121. The static wet bulb temperature was within the Icing Wedge.  

The range of particle sizes analyzed with COMDES-MELT 

in Figure 10 were between 3 and 10 microns for all the stations 

in the flow path. The full fan model had 5 meridional stations, 

while the fan-core model is comprised of 28 meridional stations, 

as shown in Figure 2, since the four axial stages of the high 

pressure compressor were also included as part of the flow 

analysis. The calculated Twbs downstream of the HPC rotor 1 
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(meridional station 9) was significantly higher than the 

maximum threshold of the Icing Wedge. Therefore there was no 

risk of accretion in the downstream stages, although there were 

no video cameras in those stages for visual confirmation. For the 

Escort data points  where ice accretion occurred on the fan-stator, 

there was no accretion observed concurrently on the splitter-lip, 

shroud, strut, IGV regions. Likewise, when ice accretion was 

observed in the splitter-lip, shroud, strut, IGV regions, there was 

no accretion observed concurrently on the fan-stator.   

SPLITTER – LIP - STRUT – GOOSENECK REGION; 
NON-ADIABATIC WALL 
 

PSL Test, and Real-Time Predictions of Ice Accretion 

Operating Points: 

Early in the HURE testing, it was observed that at several of 

the tested operating points, ice accretion in the front frame region 

(splitter, shroud, gooseneck and support strut) did not occur as 

expected even though the static wet bulb temperatures (Twbs) 

were within the thresholds of the Icing Wedge. Although there 

were no metal thermocouples to measure the wall temperature 

near the aluminum splitter-shroud region, it is assumed that the 

metal temperatures were above freezing, since liquid water 

streaks were observed in the videos on the shroud. The target 

static wet bulb temperature was reduced by 24R from the Icing 

Wedge minimum threshold value of 492R in order to accrete ice 

in the region of the front frame. The value of 468R was 

determined through flow modeling in near real-time analysis of 

several test data points that experienced ice accretion at the 

splitter-shroud region. Flow analysis of those data points 

indicated that the calculated static air temperature was well 

below freezing at this location. Thus no melting could have 

possibly occurred solely due to the heat of compression caused 

by the fan. In addition, the calculated temperature of the ice 

particles was also well below freezing, based on the flow 

analysis.  

New testing operating conditions over a wide range of 

simulated altitudes were rapidly determined utilizing the lower 

Twbs threshold in the splitter-shroud region prior to further 

testing, and the test plan was modified accordingly. With these 

updated conditions ice began to accrete within seconds after the 

ice cloud was initiated. It was assumed that the splitter-shroud 

region wall temperatures at this condition were near freezing, 

since the measured metal temperatures on the IGV were at 

freezing. This technique was successful in inducing ice to accrete 

in the splitter-shroud region, for most subsequent tested 

operating points. Note that when ice accretion was observed in 

the splitter-lip-strut, shroud region there was no accretion 

observed on the fan-stator at the same operating points.        

The aluminum front frame may have received heat from 

additional sources besides the air, in order to partially melt the 

particles, which then subsequently accreted near the splitter-lip-

shroud. A physics-based explanation was sought for this 

phenomenon. It is possible that the ice accretion in this region is 

due to a non-adiabatic wall. Although the source of additional 

heat flux is not completely understood, a simple order-of-

magnitude heat flux model was implemented in COMDES-

MELT to estimate the wall temperature in this region.  

 

Order-of-Magnitude Estimate of Wall Temperature: 

In order to reconcile the additional enthalpy from the non-

adiabatic flow path wall, an order-of-magnitude method was 

implemented that assumes a continuous supply of heat which is 

transferred directly to the ice particle by conduction. The heat 

transfer model was calibrated empirically based on the HURE 

test results. Since there were no thermocouples in the splitter-

shroud region of the front frame where ice accreted, it was 

necessary to utilize measured IGV metal temperature test data to 

develop the heat transfer model for the front frame. The purpose 

of the heat transfer model was to calculate the wall temperature 

in the splitter-shroud region. Several data points were observed 

to have glassy ice accretion at the splitter-lip and shroud of the 

gooseneck with no shedding (hard ice). At these operating points 

it was observed that the measured metal temperatures at the IGV 

were near 492R. It was therefore assumed that the metal 

temperature at the splitter-lip and shroud were likewise near 

492R at these operating conditions. Table 2 below lists four test 

data points at various altitudes that were used to confirm that 

when hard ice was observed to accrete on the splitter-lip and (or) 

the shroud, the IGV had a measured metal temperature near 

492R. This was also observed in the previous engine test (Ref. 

15, shown in Figure 11). The total air temperature at the splitter-

shroud region was approximately the same in the CD and 

COMDES models, and confirmed by the measured Escort data. 

The  calculated static air temperature in the splitter-shroud region 

as modeled by COMDES was consistently below freezing. Yet it 

was observed that ice accreted in the splitter-strut-shroud region. 

 
Table 2 Calibration of the Heat Transfer Model in COMDES-MELT 
 

Test 
Data 
Point, 
Escort 

Altitude, 
K ft 

Splitter-
Shroud 
Ttotal Air, 
CD, Escort 
& COMDES, 
R 

Splitter-
Shroud 
Tstatic Air  
COMDES, 
R 

Tigv
  
Metal 

Pre Ice 
Cloud, R 

Tigv
  
Metal 

Post Ice 
Cloud; After 
60 sec, R 

156 45 509.4 486.3 511.2   492.3 

283 36 499.9 481.9 501. 1  491.0 

279 25 496.1 478.1 494.2     491.9 

242 5 492.8 476.9 492.0   491.9 

 

A simple heat transfer model was created, where the initial 

unknown was the bulk heat transfer coefficient at the splitter-

shroud flow path wall, hwall plenum. To estimate hwall plenum, two of 

the test data points were selected (156 and 283) which had visual 

confirmation of glassy, hard ice accretion which did not shed, on 

the splitter-lip and shroud. Although the exact source of heat 

(enthalpy) to the walls was not known, in this study it is assumed 

that the heated air from a downstream stage was the source. In 

order to have this additional enthalpy vary with engine operating 

conditions, for modeling purposes it was assumed that the source 

was the HPC stage 2 exit (COMDES-MELT; Tt2).  



 8  

In the analysis that follows, the temperature of the plenum, 

Twall plenum, was assumed to be the same as Tt2. At the selected 

data points (156 and 283), the heat flux, Q, was calculated 

assuming that the splitter and shroud wall temperatures, Twall core, 

were at 492R with the following equation (1), where the m is the 

mass flow rate of the ice particles going through the engine core.  

 

𝑄 = 𝑆𝐻𝐶 ∗ 𝑚 ∗ (𝑇𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  − 𝑇𝑤𝑎𝑙𝑙 𝑐𝑜𝑟𝑒) (1) 

 

The mass flow of ice particles through the engine core is 

assumed to be proportional to the air flow rate, since the 

compressor code lacked a model to track the particle distribution 

within the flow path in three-dimensional space. The SHC is the 

specific heat capacity of the ice particles. The ice particle 

temperature was obtained from an initial solution of the 

COMDES-MELT code. Knowing the heat flux, Q, the 

temperature on the plenum side of the shroud wall, Twall plenum, 

was computed with equation (2) .  

 

𝑇𝑤𝑎𝑙𝑙 𝑝𝑙𝑒𝑛𝑢𝑚 = 𝑄 ∗
𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

 (𝐴 ∗ 𝑘) 
+ 𝑇𝑤𝑎𝑙𝑙 𝑐𝑜𝑟𝑒 (2) 

 

The A in the above equation is the surface area of the splitter-

shroud region through the entire goose neck, while k is the 

coefficient of conduction for aluminum, and thickness is the 

average wall thickness of the aluminum shroud casing. The bulk 

heat transfer coefficient, hwall plenum was determined for this 

engine based on the assumption of wall temperature of 492R 

with equation (3).  

 

ℎ𝑤𝑎𝑙𝑙 𝑝𝑙𝑒𝑛𝑢𝑚 =
𝑄

 𝐴 ∗ (𝑇𝑤𝑎𝑙𝑙 𝑝𝑙𝑒𝑛𝑢𝑚  − 𝑇𝑎𝑖𝑟 𝑝𝑙𝑒𝑛𝑢𝑚) 
 (3) 

 

For the flow analysis of all other data points, the bulk heat 

transfer coefficient was assumed to remain at the value which 

was calculated from the data points 156 and 283 of Table 2. The 

above three equations were incorporated into COMDES-MELT 

and are solved for the three unknown parameters (Q, Twall plenum, 

Twall core) for all subsequent data points analyzed in this study.  

COMDES-MELT was executed iteratively to first, determine 

Twall plenum (Tt2) and particle temperature at the splitter – shroud 

region, and finally executed to calculate the splitter – shroud wall 

temperature (Twall core). However, in the current study the 

enthalpy extracted from the heated wall was not transferred back 

to the ice particle to determine its thermodynamic state once it 

made contact with the heated splitter-shroud wall. The 

computational process summarizing the steps above is outlined 

in Figure 4 and in Appendix C of Reference 17.  

The computed value of Twall core was then compared to 

previous engine test data (Honeywell ALF502R-5, serial number 

LF11) with measured wall metal temperatures at the location 

where there was significant ice accretion (Ref. 15) and are 

illustrated in Figure 11. Note that additional analysis of the 

engine data in Reference 15 was performed as part of this study, 

and is illustrated in Figure 11. Ice accretion occurred on the LF11 

compressor shroud wall at measured metal temperatures on the 

shroud wall between 493R and 501R.  

The range of calculated metal wall temperatures (Twall core) at 

the splitter-shroud region using this heat transfer model where 

ice accretion was confirmed by video, were between 475R to 

519R, and span the range of wall temperatures measured in the 

LF11 engine during accretion. The calculated HURE wall 

temperatures (solid blue circles) were superimposed onto the 

measured wall temperatures (black diamonds) of the LF11 

engine that supported ice accretion. The calculated wall 

temperature increases with reduced IWAR, and is in agreement 

with the trend observed in the previous engine test. The solid 

green circles were ice accretion data points from HURE at the 

5K altitude.  
 

 
 

Figure 11. Calculated wall temperature versus IWAR of the HURE 
splitter-shroud region for data points with ice accretion at high 
altitudes and at 5K ft, compared to the measured wall 
temperature of the LF11 engine (Ref. 15). 
 

Escort data point 153 and 156 are examples of the two distinct 

types of ice accretion in the splitter-shroud region in which ice 

accreted with horns on the splitter-lip (Escort 153, Figure 12), 

and without ice horns on the splitter but ice on the shroud (Escort 

156, Figure 13). The ice accreted at discrete circumferential 

locations. For Escort data point 156, the compressor flow model 

was executed to determine the static wet bulb temperature 

distribution through the full fan, the fan-core and the four stage 

axial compressor, as well as the particle melt ratio over a range 

of particle size for 3 – 10 microns, and is illustrated in Figure 14. 

The flow model indicated that the splitter-lip-shroud surface wet 

bulb temperature was 24R below the Icing Wedge minimum 

threshold of 492R. The flow model for Escort data point 153 (ice 

horns on the splitter-lip) indicated that surface wet bulb 

temperature at that location was 19R below the Icing Wedge 

minimum threshold.  

 



 9  

  
 

Figure 12. Escort 153. Ice accretion with ice horns on the 
splitter-lip at discrete circumferential locations. 

 

 
 

Figure 13. For Escort 156, there was ice accretion on the 
shroud, without horns on the splitter-lip. 
 

 
 

Figure 14. Ice accretion occurred at Escort 156. The static wet 
bulb temperature is 24R below the Icing Wedge minimum 
threshold of 492R. 
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153 45 0.81 399.4 452.2 3.28 2.89 0.0099 473.1 495.5 

156 45 0.77 403.6 451.0 3.13 2.73 0.0096 467.9 492.0 

 

A third type of icing on the splitter-lip occurred, which was 

a rapid collection and shedding at frequencies of multiple times 

per second. The ice appeared as small white “mounds” which 

were quite different from the glassy hard ice noted in Figures 12 

and 13. These mounds also appeared at circumferentially 

discrete locations on the splitter-lip. The calculated metal 

temperatures for these data points were in the range from 505.4R 

to 563.9R, which is significantly higher than the glassy hard ice 

accretion cases.  

 

 
 

Figure 15. The static wet bulb temperature versus IWAR in the 
splitter-shroud region, for the cases with hard ice accretion and  
those with only collection and rapid shedding. 

The range of Twbs for the cases with collection (pink open 

symbols in Figure 15), but no accretion was from 487.9R to 

503.9R. This spans the Icing Wedge thresholds, however the 

Icing Wedge thresholds do not apply here due to the additional 

heat flux from the walls to the ice particles.  

Figure 16 illustrates the strong effect of the local air static 

temperature on the ice accretion potential in the splitter-shroud 

region. The higher air temperatures (pink open symbols) result 

in the collection of ice on the splitter-lip, with rapid shedding a 
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rate of several times per second, to several seconds per shed, with 

no accretion of hard glassy ice. The closed black symbols are 

hard glassy ice accretion on the splitter lip, at calculated wall 

temperatures between 475R – 519R. To accurately model this 

heat flux from the wall to the ice particle, as well as other 

potential heat sources, a high fidelity multi-disciplinary model of 

the entire front frame would be required that includes fluid 

dynamic analysis as well as conjugate heat transfer. 

 

 
 

Figure 16. Calculated wall temperature at the splitter-shroud 
wall region versus calculated air static temperature. 

 

VARIABLE INLET GUIDE VANE (IGV) REGION 
As in the splitter-lip-shroud region, the Icing Wedge 

thresholds are likewise not applicable in the IGV region as an 

indicator of accretion risk. This is likewise due to the additional 

heat flux through the wall at the splitter-lip-shroud region that 

may provide liquid water to the IGV.  Accretion occurred on the 

IGV at test data points which had calculated Twbs from 33.4R to 

19.4R below freezing, while the calculated static air 

temperatures were from 4R to 23R below freezing. The range of 

measured metal temperature of the IGV was near 492R. Table 4 

shows the analysis results for Escort 284, with the measured IGV 

metal temperature of 502R before ice cloud initiation, and 491R 

60 seconds after ice cloud was initiated. 

 

Table 4 Typical IGV Data Point with Ice Accretion 
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284 36 0.61 412.8 443.4 4.21 4.10 0.0105 469.6 502.1 490.6 

 

Figure 17 shows the video image of ice accretion on the IGV 

for Escort data point 284. The ice accreted near the tip region.  

 

 
 

Figure 17. Ice accretion on the IGV surface near the tip (Escort 
284 at 36K ft altitude). 
 

Accretion on the IGV appeared to be a function of IWAR for 

all test points. For all test points the minimum limit where ice 

accretion occurred had IWAR values above 0.008 (Figure 18).  

 

 
 

Figure 18. Measured IGV metal temperatures versus IWAR for 
all operating points with video confirmation. 

 
UNCERTAINTY 

Key HURE engine performance parameters from the CD 

system model were compared to the Escort measurement data in 

order to validate the model.  Figure 19 illustrates the percentage 

difference of the parameters between the measured Escort data 

and the CD model as a function of Escort data number, which 

increased chronologically.  Variances of up to 6% were noted for 

certain engine performance parameters. The analysis conducted 
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in this study was based on the CD estimate of the flow through 

the core. These differences may affect the analysis results with 

COMDES-MELT, thus adding to the uncertainty. 

 

 
 

Figure 19. Percentage difference between the CD model and 

the Escort test data as a function of Escort number. 

 

 

CONCLUSIONS 
The Honeywell Uncertified Research Engine (HURE) has 

been tested in the Propulsion System Laboratory (PSL) at NASA 

Glenn Research Center with ice crystal cloud ingestion over a 

range of simulated altitudes, ambient temperatures, and engine 

operating conditions (varying flight Mach number and fan 

speed).  

A computational process utilizing the mean-line 

(COMDES-MELT) aerodynamic compressor flow analysis code 

along with the Honeywell provided customer deck were utilized 

for the post-test analysis of the engine test data.  

The HURE engine testing indicates that ice accretion 

occurred differently in the fan-stator, than it does near the 

splitter-lip and shroud region, as well as on the compressor inlet 

guide vane.  

 

 Ice accretion on the non-metallic fan-stator vanes occurs 

within the range of wet bulb temperature thresholds of the 

Icing Wedge (492R – 498R) where it was expected to occur, 

and did not have any icing when the Twbs was outside these 

Icing Wedge thresholds. The accretion here appears to be an 

adiabatic process. In the fan-stator region the static wet bulb 

temperature thresholds of the Icing Wedge, proved to have 

a 94% accuracy as an indicator of icing risk. Although the 

mean-line flow analytical capability lacks the radial 

distribution of ice particles, and key icing parameters, it can 

be an effective tool for estimating their bulk values.  

 

 Early during the testing phase of the HURE, real-time 

analysis of the data indicated that the splitter-lip and shroud 

region of the gooseneck may have been heated, however the 

heat source was not well understood. The PSL test plan was 

adjusted accordingly for subsequent test data points. In 

order to induce ice accretion near the splitter-shroud region, 

the target value of static wet bulb temperature was reduced 

by 24R to a value near 468R. This proved to be a successful 

technique for forcing ice to accrete in that region, in spite of 

the suspected non-adiabatic walls. During post-test analysis, 

a simple heat transfer model was developed in order to 

calculate the wall temperature in the splitter-shroud region 

at all operating conditions. The heat transfer model was 

incorporated into the compressor flow analysis code, for an 

order-of-magnitude calculation of wall temperature. In this 

non-adiabatic region, the Icing Wedge wet bulb temperature 

thresholds were not applicable as an indicator of icing risk 

due to the additional heat flux through the walls.  

 

 The ice accretion on the variable inlet guide vanes (IGV) of 

the compressor appeared to be a strong function of the 

IWAR (ice-water flow rate to air flow rate ratio). Ice 

accretion on the IGV occurred at values of IWAR above 

0.008, whereas no ice accretion on the IGV occurred below 

that value. In the IGV region, the Icing Wedge thresholds 

were not applicable as an indicator of icing risk due to the 

source of liquid water from upstream (splitter-lip-shroud).  

 

 Non-adiabatic compressor flow path walls require a fully 

coupled multidisciplinary analysis of the conjugate heat 

transfer through the walls, the air flow, as well as the 

thermodynamic state of the ice particle, in order to 

determine the static wet bulb temperature distribution in the 

flow field.  
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