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Accurate taxi time prediction is required for enabling efficient runway scheduling that 
can increase runway throughput and reduce taxi times and fuel consumptions on the airport 
surface. Currently NASA and American Airlines are jointly developing a decision-support 
tool called Spot and Runway Departure Advisor (SARDA) that assists airport ramp 
controllers to make gate pushback decisions and improve the overall efficiency of airport 
surface traffic. In this paper, we propose to use Linear Optimized Sequencing (LINOS), a 
discrete-event fast-time simulation tool, to predict taxi times and provide the estimates to the 
runway scheduler in real-time airport operations. To assess its prediction accuracy, we also 
introduce a data-driven analytical method using machine learning techniques. These two 
taxi time prediction methods are evaluated with actual taxi time data obtained from the 
SARDA human-in-the-loop (HITL) simulation for Charlotte Douglas International Airport 
(CLT) using various performance measurement metrics. Based on the taxi time prediction 
results, we also discuss how the prediction accuracy can be affected by the operational 
complexity at this airport and how we can improve the fast-time simulation model before 
implementing it with an airport scheduling algorithm in a real-time environment. 

Nomenclature 
ASDE-X = Airport Surface Detection Equipment, Model X 
ATC = Air Traffic Control 
ATCT = Airport Traffic Control Tower 
CLT = airport code for Charlotte Douglas International Airport 
DFW = airport code for Dallas/Fort Worth International Airport 
DST = Decision-Support Tool 
EDCT = Expected Departure Clearance Time  
FAA = Federal Aviation Administration  
FFC = FutureFlight Central  
HITL = Human-In-The-Loop  
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kNN = k-Nearest Neighbors 
LINOS =  Linear Optimized Sequencing 
LR = Linear Regression 
MAE = Mean-Absolute Error 
MIT = Miles-In-Trail 
NASA = National Aeronautics and Space Administration 
RF = Random Forest 
RMSE = Root-Mean-Square-Error 
SARDA = Spot and Runway Departure Advisor 
SOSS = Surface Operations Simulator and Scheduler 
SVM = Support Vector Machines 
TMI = Traffic Management Initiatives  

I. Introduction 
ITH the growth of air traffic demand, it becomes more important to improve the efficiency in airport 
operations and reduce the congestion on the airport surface. Increasing the predictability of taxi times and 

wheels-off times is one of the key factors to achieve more efficient airport operations. Accurate taxi time estimation 
can be used for determining appropriate holding times for departures at their gates, solving the aircraft taxi 
scheduling problem, and assigning the best gates to turnaround flights. Furthermore, predicting precise wheels-off 
times for departures is important for optimizing the departure runway sequence and schedule at the origin airport, as 
well as for improving the arrival time predictions at the destination airports.  

There have been several attempts to predict the taxi-out times for departures at airports. Initially, Idris et al. used 
a queuing model for taxi-out time estimation at Boston Logan airport.1 Following the research, a few predictive 
queuing models were developed to estimate the taxi-out times from gates to the departure runways, and improved by 
considering the effect of taxiway interactions.2 These models could be used to mitigate the congestion level on the 
ground by controlling the number of departures pushing back from the gates. Simple linear equations derived from 
regression analysis using the Airport Surface Detection Equipment, Model X (ASDE-X) surface surveillance data 
were also used to predict departure taxi times at several major airports in the United States.3,4  

Taxi-out time prediction may be considered as a special case of travel time prediction in the field of automobile 
transportation systems. Research in road travel time prediction is abundant and predates the research in aircraft taxi 
time prediction. Various road travel time prediction methods using machine learning techniques, including linear 
regression models, neural networks, regression trees, k-nearest neighbors, locally-weighted regression, and support 
vector regression, were suggested and compared with real time road traffic data on the highway in different cities.5-9  

The machine learning methods used in predicting the road travel times can be applied to the aircraft taxi time 
prediction problem. Several statistical approaches have been introduced to predict aircraft taxi times on the airport 
surface and take-off times of departures. A few linear regression models were used for modeling aircraft taxi times 
at Dallas/Fort Worth International Airport (DFW) with several independent variables such as taxi distance, airlines, 
gate group, the number of departures and arrivals.10,11A neural network model was also introduced to predict wheels-
off times at DFW.12 In addition, reinforcement learning algorithms were developed and investigated to check the 
accuracy of taxi-out time prediction at several major airports in the United States.13-15 Recently, various regression 
methods, including multiple linear regression, least median squared linear regression, support vector regression, 
model trees, and fuzzy rule-based systems, were also applied to European airports for taxi time prediction 
problems.16,17   

In addition to the data-driven approaches above, air traffic simulation tools can be used for validation and 
performance evaluation of taxi time prediction functions, provided they represent the surface traffic flow at a target 
airport realistically. Various simulation tools have been developed for modeling and analyzing airport operations in 
the past decades.18 Using these simulation tools, we can test various traffic scenarios at airports and airspace, and 
forecast the upcoming traffic status quickly before conducting field tests in real operating environments that would 
require significant investments in human and equipment resources. Microscopic simulation models can reflect 
individual aircraft movements, consider possible conflicts with other aircraft, and deal with tactical issues in runway 
and taxiway operations. Most microscopic models are based on a discrete-event simulation approach, where system 
states change only at the moments when certain events occur. In these models, the airfield and airspace can be 
represented as a network of nodes and links, on which aircraft in the simulations follow the prescribed paths.  

These simulation tools have been enhanced to simulate the movement of individual aircraft with acceptable level 
of accuracy. These models can also simulate stochastic processes using random variables to reflect the uncertainty in 
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airport operations. Given flight schedules and gate/runway information, they can calculate the travel times of taxiing 
aircraft and estimate the take-off times of departures while considering the interactions of aircraft moving on the 
ground. For example, the Surface Operations Simulator and Scheduler (SOSS) is an airport surface fast-time 
simulation tool developed by NASA Ames Research Center. SOSS uses the kinematic models of different types of 
aircraft and node-link networks to simulate surface traffic. This tool was used to analyze the impacts of scheduling 
algorithms on the surface traffic at DFW and CLT.19,20 The SOSS model was also applied to estimate the wheels-off 
times at DFW, but it could not provide better estimation than a data-driven method in which average taxi times from 
actual data were added to the gate-out times for predictions.21 Another example is LINear Optimized Sequencing 
(LINOS), which is a discrete event-based fast-time simulation tool developed by US Airways (now American 
Airlines).22 LINOS can predict taxi times and surface congestion to increase awareness of the ramp controller by 
continuously evaluating the airport state. This simulation tool can compute taxi-out times and expected take-off 
times for the given airport state for all departing (at gate or already taxiing) flights, as well as taxi-in times and gate-
in times for arrival flights. 

NASA Ames Research Center developed and tested a decision-support tool (DST) called Spot and Runway 
Departure Advisor (SARDA) to assist air traffic control tower personnel and airline ramp operators in managing and 
controlling airport surface operations.23-26 Multiple high fidelity human-in-the-loop (HITL) simulations were 
conducted to evaluate the performance of the runway scheduler and the usability of the tool. In recent years, NASA 
and American Airlines have been working together to implement LINOS in SARDA to provide predictions of the 
take-off times over the departure runways in a real-time operational environment. We expect that LINOS can 
provide reasonable predictions of take-off times to the SARDA runway scheduler by estimating the taxi times to 
runways for individual departure flights. Recently, NASA conducted a HITL simulation with active American 
Airlines’ ramp controllers to test the SARDA runway scheduler’s feasibility for the surface operations at Charlotte 
Douglas International Airport (CLT). 26 In the HITL simulation, the SARDA runway scheduler used a simple Dead 
Reckoning method (called DR hereinafter) based on unimpeded taxi conditions when calculating the predicted take-
off times. By using LINOS, the SARDA scheduler can possibly receive more accurate predictions, and therefore, 
provide more efficient departure sequencing for controllers and airlines.  

This paper evaluates the taxi time prediction performance of LINOS using the HITL simulation data for CLT 
airport before applying it to real-time airport operations. In order to assess the accuracy of LINOS prediction on the 
take-off times for departing aircraft, we compare the results with those from machine learning techniques, which are 
data-driven prediction methods based on historical traffic data. By understanding the performance level of the 
current LINOS simulation in comparison with those machine learning techniques, we can define a target prediction 
accuracy of LINOS in a real-time operational environment where taxi time predictions can be updated frequently as 
airport status changes dynamically. We will also evaluate the prediction performance of LINOS and machine 
learning methods by comparing it with the results from the existing Dead Reckoning method. 

This paper is organized as follows. In Section II, we will present the simulation set-up and traffic data used in 
this study. We then describe the taxi time prediction methods using LINOS and machine learning techniques in the 
following section. In Section IV, we will show the prediction results of the taxi-out times for departures. Lastly, the 
conclusion and future work will be described in Section V. 

II. Traffic data from the human-in-the-loop simulation for Charlotte airport 
This section describes the airport layout and operational environment of Charlotte airport, and the human-in-the-

loop (HITL) simulation for this airport is briefly introduced since the traffic data from the HITL simulation is used 
for the taxi time prediction study in this paper.  

Figure 1 shows the airport layout of Charlotte Douglas International Airport (CLT), which is one of the major 
hub airports of American Airlines. This airport has four runways and one main terminal building between Runway 
18C/36C and 18L/36R. In this paper, we focus on South-flow traffic, which uses the runway configuration (18R, 23 
| 18C, 18L). Since most flights at this airport are operated by American Airlines, the ramp area is controlled by this 
airline. The limited area for aircraft taxiing and the presence of alleyways and single lanes in the ramp area cause 
frequent interaction of arrivals and departures while moving on the ground. Especially, this airport has a two-way 
single lane in the ramp next to Taxiway C, where arrivals going to Terminal E (Northeastern concourse) and 
Westbound departures from the same terminal will pass by each other in the opposite direction. This single lane is a 
major bottleneck that complicates surface traffic control at this airport. 
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The traffic data used in this study 
comes from NASA’s HITL simulation 
for CLT, in which four ramp controllers, 
three tower controllers, and nine pseudo 
pilots participated to test a new departure 
pushback decision-support tool for ramp 
controllers (called SARDA-CLT in Ref. 
[26]). The simulation study took place at 
the FutureFlight Central (FFC), the 
airport tower simulator facility at the 
NASA Ames Research Center that 
provides a 360-degree out-the-window 
view, for three weeks in September 
through October, 2014. In the HITL 
simulation, we assumed South-flow 
configuration only (Runways 18L and 
18C dedicated to departures and 
Runways 23 and 18R dedicated to 
arrivals) and good weather conditions. 
Similar to the real operations, we also 
considered Traffic Management 
Initiatives (TMIs) in effect for this 
airport, including 15 nmi separations 
over the MERIL departure fix and 
Expect Departure Clearance Time 
(EDCT) restrictions for selected flights.  

Two one-hour scenarios modified from the actually recorded traffic data at CLT on May 16th, 2013 were tested 
in the HITL simulation. The scenarios consisted of a departure push followed by an arrival push, and were slightly 
compressed in time to make the traffic more congested with some overlap between departures and arrivals. Scenario 
1 had 96 departures and 80 arrivals, whereas Scenario 2 had 84 departures and 72 arrivals. Scenario data files 
included flight call signs, destination airports, aircraft models, initially assigned gate, spot, runway and fix 
information, scheduled gate-out times and flight ready times for departures, and estimated landing times for arrivals. 
The data also contained some entries for aircraft specific variations in pushback time, engine spool-up time, and 
taxiing speed, which guaranteed repeatability across different runs while allowing uncertainties in surface operations 
during the HITL simulation.  

For each scenario, two types of simulation runs were performed: “Advisory” and “Baseline” runs. In the 
Baseline runs, ramp controllers were asked to meter the departures at the gates as they would normally do in the 
current operations at CLT. In these runs, any pushback or holding advisories for individual flights were not provided 
to the ramp controllers, except for the number of taxiing departures per runway. In the Advisory runs, on the other 
hand, a gate pushback advisory for each flight was shown on the Ramp Traffic Console display to assist the ramp 
controllers in metering the departure traffic by specifying whether the flight should be released or held for certain 
duration. The pushback advisories were provided by the SARDA runway scheduler, a decision-support tool 
developed by NASA to help controllers mitigate ground congestion and increase runway throughput. To get the 
estimated take-off times of departing aircraft, the SARDA scheduler used a simple Dead Reckoning algorithm, in 
which the taxi-out time of a departure was assumed to be the unimpeded taxi time based on its taxi distance and 
nominal taxi speed.  

The HITL simulation was performed for three weeks, repeating the same scenarios with and without pushback 
advisories. In each week, sixteen runs were conducted, resulting in a total of 48 runs. To reduce learning effects and 
fatigue bias, the run order in each week was counterbalanced for each of the two scenarios and two advisory modes. 
For South and East ramp sectors, in addition, a different pair of current CLT ramp controllers participated in the 
simulation every week, while changing their positions between the ramp sectors during the week. More details of the 
HITL simulation for CLT are described in Ref. [26]. 

 
Figure 1. Airport layout at CLT.  
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III. Technical Approaches to Predicting Taxi Times at CLT 
This section introduces two different taxi time prediction approaches, the fast-time simulation using LINOS and 

the data-driven analytical methods using machine learning techniques, and describes how to apply these approaches 
to the traffic scenarios at CLT.  

A. LINOS 
LINOS is a discrete-event simulation model that simulates the movement of aircraft between gates and runways 

along the taxi paths on the ramp area and taxiways. In a real-time environment, it can run continuously with current 
aircraft status as input, including the latest information on gate departure times for departures, estimated landing 
times for arrivals, and current positions on the ground for taxiing aircraft, and update its predictions whenever events 
occur. In LINOS, the taxi paths on the airport surface are built as a node-link network, where aircraft travel from 
node to node. This node-link network is a dynamic network based on aircraft capability and adapts to airport 
configuration and operational conditions. LINOS can resolve ground congestion and possible taxi and gate conflicts 
using its own business rules engine.  

LINOS can simulate the current airport state, including flights currently taxiing and flights expected to arrive or 
depart in the near future, and run the simulation multiple times to account for the stochastic processes in airport 
operations. During each simulation run, LINOS calculates each flight’s simulated taxi time, measures ground 
congestion (aircraft density based on area), and records taxi and gate conflicts. Each run can have a different 
outcome due to the randomly generated parameters within the given range to consider the uncertainties of airport 
operations. Through repeated simulations, this fast-time simulation tool can provide users with the expected taxi 
time for each aircraft and its variance, take-off sequence, spot and runway queue entry times, runway throughput, 
congestion status and possible conflicts over time. 

In this study, we used LINOS to calculate the predicted taxi times and estimate the take-off times for departures. 
A node-link network model representing the CLT airport configuration was first created. Then, the operational 
parameters such as separation time requirements over runways, pushback time distributions depending on aircraft 
types and terminals, and nominal taxi speeds were set in the model. To make the model similar to the HITL 
simulation and match the real operations at CLT, several airport specific operational rules were also integrated in 
LINOS. These included the Arrival Departure Window (ADW) rule for non-intersecting converging-runway 
operations (CRO), the use of Mike-Charlie (M-C) taxiway bypass routes (the thick solid purple lines in Fig. 1) for 
selective arrivals to avoid head-on conflicts with departures on the single lane in the ramp, the use of Mike-Delta 
(M-D) taxi routes (the thick solid blue lines in Fig. 1) for the departures flying over the MERIL departure fix to 
cross runway 18L on the ground and enter the runway queue on the other side of 18L for increasing runway 
throughput, and the spacing between aircraft waiting in departure runway queues. The parameters used in this 
simulation model were calibrated using the Week 1 and 2 simulation data (32 runs) gathered in the first two weeks 
of the HITL simulation. After the calibration processes, LINOS demonstrated good consistency with the HITL 
simulation results in taxi-out times for departures, as well as in taxi-in times of arrivals.  

To evaluate the taxi time prediction performance of LINOS, we used the remaining Week 3 simulation data 
collected in the third week of the HITL simulation. For each one-hour long traffic scenario, flight information for 
every flight in the HITL simulation, including call sign, tail number, aircraft model, gate, spot and runway usage, fix 
information, and actual pushback or landing time, was provided as input data to LINOS. Considering the various 
uncertainties of airport operations, the simulations were repeated ten times. The average taxi time from the ten 
simulation runs was used to calculate the predicted taxi time for each flight. Although LINOS can be run in a real-
time operational environment and update the airport state every 10 seconds, we limited its run with static data from 
the HITL simulation to compare it with the machine learning methods based on deterministic data.  

B. Machine Learning Techniques 
Since the machine learning algorithms are data-driven approaches, it is important to determine what features 

should be selected from the considerable traffic data. Among the various characteristics of airport operations, we 
considered the following features as variables that could have an impact on taxi processes and the taxi time 
prediction: Gate, Spot, Runway, Aircraft model, Taxi distance from gate to runway, Number of departures on the 
surface by runway (8 features for Runway 5/23, 18L/36R, 18C/36C, and 18R/36L), and Number of arrivals on the 
surface by terminal (5 features for Terminal A, B, C, D, and E).  

The taxi distance from gate to runway is a dominant factor that determines the unimpeded taxi-out time, but the 
other information like assigned gate, spot and runway is also significant. The duration that a departing aircraft 
spends to complete its pushback process can be different at each gate. The wait times to get a taxi clearance to enter 



 
American Institute of Aeronautics and Astronautics 

 
 

6 

the movement area controlled by FAA Airport Traffic Control Tower (ATCT) and a take-off clearance from the 
tower may be dependent upon spot and runway, respectively. The aircraft model determines the physical 
performance and limitations in taxi operations on the ground. The number of departures and arrivals are also 
included in the variable list to account for the congestion level on the ground and the taxi delay added to the 
unimpeded taxi time. For more accurate predictions, the numbers of departures moving on the surface are 
categorized by the assigned runway, while the numbers of arrivals traveling on the taxiways are divided by the 
terminal in which the assigned gates are located. 

In this study, we tried to use four different machine learning methods: 
1) Linear Regression (LR), 
2) Support Vector Machines (SVM), 
3) k-Nearest Neighbors (kNN), and 
4) Random Forest (RF). 
Linear Regression (LR) is an approach for modeling the relationship between a scalar dependent variable y and 

one or more explanatory variables denoted X. Data are modeled using linear predictor functions, and unknown 
model parameters are estimated from the data. For prediction, it can be used to fit a predictive model to an observed 
data set of y and X values. After developing such a model, if an additional value of X is given without its 
accompanying value of y, the fitted model can be used to make a prediction of the value of y. 

Support Vector Machines (SVM) are supervised learning models with associated learning algorithms that 
analyze data and recognize patterns. Given a set of training examples, each marked as belonging to one of two 
categories, a SVM training algorithm builds a model that assigns new examples into one category or the other, 
making it a non-probabilistic binary linear classifier. 

k-Nearest Neighbors (kNN) algorithm is a non-parametric method used for classification and regression. The 
input consists of the k-th closest training examples in the feature space. In kNN regression, the output is the property 
value for the object. This value is the average of the values of its k nearest neighbors.  

Random Forest (RF) is an ensemble learning method for classification and regression that operates by 
constructing a multitude of decision trees at training time and computing the class that is the mode of the classes 
output by individual trees.  

These four machine learning algorithms were modeled in Python and run using scikit-learn library.27 While the 
first 2-week datasets (Week 1 and 2) from the HITL simulation were used to train the machine learning algorithms, 
the remaining Week 3 datasets were used as test datasets for prediction performance evaluation. In this way, we 
compared the prediction performance between the machine learning methods and LINOS with respect to the same 
test datasets. The parameters used in each machine learning algorithm such as the number of neighbors, k value, in 
the kNN method and the number of estimators in the RF method were adjusted to obtain the best prediction 
performance while calibrating the prediction algorithm with the training datasets. 

Since machine learning approaches are based on deterministic data, they cannot be used in the dynamic 
environments like real-time airport operations. For instance, controllers sometimes change the spot or runway 
assigned to a departure, if they are necessary, while managing the traffic on the surface. It is also difficult for 
machine learning methods to update the prediction of take-off times for the departures that are out of the gates and 
actively taxiing. Therefore, we will only use these prediction methods to assess the taxi time prediction performance 
of the fast-time simulation-based approach using LINOS.  

IV. Prediction Results 
The following section presents the taxi time prediction results from the aforementioned technical approaches and 

their performance accuracy. We have applied the proposed taxi time prediction methods to the realistic traffic 
scenarios used in the HITL simulation for CLT. Each scenario has two datasets: 1) Baseline runs similar to the 
current operations except for using virtual strips on the touchscreen-based Ramp Traffic Console instead of paper 
strips,26 and 2) Advisory runs following pushback advisories from the SARDA runway scheduler. We also compare 
the prediction accuracy between Baseline and Advisory runs in this section. 

A. Taxi-out Time Prediction Results 
First, we compared the predicted taxi-out times of departures from four different machine learning approaches 

and a fast-time simulation using LINOS in terms of several performance metrics. Table 1 shows mean taxi time 
difference, Root-Mean-Square-Error (RMSE) and Mean-Absolute Error (MAE) values in minutes for each 
prediction method. The mean taxi time difference is defined by the average value of actual taxi times minus the 
average value of predicted taxi times. RMSE and MAE values are calculated by the following equations: 
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where Ti  is the actual taxi time value of aircraft i, Ti
*  is the predicted taxi time value of aircraft i, and n is the total 

number of departing aircraft.  
 
Table 1 Comparison of performance metrics in minutes for Baseline and Advisory runs 

Test dataset	
   Performance metrics	
   LR	
   SVM	
   kNN	
   RF	
   LINOS	
   DR	
  

Baseline 
runs 

Mean Taxi Time Difference	
   -0.31	
   0.22	
   -0.28	
   -0.23	
   -0.36	
   6.56	
  
Root Mean-Squared Error	
   2.83	
   2.29	
   1.22	
   1.15	
   2.67	
   7.14	
  
Mean-Absolute Error	
   2.07	
   1.58	
   0.90	
   0.85	
   1.91	
   6.56	
  

Advisory 
runs 

Mean Taxi Time Difference	
   -0.15	
   0.16	
   -0.16	
   -0.11	
   -0.04	
   5.71	
  
Root Mean-Squared Error	
   2.62	
   2.16	
   1.12	
   1.21	
   2.06	
   6.25	
  
Mean-Absolute Error	
   1.87	
   1.37	
   0.87	
   0.92	
   1.24	
   5.71	
  

 
For all the proposed prediction approaches, Baseline and Advisory runs showed the mean taxi-out time 

differences between actual and predicted taxi times were below 0.36 minutes (22 seconds) and 0.16 minutes (10 
seconds), respectively. This result means that the calibration of the parameters used in LINOS was good enough to 
have a similar accuracy to the machine learning algorithms trained with the training datasets. Among the four 
different machine learning methods, the k-Nearest Neighbors (kNN) and Random Forest (RF) methods showed the 
best performance on both RMSE and MAE metrics. The LINOS simulation demonstrated better performance than 
the Linear Regression (LR) algorithm and the similar level of prediction accuracy to the Support Vector Machines 
(SVM) method’s results.  

In the last column in Table 1, we also included the performance metrics of the Dead Reckoning (DR) method as 
a reference. The DR method computes the unimpeded taxi-out times based on the taxi distance from gate to runway 
along the taxi route with the default taxi speed of 8.75 knots. This approach has been used in the current SARDA 
scheduler as a default method to estimate the arrival times of departures at runway. Because the DR method does not 
account for the congestion on the surface and the wait times in departure runway queues, the predicted mean taxi 
time from this method is much shorter than the actual mean taxi time, as can be seen in Table 1. Similarly, the 
RMSE and MAE metrics in the DR method also have greater values, compared with the proposed taxi time 
prediction methods, in both Baseline and Advisory runs.  

Boxplots in Fig. 2 illustrate the taxi-out time difference distributions between actual taxi times and predicted taxi 
times from Baseline and Advisory runs for each traffic scenario, for each prediction method. According to these 
boxplots, the k-Nearest Neighbors (kNN) and Random Forest (RF) methods show the least deviations from the 
actual taxi times, without any outliers beyond a 5-minute gap, among the four different machine learning approaches 
used in this study for both Baseline and Advisory runs. LINOS also shows good taxi time prediction performance. In 
the LINOS cases, it is noted that we can obtain a better predictability when following gate pushback advisories (in 
the Advisory runs), compared to the Baseline runs that have no advisories. 

The cumulative curves in Fig. 3 show the departures along with the absolute taxi time prediction error, 
depending on the prediction methods. In the Baseline runs, about 90% of the departures are below the absolute 4-
minute prediction error for all the prediction methods, except for the Linear Regression (LR) method (about 5 
minutes). The Advisory runs showed better prediction accuracy, with 97% departures within the same prediction 
error of +/– 4 minutes. 
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B. Discussion 
There are several reasons why the actual taxi-out times from the HITL simulation are different from the 

predicted taxi times with some variations. Controllers in real operations and in the HITL simulation can change the 
taxi routes, if available, to mitigate the ground congestion and avoid potential conflicts on taxiways. At CLT, the 
ramp controllers sometimes direct arrivals to follow the M-C taxiway route outside the ramp area instead of the 
single lane inside the ramp area so as to prevent flights from having head-on conflicts with departures on the 
dynamic single direction taxiway. The use of M-C taxiway route can reduce the congestion in the ramp area, leading 
to shorter taxi times for both departures and arrivals. Ramp controllers also hold some flights in the hardstands or 
the designated holding areas in the ramp until the traffic congestion is resolved. In real operations, some arrivals 
entering the ramp area through Spot 4 or 5 are frequently sent to the west hardstand and held for a while during peak 
periods. Furthermore, ramp controllers need to consider the TMI constraints such as Expect Departure Clearance 
Time (EDCT) for selected flights and miles-in-trail (MIT) restrictions over a departure fix. These constraints can 
make it difficult to predict accurate taxi times of the flights affected by the restrictions because those flights are 
controlled differently from normal flights in order to meet the requirements, including long gate-holding, 
intersection take-offs, and detoured taxi routes. In fact, the prediction methods proposed in this paper showed large 
deviations in the taxi time prediction for a couple of flights having EDCT restrictions.  
 

 
Figure 2. Comparison of Distributions on the Differences between Actual and Predicted Taxi Times for 
Scenario 1 (upper) and Scenario 2 (lower).  
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Tower controllers sometimes allow departures to take the intersection take-offs for increasing runway 

throughput, when possible. The current version of LINOS, however, does not account for these bypass take-offs. 
Tower controllers also send some outbound aircraft taxiing toward runway 18L to the M-D taxiway route by having 
them cross the runway and form another departure queue on the other side of 18L in order to increase runway 
throughput. These tactical operations by ramp and tower controllers make it difficult to predict the accurate taxi 
times.  

According to the taxi time prediction results, some of machine learning methods showed better prediction 
performance than the fast-time simulation using LINOS. These results stem from the fact that both training and test 
datasets were obtained from the repetitive simulation runs using the same traffic scenarios under stable test 
conditions. To use the machine learning approaches in real-world operational environments, a significant amount of 
historical traffic data is required with acceptable level of reliability. In addition to the existing features mentioned in 
this paper, we may also need to consider weather/visibility conditions, time of day, day of week, and runway 
configuration as additional variables. Furthermore, machine learning methods can predict the take-off times only for 
the departures staying at their gates in a real-time environment. Once the flight leaves its gate, they cannot predict 
the taxi time accurately due to the limitation of data availability. LINOS, on the contrary, can be applied to real 
operations without any significant modifications or additional data input. Also, it can update the taxi time 
predictions continuously as the airport status changes dynamically. Besides predicting take-off times, LINOS can 
also provide ad-hoc estimations such as taxi times to spot and departure queue.   

The prediction results also showed that the Advisory runs show better predictability, compared to the Baseline 
runs. In the Advisory runs, the departures are held at their gates, instead of waiting in the runway queues. This 
mitigates the traffic congestion in the ramp and assists tower controllers in planning the take-off sequence by 
reducing the uncertainties in the runway sequencing and scheduling operations, which enables more accurate taxi 
time prediction.     

V. Conclusion 
NASA and American Airlines have jointly worked to implement LINOS, a fast-time air traffic simulation tool, 

in the real-time operational environment and tested it with the human-in-the-loop (HITL) simulation data for the 
airport operations at Charlotte airport (CLT). It is expected that LINOS can provide more accurate prediction of 
take-off times for departures than a Dead Reckoning method used by the current SARDA runway scheduler. In 
order to assess the prediction accuracy of LINOS for taxi-out times, we also developed several machine learning 
algorithms based on historical traffic data and compared the predicted taxi times from both simulation-based and 
data-driven approaches with the actual ones from the HITL simulation.  

The prediction results showed that LINOS could predict the taxi-out times as accurate as the Support Vector 
Machines method and better than the Linear Regression method and the Dead Reckoning method based on 
unimpeded taxi times. From the results, we discussed various factors of surface operations showing the operational 

   
Figure 3. Cumulative absolute value of the taxi time prediction errors for Baseline (left) and Advisory 
(right) runs.  
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complexity at this airport, including alternative taxi routes, hardstands, bypass take-offs, and TMI constraints. These 
factors could affect the taxi time prediction performance.  

Although we already integrated many aspects of real-world operational environments at CLT and calibrated the 
parameters used in LINOS, there are more opportunities to improve the taxi time prediction accuracy of LINOS. For 
example, we will add capability to handle EDCT flights and enable intersection take-offs. We believe that LINOS 
will be able to show better prediction performance in real-time operations when performing field tests at the airport 
because, as soon as it receives the surveillance data, it can precisely reflect the aircraft status on the surface and 
update the predictions accordingly with the latest information. In the future, we will expand the same taxi time 
prediction approaches to other runway configurations at CLT like North-flow traffic, and to the other airports having 
different airfield layouts and operational conditions. 
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