National Aeronautics and Space Administration

MSFC Engineering Overview

Deputy Engineering Director

Lisa Watson-Morgan, Ph.D.

Engineering Management

Technical Assistant **Richard Stroud**

Technology & Innovation Associate Director for Technical Assistant Vacant Lybrease Woodard

Director Larry Leopard **Deputy Director**

Lisa Watson-Morgan

Associate Director for Operations Roger Baird, detail

Engineer

Garry Lyles

Sr. Lead, Space Trans & Propulsion Mike Kynard

ED10 - Resource Management Mgr., Roger Baird Dep. Mgr., Angie Nolen

EE01 – Chief Engineers Office Chief Eng: Katherine Van Hooser Dep. Chief Eng,. Nelson Parker

7/15/2019

Mgr. Tia Ferguson Dep. Mgr., Don Holder, detail

EV01 – Spacecraft & Vehicle Sys. Mgr., Charlie Finnegan Dep. Mgr., Angelia Walker. detail

ET01 – Test Laboratory Mgr., Ralph Carruth Dep. Mgr., Vacant

EM01 – Materials & Processes Lab Mgr., Suren Singhal Dep. Mgr., Scotty Sparks

ED04 – Advanced Concepts

Mgr., Mark Rogers

Dep. Mgr., Rachel McCauley

ER01 – Propulsion System Dept. Mgr. Mary Beth Koelbl Dep. Mgr., Robert Champion

Engineering Disciplines

NASA

Advanced Concepts

- Concept Definition, Integration, & Analysis
 - Earth-to-Orbit Transportation
 - In-Space Transportation
 - Habitation & Crew Systems
 - Science & Robotic Exploration
- Architecture Analysis
- Technology Assessments
- Feasibility Studies
- Concept Evaluation

Propulsion Systems

- Propulsion Engineering
- Liquids & Solids
- Component Design and Development
- Fluid Systems Design & Analysis
- Computational Fluid Mechanics
- In-Space Propulsion
- Nuclear Propulsion

Space Systems

- Instruments & Payloads
- Environmental Control
 & Life Support Systems
- Electronics
- Software
- Small Mechanical Systems
- Fabrication & Assembly Services

Spacecraft & Vehicle Systems

- Systems Engineering & Integration
- Structural Design and Analysis
- Loads & Dynamics
- Aero-sciences
- Thermal Design, Analysis, & Control
- Modeling & Simulation
- Guidance, Navigation, & Control
- Terrestrial & Space Environments

Materials & Processes

- Metallics
- Composites
- Ceramics
- Environmental Effects
- Fracture & Failure Analysis
- NDE & Tribology
- Chemistry
- Materials Control& Informatics
- Advanced Manufacturing

Test Lab

- Propulsion Testing
- Structural Testing
- Thermal Vacuum
- Shock & Vibration
- Acoustic
- Experimental Fluids Test
 & Development
- Test Support (Piping and Structure Design/Analysis Pressure and Propellants)

Advanced Concepts

Earth to Orbit Concept Definition & Analysis

- Earth to Orbit Trajectory
 Analysis
- Weights & Sizing
- Vehicle Structural Analysis
- System Level Trades

In-Space Systems Analysis

- Architecture Analysis
- Concept of Operations
- Mission Analysis
- Technology Assessments
- In Space Element Definition
- Habitation & Crew System

Exploration & Discovery (Analysis, Mission Concept Definition and Spacecraft Concepts)

- Scientific & Robotic Exploration
 - Planetary Science
 - Earth Science
 - Heliophysics
- Astrophysics
- Human Exploration Precursors
- Human Exploration
- Technology Demonstrations

Spacecraft & Vehicle Systems Department

Systems Engineering & Integration

- Technical Management
 - Risk and Knowledge Management
 - Perform Metrics and Margin Management
 - Lifecycle Review Planning
 - Certification of Flight Readiness Strategy
 - Trade Study Identification and Tracking
- System Design and Definition
 - Integrates and Manages Overall System Design
 - Establishes Design Requirements and Facilitates Compliance
- Test and Verification
 - Leads Verification and Validation Planning and Integration
- Systems Analysis
 - Leads and Performs System-level Modeling and Analysis
 - Mass Margin Management
 - Ascent Debris Assessment
 - Assistance with Systems Hazard and Failure Evaluations
 - Human Factors Engineering

Structural Design & Analysis

- Structural Dynamics, Loads
 & Stress Analysis
 - Structural analysis
 - Fracture mechanics
 - Vibroacoustic environment definition
 - Integrated coupled loads analysis
- Structural & Mechanical Design & Modeling
 - Vehicle component design and integration
 - Pyrotechnic systems analysis
- Meteoroid debris analysis
- Composite Structures
- Aerosciences
 - Aerodynamics
 - Acoustic environments
- Rocket exhaust plume characterization
- Aerothermodynamics
- Venting
- Thermal Design, Analysis & Control
 - Thermal/fluid analysis
 - Launch vehicle TPS
 - Spacecraft thermal analysis

Flight Mechanics & Analysis

- Control Systems Design & Analysis
- Requirements Definition
- Development
- Verification
- Launch Vehicle & Spacecraft
- Guidance & Trajectories
- Guidance laws
- Trajectory designs
- Mission analysis
- Navigation Systems
- Modeling & Simulation
- Integrated Systems Health Management and Automation
- Architecture definition
- Algorithm development & modeling
- Natural environments
 - Terrestrial
 - Planetary

Propulsion Systems Department

Liquid Propulsion Systems Design & Integration

- Liquid Engine Systems Design and Integration
- Pressurization, Feed and Propellant Systems Design and Integration
- Engine Systems Analysis & Health Management
- Development and integration of pressure-fed chemical propulsion systems for satellites, spacecraft, descent/ascent vehicles, and launch vehicles
- Long-Duration In-Space Cryogenic Propellant Storage and Delivery Systems for chemical and nuclear propulsion stages
- Advanced Propulsion & Power Research & Development including: High Power Electric Propulsion, Nuclear Thermal Propulsion, Space Nuclear Power Systems, and Nuclear Surface Power Systems.

Solid Propulsion Systems

- Solid Boost Propulsion Systems
 Integration for SLS
- Separation & Maneuvering Solid Propulsion Systems Design and Development
- Solid Propulsion Design and Trade Studies
- Anomaly Resolution/Tiger Team
 Support
- Flight Readiness Assessments
- Propellant Grain Design
- Ballistics Performance Analysis
- Requirements
 Analysis/Development/Test
 Planning
- Propellant/Liner/Inhibitor Formulation and Evaluation
- Propellant and Liner Mix Cast Insight
- Independent access to motor production capacity

Propulsion Component Design & Development

- Turbo-machinery Design, Analysis, Test, Evaluation, Assessment of Turbo-machinery Components and Advanced Development
- Combustion Devices Design, Analysis, Test, Evaluation, Assessment of Combustion Devices Components and Advanced Development
- Valves, Actuators, & Ducts Analysis, Design, Test, Evaluation, and Assessment of Valves, Regulators, Actuators, Lines, Ducts and Advanced Development
- Detail Component and System
 Design specializing in Propulsion
 Components and Subsystems
- Thrust Vector Control Systems Analysis, Design, Test, Evaluation, and Assessment of TVC systems

Propulsion Structural, Thermal, & Fluid Analysis

- Structural Dynamics Analysis
- Strength, Fatigue, and Fracture Analysis
- Rotordynamic Analysis
- High speed Vibration Data Analysis
- Vibroacoustic and Shock Analysis
- Internal and Lift-off/Separation Acoustics
- Multiphase Flows
- Combustion Dynamics
- Loads and environment predictions
- Air and Waterflow Testing for Turbines, Pumps, Nozzles, and Feedlines
- Thermal and thermal structural analysis
- Thermal fluid analysis including characterization of environments
- Thermo-chemical analysis and testing
- Infrared thermography

Test Laboratory

Propulsion Test

- Sub-scale injectors & elements, thrusters, gas generators, turbopumps
- Oxygen & Hydrogen cold flow
- Cryostructural
- On-orbit vacuum
 environment
- Solar thermal propulsion
- Solid motor propellant & materials
- Hot gas material characterization
- Engine Systems (LH2, CH4, RP-1)

Experimental Fluid Dynamics Test

- Air & water flow
- Full flow air blow down for turbopump turbine inlet testing
- Subscale nozzle internal contours & back pressure data via blow down testing
- Pump impeller & inducer sub- & full-scale performance mapping via visual water flow testing
- Subsonic & supersonic vehicle model & nozzle testing at Mach 0.2-5.0
- Air blow down testing of subscale solid motor casing & nozzle designs
- Probe calibration testing

Environmental Test

- Thermal vacuum
- Thermal cycle/humidity
- Altitude
- Launch ascent/descent
- Vacuum bake out
- Optical certification
 bake out
- Arc Jet/Hot Gas
- Development, qualification, acceptance, & research testing of space flight hardware

Structural Strength Test

- Hazardous structural test
- Cryostructural test
- Tensile & compressive loads test
- Combined Environments
- Load environments to simulate launch, on orbit, & landing conditions for development, qualification, acceptance & research testing of space flight hardware

Structural Dynamics Test

- Experimental modal analysis to verify & correlate analytical finite element models of space flight hardware.
- Vibration, acoustic, & pyrotechnic shock testing for space flight hardware development, qualification & acceptance.
- Micro-gravity vibration
 emission testing

Test Support

- Propellants, Pressurants & Calibration
- Advanced Instrumentation Applications
- Special Test Equipment Design
- Test Planning
- Emerging Technologies
- Data System &
 Software Development

Materials & Processes Lab

Manufacturing

o Furnaces

Materials Selection, Control, & Engineering Support

- Materials Requirements, MUAs, MIULs
- M&P Controls
- Contamination & Foreign Object Debris Control
- Materials Obsolescence
 Support

Materials Data Management

- MAPTIS Agency asset
- Physical Sciences
 Infomatics
- Database Management

Space Systems Department

Systems Engineering & Integration

- Lead Systems
 Engineers
- Hardware & Software Requirements & Verification
- System Level Trade
 Studies
- Avionics Systems
 Integration
- Engineering Discipline
 Interface
- Systems Engineering Management Plan

Mechanical Design, Analysis & Fabrication

- Strength Analysis
- Structural Dynamics & Loads Analysis
- Vibroacoustics
- Thermal Design & Analysis
- Mechanisms
- Fluid Systems Design & Analysis
- Modeling & Simulation
- Loads & Dynamics
- Mechanical Fabrication
 & Assembly

Avionics Design

- Instrumentation & Advanced Flight Sensors
- GN&C Hardware
- Imaging & Video
 Systems
- Embedded Control Systems
- Optics
- Flight & Ground
 Computers
- Data Systems
- RF Systems
- Communications

Electrical Integration & Fabrication

- Electrical Power
 Systems
- Electromagnetic
 Environmental Effects
- EMC Analysis
- Electrical Integration
- Electronic Fabrication & Assembly
- Electronic Packaging
 Design
- EEE Parts Analysis & Verification

Flight & Ground Software

- Mission-Critical Flight
 Software
- Propulsion Controllers
- Payload Flight Software
- Software Testing, Costing & Metrics
- Systems Integration Lab (SIL)
- Systems Integration & Test

Systems

Development,

Integration & Test

- Science Payload Hardware Development
- Systems Integration & Test
- Flight Experiment & Payload Operations
- Sub-orbital Flight Tests
 of "Breadboard"
 Instruments
- Water and Air Systems
 Development Testing
- ECLSS Flight Hardware Acceptance & Quality Testing
- Fluid System Design & Analysis (ECLSS)

EEE Parts Packaging- Additive Electronics Laboratory

Optomec High Precision 3D Aerosol Jet Printer

Primary Focus: Utilizing 3D additive dispensing, screen printing, and aerosol jet deposition processes to develop nanoelectronics including but not limited to:

- Solid State Ultracapacitors
- Graphene Superconducting Circuitry .
- **Organic Photovoltaics & LEDs**
- Electroluminescent Devices
- Sensors
- PCBs
- Antennas
- 3D Flexible Interconnects for Area Array Packaging
- Embedded Electronics Packaging
- Advanced Electronic Manufacturing

Hengli Custom 8-Zone HT **Sintering Furnace**

Hengli Custom 4-Zone LT **Sintering Furnace**

Silverson L5M-A Laboratory

HMI 485 High Precision Screen & Stencil Printer

PVA 350 Tabletop Robotic Dispensing System

Solar Array Antenna

tional Aeronautics and

e Administration

NAS

The Lightweight Integrated Solar Array and anTenna (LISA-T)

Near Earth Asteroid Scout Sail

SLS EM-1 Secondary Payload

NASA MSFC Materials & Process Development Flexible Sensing Technology

Background and requirement

ISM Multi Material Fabrication Key Areas:

• **Development of Flexible Sensing Technology:**

- Development of next-generation flexible sensor platforms and printed sensors for Astronaut Crew Health Monitoring on International Space Station.
- Development of materials and processes for printed sensors.
- Evaluation and incorporation of new component technologies (flexible components, wireless communications, etc.)

Energy Storage Technology Development:

- Develop triboelectric power in order to build a self-contained sensor system.
- Further maturation of an all-printed supercapacitor.
- Developing very high energy density supercapacitors for battery replacement with several commercial companies.
- Developed an Al-air battery with University of Tennessee & ORNL for scalable battery replacement applications.

Flexible Electronics Sensors

NASA MSFC Materials & Process Development Flexible Sensor Development

Multi Material Fabrication and Materials Development

Development of Flexible Sensing Technology:

- Development of next-generation wireless flexible sensor platforms and printed sensors for Astronaut Crew Health Monitoring on International Space Station.
- Development of materials and processes for printed sensors.
- Evaluation and incorporation of new component technologies (flexible components, wireless communications, etc.)

Printing Electronics

Dielectric ink printing

Three different sizes

Wireless humidity sensor

Ultra cap with leads

Ultracapacitors and Humidity Sensors

NASA MSFC Materials & Process Development Flexible Sensor Development

Wearable Wireless Sensors Operational Concept

We are not there yet! Engine Instrumentation March 2019

Engineering the Future

