Atmospheric River Precipitation Characteristics Revealed by NASA GPM Ground Validation Observations in Complex Terrain

> Stephanie M. Wingo¹ & Walter A. Petersen² ¹NASA Postdoctoral Program/USRA ²NASA Marshall Space Flight Center

> > V. Chandrasekar³ ³Colorado State University

12th International Precipitation Conference Irvine, CA 21 June 2019

Image: Stacy Brodzik

Motivation

- GPM GV Observation Diversity
 - Core Observatory
 - Constellation Partners
 - Field Campaigns
 - Ground-based
 - Airborne

Goals:

Focus on OLYMPEX Atmospheric River (AR) Events:

- Integrative approach/building atmospheric column
 - DPR LCFB often above 0°C in high terrain
- Compositing vertical slices
- Multi-frequency analysis via ground-based radars

Motivation

- GPM GV Observation Diversity
 - Core Observatory
 - Constellation Partners
 - Field Campaigns
 - Ground-based
 - Airborne

Goals:

Focus on OLYMPEX Atmospheric River (AR) Events:

- Integrative approach/building atmospheric column
 - DPR LCFB often above 0°C in high terrain
- Compositing vertical slices
- Multi-frequency analysis via ground-based radars

Land/topo impact ice/liquid precipitation processes – unblocked/large Froude and warm sector flow regimes (Hunzinger 2018/Petersen et al. 2018)

Methodology

Case Criteria

- ARs with unblocked terrain-normal component flow: WS, Fr > 1.3 (Hunzinger 2018/Petersen et al. 2018)
- 6 AR cases, 8 GPM OPs
 - 13 Nov 03-00 UTC (20%)
 - 17 Nov 10-21UTC (10%)
 - 3 Dec 14-00 UTC (10%)
 - 6-7 Dec 00-02 UTC (25%)
 - 8-9 Dec 13-10 UTC (20%)
 - 17 Dec 08-00 UTC (15%)

SIMBA Column Analysis

- 6 locations: sea and up terrain gradient; at key field sites along valley RHI azimuth
- 500 x 500 x 250m spacing, 10 min

Methodology

Case Criteria

- ARs with unblocked terrain-normal component flow: WS, Fr > 1.3 (Hunzinger 2018/Petersen et al. 2018)
- 6 AR cases, 8 GPM OPs
 - 13 Nov 03-00 UTC (20%)
 - 17 Nov 10-21UTC (10%)
 - 3 Dec 14-00 UTC (10%)
 - 6-7 Dec 00-02 UTC (25%)
 - 8-9 Dec 13-10 UTC (20%)
 - 17 Dec 08-00 UTC (15%)

SIMBA Column Analysis

- 6 locations: sea and up terrain gradient; at key field sites along valley RHI azimuth
- 500 x 500 x 250m spacing, 10 min

Vertical Slice Composites

- NPOL (S-band)
 - Z, D_m, RR
- Dual-frequency ratios:
 - NPOL with D3R (Ku/Ka-band)
 - 150 x 200 m range-height grid spacing
- Parse results by:
 - NPOL-derived HID (Dolan et al. 2013)
 - LIQ: drizzle, rain, big drops
 - ICE: crystals, aggregates, hail
 - MIX: wet snow, graupel
 - Sea vs. terrain

Composites over all ARs

- Along NPOL RHI approaching, through Quinault River Valley
- Terrain, orographic enhancements

17 November 2015 10-21 UTC

Z_s – NPOL Composites

3 December 2015 14-00 UTC

17 November 2015 10-21 UTC Westerly flow

D_m – SIMBA Composites

• MRR - drop size enhancement

• **DPR** vs. **CMB** as approach terrain

• MRR vs. NPOL opposite trend at inland sites

• DPR & CMB exceed ground-based IQR at all sites

• MRR vs. NPOL less discrepancy – flow orientation...

3 December 2015 14-00 UTC Southerly flow

- OLYMPEX Atmospheric Rivers: GPM overpasses, Warm Sector / Fr > 1.3
 - 6 events, over 100+h of obs, 8 GMI/2DPR Ops, 5 SIMBA sites
- All Cases:
 - Large variation of precipitation parameters
 - Enhancement at coast & as approach terrain barrier clear, but somewhat gradual
 - DPR aligns best with ground-based observations over ocean
- 17 Nov Westerly flow case:
 - Larger MRR vs NPOL, DPR vs CMB discrepancies
 - More intense precipitation rates
 - Enhancement regions most prominent over land
- 3 Dec Southerly component case:
 - MRR & NPOL means better align
 - Generally lower precipitation rates
 - Enhancement regions initiate offshore
 - **DPR & CMB** exceed ground-based IQR at all sites

- Precipitation processes and satellite observations involve more than below 0°C level
 - Importance of identifying and quantifying ICE vs LIQUID vs MIX phases
 - Incorporating airborne data will improve analysis
 - Compositing with "analog" instruments
 - PMW & CMB algorithm products – impacts of ice and transition to higher terrain

• MRR vs. NPOL less discrepancy – flow orientation...

DFR_{s-Ku} 2 Events

- S-Ku DFR composite, includes all NPOL HID types
- More oceanside variation in westerly flow case
- DFR layering complexity increases as approach terrain

DFR_{S-Ku} ALL ARs Land + Ocean

S-band Z [dBZ]

0.00 0.04 0.09 0.13 0.17 0.21 0.26 0.30 0.34 0.38 0.43 DFR_{S-Ka} ALLARS Land + Ocean

S-band Z [dBZ]

12th International Precipitation Conference • Irvine, CA • stephanie.m.wingo@nasa.gov

S-band Z [dBZ]

 $0.00 \ 0.04 \ 0.09 \ 0.13 \ 0.17 \ 0.21 \ 0.26 \ 0.30 \ 0.34 \ 0.38 \ 0.43$

S-band Z [dBZ]

0.00 0.04 0.09 0.13 0.17 0.21 0.26 0.30 0.34 0.38 0.43

DFR_{S-Ku} ALL ARs Land Side Scans

DFR_{S-Ku} ALL ARs Ocean Side Scans

DFR_{S-Ka} ALL ARs Land Side Scans

-10

0

20

S-band Z [dBZ]

0.00 0.04 0.09 0.13 0.17 0.21 0.26 0.30 0.34 0.38 0.43

10

30

40

50

-10

0

DFR_{S-Ka}

20

S-band Z [dBZ]

0.00 0.04 0.09 0.13 0.17 0.21 0.26 0.30 0.34 0.38 0.43

10

30

40

50

ALL ARs Ocean Side Scans

-10

0

10

20

S-band Z [dBZ]

0.00 0.04 0.09 0.13 0.17 0.21 0.26 0.30 0.34 0.38 0.43

30

40

12th International Precipitation Conference • Irvine, CA • stephanie.m.wingo@nasa.gov

50

-10

0

10

20

S-band Z [dBZ]

0.00 0.04 0.09 0.13 0.17 0.21 0.26 0.30 0.34 0.38 0.43

30

40

50

DFR_{Ku-Ka} **ALL ARs Land Side Scans**

DFR_{Ku-Ka} **ALL ARs Land Side Scans**

DFR_{S-Ku,S-Ka} ALL ARs Land Side Scans

Only LIQ HID Types: DFR_{S-Ka} vs. 10*D_m

ALL HID Types: Land + Ocean Scans

*Histograms include all HID phases *Contours at densities of 0.1, 0.3 for each HID phase

*Contours at densities of 0.1, 0.3 for each HID phase

Summary

- OLYMPEX Atmospheric Rivers: Warm Sector / Fr > 1.3
 - 6 events, >100 h of ground-based observations
- Composite RHIs show preferential enhancement regions as approach terrain
 - Offshore vs. inland locations based on mean flow orientation
- DPR aligns best with ground-based observations over ocean
- MRR vs. NPOL trend/discrepancy, variation with flow orientation
- DFR layering consistent with terrain complexity
 - Magnitude of terrain-normal flow influences DFR enhancement location, severity
- DFR_{S-Ka} shows most difference among LIQ/ICE/MIX HID phase types
- DFR distributions slightly more compact over ocean
 - Indicates more complex processes over land

Summary

Next Steps:

- Further refinements to multi-frequency analyses
 - S-Ka/Ku-Ka
 - Partition by HID type
- DPR Ku/Ka
 - Ground-based/S-band available via GPM GV VN
- Incorporating airborne data to improve analysis, physical interpretation
- Compare to scattering simulations

This work is supported by an appointment to the NASA Postdoctoral Program at Marshall Space Flight Center, administered by Universities Space Research Association through a contract with NASA.