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ABSTRACT 

The NOAA-20 (formerly the Joint Polar Satellite System-1) satellite was launched on November 18, 2017. One of the five 

scientific instruments aboard the NOAA-20 satellite (N20) is the Visible Infrared Imaging Radiometer Suite (VIIRS). The 

VIIRS scans the earth surface in 22 spectral bands, of which 14 are denoted as the reflective solar bands (RSBs) with 

design band central wavelengths from 412 to 2250 nm.  The VIIRS regularly performs on-orbit radiometric calibration of 

its RSBs, primarily through observations of an onboard sunlit solar diffuser (SD). The on-orbit change of the SD 

bidirectional reflectance distribution function (BRDF) value, denoted as the H-factor, is determined by an onboard solar 

diffuser stability monitor (SDSM). We have shown that the H-factor for the SD on the VIIRS instrument on the Suomi 

National Polar-orbiting Partnership (SNPP) satellite is both incident and outgoing sunlight direction dependent. This 

angular dependence profoundly affects the on-orbit radiometric calibration process and results. Here, we give preliminary 

results for the angular dependence for the N20 VIIRS SD H-factor, and compare the dependence with that for the SNPP 

VIIRS. 

Index Terms: N20 VIIRS, radiometric calibration, solar diffuser, BRDF, H-factor, angular dependence 

1.  INTRODUCTION 

The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument is a passive earth observing scanning sensor. Fourteen 

of the 22 spectral bands are denoted as the reflective solar bands (RSBs) with design band central wavelengths from 412 

to 2250 nm. The RSBs, by design, are radiometrically calibrated on-orbit primarily by observing the onboard sunlit solar 

diffuser (SD)1. The second VIIRS is on the NOAA-20 (N20) satellite launched on November 18, 2017. The N20 satellite 

has the same equator crossing time of 13:30±10 min as the Suomi National Polar-orbiting Partnership (SNPP) satellite on 

which the first VIIRS instrument resides, and has the same nominal orbital time period of 101.5 min. 

Fig. 1 illustrates the physical components related to the on-orbit RSB calibration. The sunlight goes through the SD screen 

and then is diffusely scattered by the SD to provide a radiance source. The spectral radiance of the SD scattered sunlight 

is proportional to the SD BRDF at the mission start and the change factor of the BRDF since launch. The on-orbit BRDF 

change factor, commonly denoted as the H-factor, is determined by the onboard solar diffuser stability monitor (SDSM)1. 
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Figure 1. A sketch that shows the components related to the VIIRS on-orbit radiometric calibration. The SDSM and the SD screens 

are otherwise opaque plates with through holes. The RTA stands for the rotating telescope assembly that directs incoming light to 

the detector focal planes. 

When in operation, the eight SDSM detectors, with design band central wavelengths from 412 to 926 nm, receive photons 

from the Sun through an attenuation screen denoted as the SDSM screen and the SD reflected sunlight almost at the same 

time. The ratio of the SDSM signal strengths adjusted for the SD and the SDSM screen transmittance and the sun-sensor 

distance is a direct measure of the H-factor. 

However, the H-factor directly measured by the SDSM is along the SD-to-SDSM direction and what we need is the H-

factor along the SD-to-RTA direction. It has been discovered that the H-factor for the first VIIRS instrument onboard the 

SNPP satellite2-3 is angle dependent. Here we determine whether the H-factor for the second VIIRS is angle dependent.  

2.  METHODOLOGY 

To determine whether the H-factor is angle dependent, we use the SDSM SD observations, as we did for the SNPP 

VIIRS2,4. As shown in Fig. 2, for the two points 1 and 2, if the solar angles are the same, the ratio of the digital counts from 

the SD view cancels the SD screen transmittance and the BRDF at the mission start to yield 

SR(𝑡2)HSDSM(𝑡2,𝜙⃗⃗⃗ (𝑡1))

SR(𝑡1)HSDSM(𝑡1,𝜙⃗⃗⃗ (𝑡1))
=

𝑑𝑐SD,p(𝑡2,𝜙⃗⃗⃗ (𝑡1))

𝑑𝑐SD(𝑡1,𝜙⃗⃗⃗ (𝑡1))
  ,                                                                                                                              (1) 

where the SR is the spectral response function for an SDSM detector, 𝜙⃗  is the solar angle, and 𝑑𝑐SD represents the digital 

count with background subtracted from the SD view. In equation (1), we use HSDSM to indicate the H-factor along the SD-

to-SDSM direction. We use 𝑑𝑐SD,p to indicate the digital count at time t2 with the solar angle at time t1. In general, it is 

impossible to have a digital count that happens at a later time t2 and at the exact solar angle for an early time t1. Hence we 

use a subscript “p” to indicate that the digital count at the later time is a pseudo-digital count that must be constructed 

through interpolations of measured values. Equation (1) assumes that the spectral response function is sharp enough in the 

wavelength space to be regarded as a Dirac delta function. The advantage in using equation (1) is the removal of the SD 

screen transmission function that may not be exactly known. Additionally, equation (1) uses the property that the H-factor 

at the early mission is very close to one and thus is not particularly angle dependent. Note that the small angular dependence 

at an early mission time can be taken into account as we did for the SNPP VIIRS4. 
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Figure 2. Circles indicate the solar angles in the VIIRS coordinate system when the SDSM sees the sunlit SD. The VIIRS coordinate 

system is such defined so that the z axis is along the RTA to the center of the earth view port and the x axis is along the normal of 

the SD screen. The solar azimuth angle 𝜙H,VIIRS is defined as the negative of the angle that the solar vector projected onto the xy 

plane makes with the x axis, and the solar declination angle 𝜙V,VIIRS is defined as the angle that the solar vector projected onto the 

xz plane makes with the x axis. 

To find 𝑑𝑐SD,p(𝑡2, 𝜙⃗ (𝑡1)), we rely on the fact that 

𝑑𝑐SD,p (𝑡, 𝜙⃗ (𝑡)) = 𝑑𝑐SD (𝑡, 𝜙⃗ (𝑡)) .                                                                                                                                  (2) 

 

Figure 3. Circles, pluses, and crosses are for the solar angles in the VIIRS coordinate system when the SDSM sees the sunlit SD at 

orbits 681, 4284, and 4298, respectively. 

We select t1 as satellite orbit 681. Note that the nominal satellite orbit time period is 101.5 min. To find a 𝑡2 and 

𝑑𝑐SD,p(𝑡2, 𝜙⃗ (𝑡1)), we examine the solar angles shown in Fig. 3. The figure shows that the solar angles at orbit 681 are in 

between those at orbits 4284 and 4298. As a result, we can use 𝑑𝑐SD (𝑡3, 𝜙⃗ (𝑡3)) and 𝑑𝑐SD (𝑡4, 𝜙⃗ (𝑡4)) to calculate 

𝑑𝑐SD,p(𝑡2, 𝜙⃗ (𝑡1)) where, 𝑡3 and 𝑡4 are respective times on orbits 4284 and 4298. We define 𝜙⃗ (𝑡3) and 𝜙⃗ (𝑡4) to have the 
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same solar declination angle as 𝜙V,VIIRS(𝑡1) and 𝜙H,VIIRS(𝑡3) ≤ 𝜙H,VIIRS(𝑡1) ≤  𝜙H,VIIRS(𝑡4). Fig. 3 reveals that the solar 

angular curve for orbit 681 is parallel to those of orbits 4284 and 4298 and thus presents a simpler case4 since we can set 

 𝑡2 = 𝑡3 +
𝑡4−𝑡3

𝜙H,VIIRS(𝑡4)−𝜙H,VIIRS(𝑡3)
× (𝜙H,VIIRS(𝑡1) − 𝜙H,VIIRS(𝑡3))                                                                                   (3) 

to obtain 

𝑑𝑐SD,p (𝑡2, 𝜙⃗ (𝑡1)) =
(𝑡4−𝑡2)×𝑑𝑐SD(𝑡3,𝜙⃗⃗⃗ (𝑡3))+(𝑡2−𝑡3)×𝑑𝑐SD(𝑡4,𝜙⃗⃗⃗ (𝑡4))

𝑡4−𝑡3
  .                                                                                     (4) 

We calculate the ratio of the SDSM detector response functions in equation (1) from the sun view data through 

𝑑𝑐Sun (𝑡, 𝜙⃗ (𝑡)) = 𝜏SDSM
eff (𝜙⃗ (𝑡)) × SR(𝑡)Esun(𝜆𝑑 , 𝑡) ,                                                                                                      (5) 

where t indicates a time on a particular orbit,  𝜏SDSM
eff  is the effective SDSM screen transmittance refined with both the yaw 

maneuver and regular on-orbit SDSM data5, 𝜆𝑑 indicates band central wavelength for SDSM detector d, and Esun is the 

solar spectral irradiance at the VIIRS. 

3.  RESULTS 

Assuming HSDSM at 𝑡1 is not solar angle dependent since 𝑡1 is early in the mission, we use equation (1) to calculate HSDSM 

at 𝑡2 that is determined by equation (3) to be about orbit 4288. To give an example, in Fig. 4 we plot the HSDSM at 𝑡2 for 

SDSM detector 1. The obtained HSDSM, indicated as the circles, follows a linear function of the solar angle 𝜙V,SD defined  

 

Figure 4. Circles indicate HSDSM at 𝑡2 calculated by using equation (1), versus 𝜙V,SD for SDSM detector 1 with 𝑡2 =orbit 4288, 

where 𝜙V,SD is the angle between the incident sunlight and the SD surface. The solid line indicates the best fit of a linear polynomial 

of 𝜙V,SD to the measured HSDSM. 

as the angle between the sunlight and the SD surface. The slope of the linear function is 0.00053 deg-1. We calculate the 

HSDSM at 𝑡2 for all eight SDSM detectors and plot the slopes versus 1- HSDSM at 𝜙V,SD = 35.5 deg in the left chart of Fig. 

5. To compare, we also plot the slopes for the SNPP VIIRS versus 1- HSDSM in the right chart4 of Fig. 5. Fig. 5 reveals that 

at the same 1 – HSDSM, both SDs on the N20 and SNPP VIIRS instruments yield about the same amount of solar angular 

dependence at least along the solar angles of satellite orbits. 
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Figure 5. 𝑑HSDSM/𝑑𝜙V,SD along the solar angles of satellite orbits at 𝜙V,SD = 35.5 deg. (Left) for the N20 VIIRS and (right) for 

the SNPP VIIRS. 

4.  AN APPLICATION OF THE H-FACTOR ANGULAR DEPENDENCE 

In the last section, we showed that the amounts of the solar angular dependence of the N20 and SNPP VIIRS SD HSDSM 

along the satellite orbits are about the same at the same HSDSM. Since both the SNPP and N20 satellites orbit the Earth in 

the same plane, the nearly same amount of solar angular dependence at the same HSDSM for both the SDs indicates that the 

SNPP VIIRS SD H-factor angular dependence may be valid to the N20 VIIRS SD H-factor. 

 

Figure 6. The SNPP VIIRS VISNIR band F-factors calculated from (left) the measured HSDSM and (right) from the HRTA that is 

determined through equation (6) with the RSR de-convoluted HSDSM. The F-factors are averaged over all the detectors in a band 

and are for half-angle-mirror side A, and high-gain stage for dual-gain bands. 

For the SNPP VIIRS, we have6 
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HRTA = HSDSM ×
1+𝛼RTA(𝜆)∗(1−HSDSM)

1+𝛼H(𝜆)∗(1−HSDSM)∗(𝜙H,SD−𝜙H0)
 ,                                                                                                            (6) 

where 𝜙H0=48.0 deg, 𝜙H,SD is the solar azimuth angle in the SD plane6. In equation (6) 

𝛼H(𝜆) = 0.0033 × (1 −
0.076

𝜆2.48) ,                                                                                                                                        (7) 

where λ is the band central wavelength in microns6 and 𝛼RTA(𝜆) is obtained from matching the lunar F-factor with the SD 

F-factor calculated with the SNPP HSDSM, where the F-factor is a correction factor to the initially calculated scene spectral 

radiance1. Fig. 6 shows the N20 VIIRS visible near infrared (VISNIR) band F-factors using HSDSM (left) and HRTA (right). 

In generating the right chart of Fig. 6, we have de-convoluted the measured N20 HSDSM
7, using the SNPP VIIRS SDSM 

detector RSRs as approximations. The F-factors calculated with the HRTA show that since launch the F-factor moves up 

about 0.5% for the M1 band, 0.3% for the M2 band, 0.2% for the M3 band, stays nearly flat for the M4, I1, and M5 bands, 

and decreases about 0.2% for the I2 and M7 bands. 

5. SUMMARY 

We have obtained the initial solar declination angular dependence of the measured HSDSM at day 302 after launch (orbit 

number 4288) along the solar angles on satellite orbit 681 (day 48). As for the SNPP VIIRS, the dependence is stronger at 

a shorter wavelength. At the wavelength of the SDSM detector 1 with the design wavelength of 412 nm that is the shortest 

among the 8 SDSM detectors, the derivative of the HSDSM over the solar declination angle along the satellite orbit has a 

value of 0.00053 deg-1. Very importantly, we have found that at the same HSDSM, the dependence has nearly the same 

amount as the SNPP VIIRS. Since the SNPP and N20 share the same orbital plane, the finding indicates that the H-factor 

angular dependence for the N20 VIIRS may be the same as that for the SNPP VIIRS. Applying the SNPP VIIRS H-factor 

angular dependence for the N20 VIIRS, we have obtained the N20 VIIRS HRTA from the RSR de-convoluted HSDSM and 

applied the HRTA to calculate the F-factors. 
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