Spaceflight Microbiology

C. Mark Ott, PhD

Microbiology Laboratory

NASA Johnson Space Center, Houston, TX

Microbiological Areas of Concern

- Astronaut Health
- Vehicle integrity
- Life support and other systems failure
 - Biofilm formation/biofouling
 - Biocorrosion and biodegradation
 - Trash and human waste containment
 - Risk of condensation
 - Astronaut hygiene areas
- Spaceflight foods
 - Impact of "pick and eat" foods on the environment
 - Impact of the environment on "pick and eat" foods
 - Rinsing food with potable water is impractical
- Planetary protection
 - How do we track what we are leaving versus what we are finding in our search for life on other planets?

Astronaut Health

- Preventative measures
 - Preflight medical exams and medical consult throughout a mission
 - Preflight crew quarantine
 - Stringent microbiological monitoring of spacecraft and its cargo
- Generally healthy crew
 - Infectious disease and allergic symptom rate on ISS has been estimated at 3.4 events/flight year (Crucian et al. 2016)
 - Survey of Space Shuttle missions (STS-1 through STS-89) indicated infectious disease accounted for 1.4% of all medical events (not including skin and subcutaneous tissue) (Risin 2009)
- Incidence is usually based on symptomology
 - Rash
 - Dry hacking cough
 - Diarrhea

Astronaut Health

- Examples of diseases during spaceflight missions
 - Upper respiratory infections
 - Urinary tract infections
 - Ear infections
 - Various fungal infections
 - Herpes Zoster
 - Rashes & skin disorders
 - Allergic reactions
 - Gastroenteritis
- Notable factors
 - Clear routes of infection have not been eliminated
 - No current environmental viral monitoring
 - Risks reflect the vehicle design and operations of specific missions

Protecting the Environment

- Prevention Preflight
 - Extensive microbial monitoring and preflight disinfection
 - Preflight monitoring targets environmental areas that are probable routes of infection, including vehicle air and surfaces, spaceflight food, potable water, cargo, and a biosafety review of experimental payloads.
 - Flight requirements
 - <u>Vehicle air</u> 100 CFU/m³ fungi; 1000 CFU/m³ bacteria
 - <u>Vehicle surfaces</u> 100 CFU/100 cm² fungi; 10,000 CFU/100 cm² bacteria
 - Potable water 50 CFU/ml heterotrophic plate count; no detectable coliforms in 100 ml; no detectable fungi in 100 ml; treatment technique to prevent transmission of parasitic protozoa.

Protecting the Environment

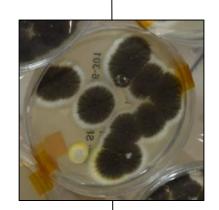
- Prevention Vehicle design
 - Potable water recovery system
 - Recovers humidity condensate and urine
 - Final water recycling steps of the NASA water system include catalytic oxidizer (267 °F for 10 minutes); iodination; iodine removal; 0.22 micron filtration
 - Vehicle air
 - Air flow through HEPA filters
 - Vehicle surfaces
 - Use of materials that are not conducive to microbial growth

Constraints of Spaceflight

- When considering spaceflight hardware (e.g., monitoring equipment) and cargo (e.g., disinfection wipes, clothing, food), the benefit of the item is balanced against the need for:
 - Safe operation
 - Minimal power
 - Minimal mass
 - Minimal volume
 - Minimal crew time

No phase separation

Microbiological Monitoring on the ISS


Surfaces Air Water

Quantified in-flight and returned to JSC for identification

Environmental Health

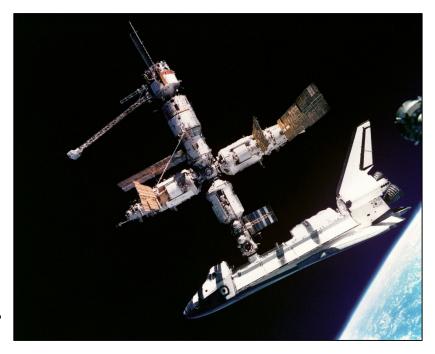
- Microbial monitoring by JSC and others indicate **ISS environmental flora is similar to a home** (Pierson, *et al.* 2011; Lang, *et al.* 2017; Blaustein, *et al.* 2019).
- The bacteria in this environment reflect human-associated microorganisms.

• Media-based monitoring occasionally identifies opportunistic bacterial pathogens, such as *Staphylococcus aureus* and *Bacillus cereus*. No methicillin resistant *S. aureus* has been identified. *Enterobacter* and *Enterococcus* species are occasionally identified throughout the ISS.

Environmental Health

- The most prevalent fungal genera are Aspergillus and Penicillium. A. flavus, A. niger, and A. fumigatus have been identified from spaceflight samples.

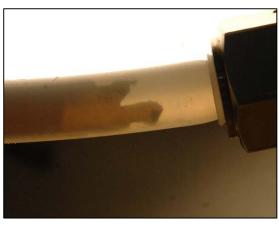
 Stachybotrys chartarum has been isolated preflight.
- Potable water reflects common nonpathogenic bacterial species. The 0.22 micron filter upstream of the water ports have limited increases in diversity.
- The ISS is only semi-closed and "new" bacterial and fungal isolates are regularly identified.



Environmental Anomalies

• Mir Space Station

- Power failures and problems with temperature control eventually caused large amounts of freefloating condensate
- Samples of condensate revealed the presence of high diversity, including *E. coli*, *Serratia* marcescens, *Legionella* species, and protozoa (Ott *et al.*, 2005)


• ISS anomalies

- Surface contamination is often associated with uncontrolled water
- Air contamination and unpleasant odors do occur; however, the sources are often unclear. Luckily, these events have been transient and/or handled by the HEPA filtration system

ISS Environmental Anomalies



Advances in Environmental Monitoring

- DNA sequencing in space was first performed with the Biomolecular Sequencer in 2016 using Oxford Nanopore Minion (Castro-Wallace *et al.* 2017).
 - No decrease in sequencing performance
 - Demonstrated flow cell reuse and shelf-life stability to at least 6 months in space
- Microbial cells from a media plate used for surface sampling were processed and sequenced on ISS.
 - The Minion accurately identified the three isolates that were selected.

Advances in Environmental Monitoring

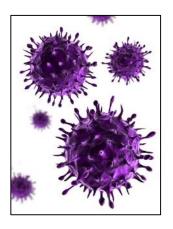
- Spaceflight experiments on ISS are currently being performed focusing on:
 - Swab-to-sequencer (non-culture based identification)
 - Cellular evolution
 - Direct RNA sequencing
- Earth-based investigations comparing sequencing and media-based results are being performed to provide insight into how to translate sequencing results for crew health purposes.

Spaceflight Microbiology Research

- Multiple experiments over the past 50 years indicate unique microbial responses when cultured during spaceflight
 - The environmental stimulus (stimuli) initiating the response mechanisms are unclear.

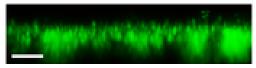
Ground Based Spaceflight Analogues

- Rotating Wall Vessel (RWV)
 - Solid body rotation in the reactor simulates several aspects of culture in microgravity
 - Enables relatively high throughput
 - Provides predictive trends for spaceflight experiments
 - Capability to follow up spaceflight findings without the delays associated with true spaceflight experiments

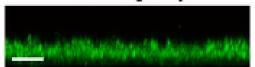


Microbial Responses to Spaceflight

- PI: Cheryl A. Nickerson, Arizona State University
- Seminal studies evaluating the response of the enteric pathogen, *Salmonella enterica* serovar Typhimurium
- First studies to effectively study microbial virulence and global molecular genetic responses of microorganisms when cultured in the spaceflight and spaceflight analogue environment.



- PI: Duane Pierson, NASA (Emeritus)
- A series of experiments investigating the **reactivation of Epstein Barr Virus (EBV), Cytomegalovirus, and Varicella Zoster Virus (VZV)** in crewmembers during a mission
- Increased concentrations of EBV and VZV in astronaut saliva during a mission. <u>VZV subclinically reactivates in healthy individuals after acute stress.</u>



Biofilm Development during Spaceflight

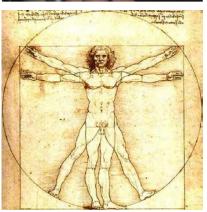
Spaceflight

Normal gravity

- PI: Cynthia Collins, Rensselaer Polytechnic Institute
- Identified a unique biofilm architecture produced by *Pseudomonas aeruginosa* in response to spaceflight culture, described by the authors as "a column-and-canopy structure".

- PI: Bob McLean, Texas State University
- Investigation into polymicrobial biofilm development during spaceflight by *P. aeruginosa* and *E. coli*.
- The study focuses on biofilm architecture, disinfection, and corrosion potential during spaceflight.

Astronaut Microbiome



- PI: Hernan Lorenzi, J. Craig Venter Institute
- Baseline evaluation of the microbiome of from two skin sites, nostrils, and fecal samples from 9 astronauts during spaceflight missions (preflight, inflight, post-flight). Blood and saliva were also collected for immunological assays.
- The composition of the intestinal microbiota became more similar across astronauts in space, mostly due to a drop in the abundance of a few bacterial taxa.
- Alterations in the skin microbiome that might contribute to the high frequency of skin rashes/hypersensitivity episodes experienced by astronauts in space were also observed.
- Sloan
- Investigation into polymicrobial biofilm development during spaceflight by *P. aeruginosa* and *E. coli*.
- The study focuses on biofilm architecture, disinfection, and corrosion potential during spaceflight.

Astronaut Microbiome

- PI: Hernan Lorenzi, J. Craig Venter Institute
- <u>Baseline</u> study of changes in the microbiome of 9 astronauts during spaceflight missions
 - Samples were collected preflight, in-flight, and post-flight samples and included two skin sites, nostrils, fecal samples, potable water, as well as blood and saliva for immunological evaluations.
 - Tightly monitored metadata (e.g., temperature, humidity, crew diet, medications).
- The composition of the intestinal microbiota became more similar across astronauts in space, mostly due to a drop in the abundance of a few bacterial taxa.
- Alterations in the skin microbiome were observed that might contribute to the high frequency of skin rashes/hypersensitivity episodes experienced by astronauts in space.

NASA + Alfred P. Sloan Foundation

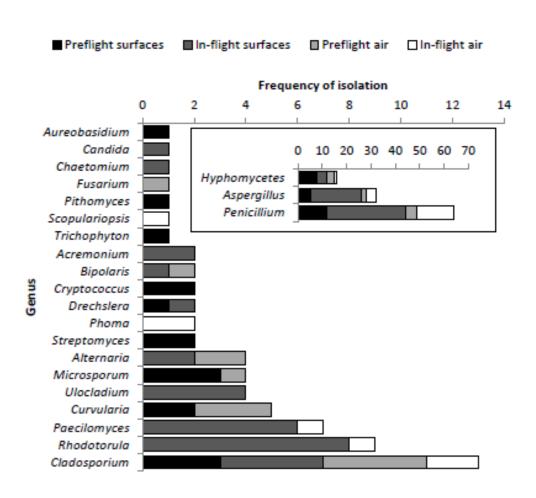
- Postdoctoral Fellowships focusing on the Microbiology of the Built Environment using bacterial from the ISS archives
 - Fellow: Michael Lee; PI-Advisor: Craig Everroad, NASA Ames Research Center
 Microbial evolution and transmission aboard the ISS: inferring mutation rates, assessing
 pangenomes, and tracking microbiome transmission between astronauts and the spacebased built environment. [NASA Space Biology Program]
 - Fellow: Aubrie O'Rourke; PI-Advisor: William Nierman, J. Craig Venter Institute Virulence and drug resistance of *Burkholderia* species isolated from ISS potable water systems. [NASA Space Biology Program]
 - Fellow: Noelle Bryan; PI-Advisor: Maria Zuber, Massachusetts Institute of Technology
 - Genomic and functional analysis of biofilm morphotypes of International Space Station isolated *Staphylococcus epidermidis* and their pathogenicity in *Caenorhabditis elegans*. [NASA Space Biology Program]
 - Fellow: Blake Stamps; PI-Advisor: John Spear, Colorado School of Mines
 Biodeterioration and Biocorrosion in Spaceflight Ecosystems: Implications for Material/
 Microbiome Interactions on the International Space Station. [Sloan Foundation]
 - Fellow: Jiseon Yang; PI-Advisor: Cheryl Nickerson, Arizona State University
 Developing predictive model systems of polymicrobial biofilm formation and susceptibility
 to chemical disinfectant: A longitudinal study with implications for spaceflight systems
 integrity and health risks. [Sloan Foundation]

Considerations for Future Research

- Historically, spaceflight research has often been burdened by sensationalized or unsubstantiated conclusions.
 - Highly visible field
 - Limitations in experimental reproducibility
 - Misconceptions from these reports can last for years and actually be damaging to our progress
- Our current resources and ability to perform science on ISS enables solid hypothesis driven science.
- Recommendations and reviews of future space research should be sensitive to the need for the same levels of evidence and credibility that terrestrial studies require.
 - Proper controls
 - Conclusions that reflect the evidence

Microbiology Research aboard ISS

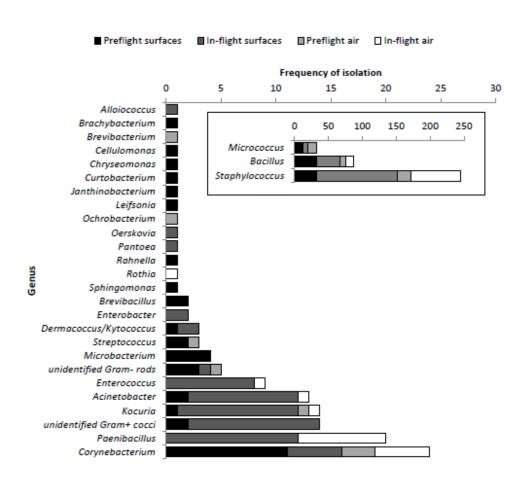
- NASA NSPIRES System
 - Solicitation information
 - https://nspires.nasaprs.com/external/
- NASA Space Biology
 - Microbiology is one of five science Elements in the Space Biology Science Plan
 - https://www.nasa.gov/sites/default/files/atoms/files/16-05 11 sb plan.pdf
- NASA Human Research Program
 - Microbiology information is under the "Risk of Adverse Health Effects Due to Host-Microorganism Interactions" in the HRP Research Roadmap
 - https://humanresearchroadmap.nasa.gov/



BACKUP SLIDES

ISS Air and Surface Monitoring

Fungal Isolates





ISS Air and Surface Monitoring

Bacterial Isolates

U. S. Potable Water Dispenser

- Provides "hot" and "ambient" potable water
- Processing includes:
 - Catalytic oxidizer
 - Iodine disinfection
 - In-line filter (0.2 micron)
- Common isolates
 - Ralstonia pickettii
 - Burkholderia multivorans
 - Sphingomonas sanguinis
 - Cupriavidas metallidurans

