
On Expected Value Strong Controllability

Abstract

The Probabilistic Simple Temporal Network (PSTN) gener-
alizes Simple Temporal Networks with Uncertainty (STNUs)
by introducing probability distributions over the timing of un-
controllable timepoints. PSTNs are controllable if there is a
strategy to execute the controllable timepoints while bound-
ing the risk of violating any constraint to a small value. If this
risk bound can’t be satisfied, PSTNs are not considered con-
trollable. We introduce the Expected Value Probabilistic Sim-
ple Temporal Network (EPSTN), which extends PSTNs by
including a benefit to the satisfaction of temporal constraints.
We study the problem of Expected Value Strong Controllabil-
ity (EvSC) of EPSTNs, which seeks a schedule maximizing
the expected value of satisfied constraints. We solve the EvSC
problem by extending a previously developed linear program,
combined with search over constraints to violate at execution
time. We describe conditions under which the solution to this
linear program is the maximum expected value schedule. We
then show how to search for constraints to discard, using the
linear program at the core of the search. While the general
problem is shown to be exponential, we conclude by provid-
ing several methods to bound the complexity of search.

1 Introduction
Since its introduction by (Vidal and Ghallab 1996) and (Vi-
dal and Fargier 1999), there has been considerable research
in the area of controllability of temporal networks in the
presence of uncertainty. Controllability asks: can events be
scheduled to satisfy temporal constraints in the presence of
uncertain outcomes? Many previously studied solutions to
this problem use the notion of controllability of Simple Tem-
poral Networks under Uncertainty (STNUs) at their core.
The solutions to such problems are strategies to execute
all events that ensure no constraints are violated, regardless
of the outcomes of previously observed uncertain events.
More complex problems combine temporal constraints, un-
certainty, and preferences. Tractability of these problems is
ensured due to the simplicity of the constraints and pref-
erences provided as inputs. Uncertainty can be general-
ized so that algorithms must handle probabilities over when
events occur. This leads to new risk-bounded and chance-
constrained problems. If the solution is still unsatisfactory,
these constraints can be relaxed using a cost functions on the
constraints and risk bound.

What happens when it is almost certain that a con-
straint will be violated? Current approaches, particularly
risk-bounding, do not adequately address this problem. If the
risk bound is too low, no strategy can be produced. If a risky
strategy is produced, then an undesirable outcome at execu-
tion time will cause the executive to ‘freeze’ when a con-
straint is violated. When the existing set of constraints can-
not be satisfied to produce control strategies, relaxing some
constraints up-front may ensure controllability, but with a
loss of insight into the original problem.

An alternative solution to such over-constrained problems
is to let the execution strategy try to satisfy as many con-
straints as possible, assuming that at least one constraint
will be violated during execution. If some constraints are
more important than others, then a natural optimization cri-
teria for the strategy is to maximize the expected value of
satisfied constraints. This new, unexplored problem blends
several notions explored in the controllability literature to
date. Accepting risk implies accepting outcomes that vio-
late some constraints. Applying preferences to satisfied con-
straints suggests control of expected schedule quality based
on past information and the probability and cost of future
constraint violations.

In this paper we define the Expected Value Probabilistic
Simple Temporal Network EPSTN, and begin identifying al-
gorithms to solve this problem. We formalize the problem
of finding a schedule maximizing the expected value of sat-
isfied constraints, the Expected Value Strong Controllability
(EvSC) problem. We adapt algorithms from the controllabil-
ity literature that can solve this problem, and provide sound-
ness and completeness results. While the general problem is
shown to be exponential, we conclude by providing several
methods to bound the complexity of search.

2 Notation and Definitions
Definition 1 (STNU). (Vidal and Ghallab 1996) (Vidal and
Fargier 1999) (Muscettola, Morris, and Vidal 2001) Sim-
ple Temporal Networks with Uncertainty (STNUs) consist
of Controllable time-points, A = ∪iai, i.e. those assigned
by the agent, and Uncontrollable time-points, R = ∪iri, i.e.
those assigned by the external world. The set of timepoints
T= A ∪ R. The domain of ti ∈ T= R. Requirement con-
straints c(ti, tj) have the form (tj−ti) ∈ [lti,tj , uti,tj ]. LetC
= ∪ti,tj c(ti, tj). Contingent constraints g(ai, rj) have the
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form (rj − ai) ∈ [lai,rj , uai,rj ] where ai ∈ A, rj ∈ R; the
semantics is that ∃ v(ri) ∈ [lai,rj , uai,rj ] | rj − ai = v(ri),
but v(ri) is only observed during execution. Let G = ∪ai,rj
g(ai, rj). An STNU is a 4-tuple <A,R,C,G >.

Definition 2 (Strong Controllability). (Vidal and Fargier
1999) Let P be an STNU. Let V = ×gai,rj

[lai,rj , uai,rj ]

(the cross product of all possible outcomes of all contingent
constraints). A schedule s is an assignment to ai ∈ A. De-
note the value of ai in s by s(ai). P is Strongly Controllable
(SC) if there is a schedule s such that ∀v ∈ V , s satisfies all
constraints c(ti, tj).

Definition 3 (PSTN). (Tsamardinos 2002) Let a probabilis-
tic duration constraint d(ai, rj) have the form rj−ai = ω ∈
Ωai,rj where ai ∈ A, rj ∈ R, and Ωai,rj is a random vari-
able with probability distribution function P (Ωai,rj ). Let
D= ∪ai,rjd(ai, rj). (Duration constraints d(ri, rj) are not
permitted for reasons explained later.) A Probabilistic Sim-
ple Temporal Networks (PSTN) is a 4-tuple <A,R,C,D>.

In the sequel, we will assume w.l.o.g. that there is a 1-1
mapping between probabilistic duration constraints and con-
trollable timepoints, i.e. ∀{d(ai, rk), d(aj , rm)}, ai 6= aj ,
allowing us to say rj − ai = Ωj .

Risk as introduced by (Fang, Yu, and Williams 2014) de-
scribes the probability that, given a schedule or strategy,
an outcome v ∈ V violates some constraint. Typical ap-
proaches transform a PSTN into an STNU and then evaluate
controllability. To compute risk for an STNU, we measure
how much probability mass on each uncertain duration is
not covered after ‘squeezing’ to transform it into a contin-
gent link, i.e. transforming d(ai, rj) to g(ai, rj), in a manner
similar to (Santana et al. 2016):

Definition 4. Let ρd:D⇒G transform a duration con-
straint into a contingent link by choosing a compact subset
[lai,rj , uai,rj ]⊂ Ωj . Let ρD = {ρd}. Let P be a PSTN. Then
ρD(P ) = U where U is the STNU derived from P .

Definition 5. Let P be a PSTN. Let U = ρD(P ) be an
STNU derived from P . Let ρd(d(ai, rj)) = g(ai, rj). Let
[lai,rj , uai,rj ] be the contingent constraint interval defined
by g(ai, rj). Let Φg = ω ∈ Ωj |ω ≤ lai,rj . Let Θg = ω ∈
Ωj |ω ≥ uai,rj . The risk of d(ai, rj) relative to ρd, denoted
δ(ρd, d(ai, rj)), is

∫
ω∈Φg∪Θg

P (Ωj). The symmetric case of
d(ri, aj) is similar. The risk of P relative to ρD, denoted
δ(P, ρD), is 1−

(∏
d∈D(1− δ(ρd, d(ti, tj)))

)
.

Definition 6. P is SC with risk ∆ if ∃U = ρD(P ), P ′ is
SC, and δ(P, ρD) =∆.

3 A Running Example and Previous Work
Consider a planetary exploration rover that must drive to a
location, take an image, and then uplink data. The image
takes 10 minutes to collect, and the best time window to
take the image is (initially) between 40 and 50 minutes after
starting the drive, denoted c1(a1, a2) = [40, 50]. The uplink
takes 5 minutes, and the orbiter will be visible from 60 to 70
minutes after starting the drive. The rover drive duration is
expressed by a probability distribution. The PSTN is shown

g(a1,r1)=[0,50], c1(a1,a2)=[40,50], Δ50: Controllable

g(a1,r1)=[0,55], c1(a1,a2)=[40,50], Δ55: Uncontrollable 

g(a1,r1)=[0,55], c2(a1,a2)=[40,55], Δ55: Controllable     
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Figure 1: Sample Problem showing how relaxing or sacrific-
ing a constraint can reduce risk.

in Figure 1. In order to transform this PSTN into an STNU,
we search over ρ(d(a1, r1)) = g(a1, r1) to either minimize
the risk, or satisfy some risk bound ∆. As in Definition 1, de-
note the observed value of r1 by v(r1). If g(a1, r1) = [0, 50]
then the resulting STNU is strongly controllable; the sched-
ule s(a2)=s(a1)+50, s(a3)=s(a1)+60, s(a4)=s(a1)+60,
s(a5)=s(a1)+65 is valid for any value of r1 ∈ Ω1. Suppose
we deem the resulting risk of v(r1) > s(a2), which violates
c(a1, r2), to be too high; we prefer a lower risk option, e.g.
s(a2)= 55, requiring g(a1, r1) = [0, 55]1. Unfortunately, if
50 < v(r1) ≤ 55 then the lighting constraint c1(a1, a2) is
guaranteed to be violated; thus, with the lower risk bound,
the resulting STNU is not strongly controllable.

One previously explored approach for such problems is
to search over relaxations for a problem that can be trans-
formed into a controllable STNU with some bounded risk;
(Yu, Fang, and Williams 2015) use this approach for condi-
tional STNUs. The search is guided by costs of relaxations
of either the requirement constraints or the risk bound. In the
example above, the relaxed constraint c2(a1, a2) = [40, 55]
combined with g(a1, r1) = [0, 55] leads to a controllable
STNU. While this approach ensures no relaxed constraints
in the transformed STNU will be violated at execution time,
the original constraints are lost, so there is no informa-
tion to guide generation of the strategy to avoid violating
constraints unnecessarily. Modeling allowable constraint vi-
olations could be addressed by first relaxing the bounds
on the requirement constraints, and adding preferences that
value satisfying the original constraint more than the relaxed
bounds. This could be done using simple semi-convex pref-
erence functions, combined with ‘min’, to achieve tractabil-
ity, as in (Rossi, Venable, and Yorke-Smith 2006). This
approach is too limiting; in particular, the ‘min’ function
will report the worst preference achieved for any constraint,
which could be 0 (representing a ‘violated’ constraint).

In our example, we would like to trade the likelihood
of satisfying the lighting constraint c(a1, a2) while ensur-
ing the image is acquired after the drive is complete, i.e.
c(r1, a2), at execution time. The right strategy depends on
the change in risk of satisfying c(r1, a2), and the relative im-

1Assigning s(a2)> 55 requires violating multiple constraints.



portance of satisfying c(a1, a2) and c(r1, a2). The expected
value formulation is common in MDPs; while the relaxation
approach in (Yu, Fang, and Williams 2015) minimizes the
cost of relaxations, it does not the expected value of the con-
trollability strategy. The continuous time nature of the state
space precludes using formulations such as time-dependent
MDPs (Boyan and Littman 2000); the desire to express state
spaces representing violated constraints makes other time-
based MDP approaches e.g. (Weld and Mausam 2006) inap-
propriate.

4 The EPSTN
We now formalize the Expected Value Probabilistic Simple
Temporal Network (EPSTN) by adding constraint valuations
qc(ti, tj), to a PSTN. We then formalize the Expected Value
Strong Controllability (EvSC) problem on EPSTNs.
Definition 7 (EPSTN). Let qc(ti, tj): c(ti, tj) ⇒ R+ and
let Q be the set of all qc(ti, tj). An Expected Value Prob-
abilistic Simple Temporal Network (EPSTN) is a 5-tuple
<A,R,C,D,Q>.
Definition 8. Let Pe be an EPSTN. Let s be a schedule. Let
σc(ti, tj , s, v)⇒ {0, 1} be 1 if c(ti, tj) is satisfied by (v, s)
(by extracting v(ri) for ti = ri or s(aj) for ti = ai and
evaluating the bounds) and 0 otherwise. Then fs(s, v) =∑

c∈C qc(ti, tj) (σc(ti, tj , s, v)) is the value of a schedule s
combined with a set of outcomes v ∈ V . The expected value
of s is then E(fs(s, V )) =

∫
v∈V (P (v)fs(s, v)). Given an

EPSTN, the Expected Value Strong Controllability (EvSC)
problem is to find s maximizing E(fs(s, V )).

While a similar Dynamic Controllability problem can also
be formalized, for the remainder of the paper, we will focus
on Expected Value Strong Controllability.

We do not assume that the requirement constraints
c(ai, aj) (those exclusively on controllable timepoints) are
all simultaneously satisfiable. EPSTNs also may, in general,
have multiple constraints ck(ti, tj) on the same pair of vari-
ables ti,tj , with different valuations. Consider a variant of
Figure 1 with both constraints c1(a1, a2) and c2(a1, a2), and
q2
c (a1, a2) ≤ q1

c (a1, a2). Both constraints cannot be satis-
fied simultaneously; choosing whether to satisfy c1(a1, a2)
or c2(a1, a2) will change the expected value of satisfying
c(r1, a2). Compare this to a different variant of Figure 1,
with constraint c1(a1, a2) and constraint c3(a1, a2) with
bounds [40, 55]. In this case, both constraints c1(a1, a2) and
c3(a1, a2) can be satisfied by some schedules and outcomes,
leading to a more complex tradeoff analysis.

EPSTNs are a variant of the Disjunctive Temporal Prob-
lem with Preferences (DTPP) (Peinter, Moffitt, and Pol-
lack 2005). Each requirement constraint can be expressed
as a disjunction where satisfying the ‘trivial’ constraint has
zero value and satisfying the original constraint has value
qc(ti, tj). The EPSTN is a generalization of the DTPP since
the expected value of satisfying c(ri, aj) is not crisply ex-
pressed as a finite disjunction of constraints with preference
values for each disjunction. While the value of satisfying
c(ai, aj) is captured by qc(ai, aj), the expected value of sat-
isfying c(ri, aj) is a nontrivial function of timepoint assign-
ments, rather than a constant associated with the disjunctive

decisions. EPSTNs are similar to the Controllable Condi-
tional Temporal Problem with Uncertainty (CCTPU) of (Yu,
Fang, and Williams 2015), in that we can choose which con-
straints to satisfy. EPSTNs are more general than CCTPUs
in that they include preferences, but are more limited in that
every timepoint of an EPSTN must be scheduled.

We now look deeper at the fundamental tradeoff in EvSC:
sacrificing a constraint to improve the overall expected value
of a schedule. In Figure 1 above, there is only one constraint
over an uncontrollable timepoint, namely c(r1, a2). If 50 ≤
v(r1) ≤ 55 we can construct a schedule violating a single
constraint, namely, c(a1, a2), in order to satisfy c(r1, a2)
and ensure all other constraints are satisfied. Committing to
a schedule up-front that violates c(a1, a2) lets us increase
the probability c(r1, a2) is satisfied, potentially increasing
the expected value of the schedule. We will ignore the other
outcomes for now since multiple constraints will be violated,
making it harder for increased probability to compensate for
the loss of value. We can determine the relative values that
qc(a1, r1) and qc(a1, a2) must be to make violating c(a1, a2)
maximize the expected value. Assume s(a1)= 0. Let s be a
schedule in which s(a2)= 50 and s′ be a schedule in which
s(a2)= 55. For s′ to be preferred, we would need
qc(r1, a2)

∫ 50

0
P (Ω1) + qc(a1, a2) < qc(r1, a2)

∫ 55

0
P (Ω1)

or, written another way,

qc(a1, a2) < qc(r1, a2)
(∫ 55

0
P (Ω1)−

∫ 50

0
P (Ω1)

)
=

qc(a1, a2) < qc(r1, a2)
∫ 55

50
P (Ω1)

If
∫ 55

50
P (Ω1) is ‘small’, the inequality above is only sat-

isfied if qc(r1, a2) is ‘large’. Put another way, qc(r1, a2)
would need to be a factor of 1∫ 55

50
P (Ω1)

larger than qc(a1, a2).
Committing to bounds on contingent links that maximize
the expected value for a high-value constraint on an uncon-
trollable may violate other constraints. We may intuitively
view this as creating a cycle that must be broken by delet-
ing a low-value constraint. It may be necessary to remove
multiple constraints to increased coverage of a single high-
value uncontrollable duration. Breaking each cycle may re-
veal another cycle involving another requirement constraint,
perhaps even on the same timepoints, as shown in Figure 2
(left). In this example, it is obvious that breaking the mini-
mum cost edge unexpectedly decreases the expected value.
Even if removing a series of constraints increases the proba-
bility of satisfying a contingent link, the expected value can
still decrease, until removing enough constraints leads to an
eventual net increase in the expected value. This scenario
is shown in Figure 2 (right). The situation becomes more
complex when we consider that removing a single constraint
might lead to increased probability, and therefore expected
value, of multiple high-value contingent constraints.

Our roadmap for EvSC is as follows. We first describe a
restricted EPSTN that can be written as a linear program.
We solve the more general EPSTN problem by searching
over restricted EPSTNs derived from the most general prob-
lem. Along the way, we provide some insights into algo-
rithm complexity, soundness and completeness of these ap-
proaches, which shed light on the difficulty of addressing
expected controllability.
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Figure 2: Breaking cycles.

4.1 Semi-Simple EPSTNs
We begin this analysis with some definitions:
Definition 9 (Simple and Semi-Simple EPSTN). Let Pe be
an EPSTN. Denote the STN constraints c(ai, aj) by Cs.
Denote the At-Risk (AR) constraints c(ri, aj) by Cu. Pe is
Semi-Simple if ∃ s that satisfies all constraints in Cs. P ′e ⊂
Pe defined by Cs’ ⊆ Cs is Simple if ∃ s s.t. E(fs(s, V )) is
optimal over all P ′e, and s satisfies all constraints in Cs’.

Suppose we fix, or are otherwise given, a set of STN con-
straints over controllable timepoints Cs that can all be sat-
isfied. The resulting EPSTN is semi-simple, but in general
will not be simple. We want to search for a schedule to
some PSTN that maximizes the expected value, given our
EPSTN and this fixed set of constraints. However, we start
with an EPSTN Pe and generally don’t know the setCs’ that
will lead to optimality. Thus it appears three simultaneous
searches are required: a subset of Cs leading to optimality,
a strongly controllable U ′ = ρD(P ′) given that subset of
STN constraints, and the best SC schedule (that is, the one
maximizing the expected value of satisfied constraints) for
P ′.

Fortunately, we have methods for finding U = ρD(P )
such that P is SC: SREA (Lund et al. 2017) provides one
such method. In SREA, a series of LPs are constructed and
solved in order to minimize the risk; a feasible LP is guar-
anteed to be SC. Our approach will use a similar LP to op-
timize the expected value of some semi-simple EPSTN de-
rived from our problem Pe. Once we know how to do this,
we can search over all such EPSTNs to find the optimal,
simple EPSTN. However, we can’t use the SREA LP for-
mulation directly. First, the LP of SREA does not explicitly
represent the risk. Instead, SREA uses an outer-loop search
over ever reducing risk bounds on each d(ai, rj) to construct
candidate transformations ρd(d(ai, rj)) = g(ai, rj) (in our
notation), represented as constraints within the LP. In order
to compute the expected value, we need some additional LP
machinery to represent the actual risk explicitly in the LP.

Second, we don’t merely want to minimize the risk that
the outcomes don’t respect the bounds of the contingent con-
straints, but rather maximize the expected value of a sched-
ule. Specifically, we need to explicitly represent the prob-
ability that an outcome v leads to a violation of each AR
constraint. This means we can’t directly use δ(ρd, d(ai, rj))
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Figure 3: zfixed fig relative to submitted version Piecewise
linear bounding approximation of the CDF F (Ωi) and rele-
vant constraints. δij is the risk of violating the upper bound
on aj − ri, δji is the risk of violating the lower bound on
aj−ri. δij and δik are the risks of violating the upper bounds
on aj − ri and ak− ri respectively; both are bounded by the
same piecewise linear constraints bounding F (Ωi).

from Definition 5, because this definition computes the risk
by measuring how much of the probability mass of d(ai, rj)
is covered by ρd(d(ai, rj)).

When computing the expected values, it is helpful to
imagine a triangle of two requirement constraints c(ai, aj),
c(ri, aj), and a duration constraint d(ai, ri). Since we
have assumed Pe is semi-simple, we know s must satisfy
c(ai, aj). Ideally, v(ri) and s(aj) will satisfy the constraint
c(ri, aj). But an outcome ωi ∈ Ωi may be unlucky, either vi-
olating the lower bound lri,aj , because ai and aj are sched-
uled close together to satisfy c(ai, aj) and ωi is too large,
or violating the upper bound uri,aj , because ai and aj are
scheduled far apart and ωi is too small.

For a given schedule s satisfying all constraints in
Cs, we must compute for each constraint c(ri, aj) in
Cu and the relevant contingent link g(ai, ri), Φc(s) =
ωi ∈ Ωi| s(aj)−v(ri) ≤ lri,aj and Θc(s) = ωi ∈
Ωi| s(aj)−v(ri) ≥ uri,aj . Recall v(rj) = s(ai) +ωi. We
find it is convenient to transform P (Ωi) into its Cumu-
lative Distribution Function (CDF); points on the CDF
F (Ωi) of P (Ωi) directly represent the risks

∫
ωi∈Φg

P (Ωi)

or
∫
ωi∈Θg

P (Ωi).
We now show how to augment the LP in SREA by using

a piecewise linear bound on the CDF. We assume P (Ωi) is
unimodal in order for F and 1 − F to be convex over their
respective regions. For the risk of violating the upper bound,∫
ωi∈Θg

P (Ωi), we want to compute, in the LP, the probabil-
ity that the outcome ωi is too small given the specific sched-
ule s. This becomes∫

ωi|s(aj)−(s(ai)+ωi)≥uri,aj
P (Ωi) =∫

ωi|s(aj)−s(ai)−uri,aj≥ωi
P (Ωi) =∫ s(aj)−s(ai)−uri,aj

−∞ P (Ωi).
This may appear backwards, but it isn’t. The reason is that

we are reasoning about the upper bound on the distance aj



−ri. For fixed s(aj), the earlier v(ri) occurs, the larger this
distance, until it will exceed the upper bound. Thus, the in-
tegral ranges from −∞ to the lowest value uri,ai violating
the AR constraint c(ri, ai). The CDF F (ωi) is approximated
by fixed this relative to submitted version yi linear con-
straints, whose slopes are miz and intercepts are ciz . We
need an auxiliary variable δij in the LP representing the can-
didate value of the upper bound integral, i.e. the risk of vio-
lating c(ri, aj). Then the relevant constraints on δij take the
form
δij ≥ myi(s(aj)− s(ai)− uri,aj ) + cyi
Thus, δij is constrained to a convex zone greater than F in

the range [0, µ] where µ is the mode of P (Ωi). We must also
ensure that the linear constraints bounding any pair of AR
constraints c(ri, aj), c(ri, ak) on the same uncontrollable
timepoint ri are derived from the same linear constraints on
F (Ωi). We see the constraints bounding δij above. To bound
δik, we also have the following constraints:
δik ≥ myi(s(ak)− s(ai)− uri,ak) + cyi
Note the same linear coefficients, derived from the shared

F (Ωi), bound both risks δij and δik. However, each risk
value’s location on the linear constraints bounding F (Ωi)
is computed from different timepoint assignments and the
upper bound derived from c(ri, aj) as opposed to c(ri, ak).
(This is comparable to an LP with three free variables con-
strained by the same linear constraints.) This construction
ensures the correct risk is extracted from F (Ωi) for each re-
quirement constraint on ri, and is shown in Figure 3.

We now describe the linear constraints for the risk of vi-
olating the lower bound on the separation,

∫
ωi∈Φg

P (Ωi),
corresponding to an outcome in which s(aj)−v(ri) is too
small because ri occurs too late:∫

ω|s(aj)−(s(ai)+ωi)≤lrj,aj
P (Ωi)

=
∫∞
s(aj)−s(ai)−lrj,ai

P (Ωi)

We need a second auxiliary variable δji representing the
candidate value of the lower bound integral. Note that δji is
constrained by by 1 − F , so we must construct our linear
constraints to bound 1− F in this range. fixed this relative
to submitted version If there are zi linear constraints, the
bounds on δji take the form
δji ≥ nzi(s(aj)− s(ai)− lrj ,ai) + dzi
The value of 1−F bounding below δji in the region [µ, 1]

is convex. This is also shown in Figure 3.
We must now choose the points at which we construct the

slopes. We note δij and δji are bounded below by the lin-
ear constraints in their respective regions. We want to bound
above the true risk, represented by F or 1 − F , in order for
solutions to the LP to conservatively bound below the true
expected value. For the bound on δij , this can be done by
selecting fixed this relative to submitted version yi − 1
points on F and computing the slopes of the lines between
them; for the bound on δij , this can be done by selecting
zi− 1 points on 1−F and computing the slopes of the lines
between them. We can choose both the number z − 1 and
location of the points to control error and overall size of the
LP, trading runtime for accuracy.

Handling the case of c(ri, rj) requires computing P (Ωi−
Ωj); even if P (Ωi) and P (Ωj) are unimodal, the composi-

tion in general is not (Ibragimov 1956), and thus free con-
straints c(ri, rj) are not permitted in our EPSTNs 2.

For a given semi-simple EPSTN, it is not initially know
what contingent constraint bounds lai,rj , uai,rj result in a
schedule of maximum expected value, or even a controllable
PSTN. The LP of (Lund et al. 2017) fixes these bounds when
solving the LP, and they are adjusted by outer-loop search by
SREA in search of a controllable STNU. We transform these
bounds into LP variables, allowing the search for the optimal
value in the LP to widen the bounds as much as possible.
This modified LP has a solution for any semi-simple EPSTN
by construction. Since, by definition the STN constraints of a
semi-simple EPSTN have a feasible solution, setting uai,rj
and lai,rj to any values consistent with the STN solution
initially produces a controllable STNU, but one whose ex-
pected value is certainly suboptimal. The modification pre-
serves the feasible solutions of the SREA LP, but now allows
search over the contingent constraint bounds within the LP
in order to maximize the expected value, thereby producing
new optimal solutions. In particular, for a given EPSTN, the
new LP can find the optimal solution using any set of con-
tingent constraint bounds, thereby simultaneously searching
over ρd(d(ai, rj)) and schedule.

Finally, we are ready to write the objective func-
tion. Boole’s Inequality bounds above the risk by

∑
d∈D

δ(ρd, d(ti, tj)). For each AR constraint c(ri, aj) we want
to maximize the quantity qc(ri, aj) (1− δij − δji). This ob-
jective drives δij and δji to be as small as possible, pushing
both risk variables in the proper direction, along the linear
constraints bounding above F and 1 − F , and towards the
extremes.

We now write the full LP, based on the SREA LP of (Lund
et al. 2017) combined with the additional variables and con-
straints discussed above. fixed this relative to submitted
version; changed linear coefs and fixed error in δji con-
straints

max
∑

c(ri,aj),δij ,δji

(qc(ri, aj)(1− δij − δji)) (1)

s.t.t
+
i ≥ t

−
i ∀ti ∈ T (2)

t
+
j − t

−
i ≤ uti,tj ∀c(ti, tj) ∈ C (3)

t
+
i − t

−
j ≥ lti,tj ∀c(ti, tj) ∈ C (4)

r
+
j − a

+
i = uai,rj ∀g(ai, rj) ∈ G (5)

r
−
j − a

−
i = lai,rj ∀g(ai, rj) ∈ G (6)

a
−
i ≤ ai ≤ a

+
i ∀ai ∈ A (7)

δij ≥ myi (ai − aj − uri,aj ) + ciz ∀c(ri, aj) ∈ Cu∀yi (8)

δji ≥ nzi (ai − aj − lri,aj ) + djz ∀c(ri, aj) ∈ Cu∀zi (9)

0 ≤ δij ≤ 1 ∀(ai, rj) ∈ Cu (10)

0 ≤ δji ≤ 1 ∀(ai, rj) ∈ Cu (11)

t
+
0 = t

−
0 = 0 (12)

t
−
i ≥ t

+
0 ∀ti ∈ T (13)

2The sum, and thus difference, of two independent nor-
mally distributed variables is a normal, and thus unimodal; under
these and similar conditions the formulation provided works and
c(ri, rj) are permitted. Otherwise, constraints c(ri, rj) and pref-
erences qc(ri, rj) can be modeled, with some difficulty, by two
constraints c(ak, ri) and c(ak, rj).



The constants in this LP are the qc(ti, tj) and the slopes
and intercepts of the linear bounds on F and 1 − F , and
the STN constraint bounds lai,rj , uai,rj and lai,rj , uai,aj .
The remaining symbols, including the contingent constraint
bounds lri,aj , uri,aj , are the LP variables. We denote upper
and lower bounds of timepoints generically by t+i , t

−
i , spe-

cializing to a+
i , a

−
i , r

+
i , r

−
i when necessary. Constraints 2,

3 and 4 ensure the STNU requirement constraints are satis-
fied. Constraints 5 and 6 ensure the STNU contingent con-
straint bounds are respected. Constraint 7 ensures the time-
point assignment, needed to compute δij and δji, is consis-
tent with the bounds on the timepoints. Constraints 8 and 9
are the piecewise linear bounds on δij , δji derived from F
and 1 − F . Observe that constraints 7, 8 and 9 indirectly
dictate the values of the δs as a function of the contingent
constraint bound choices; the wider the bounds, the more
coverage of AR constraints they permit, but the tighter the
constraints on the controllable timepoints, which could lead
to constraint violations.

4.2 Complexity, Soundness and Incompleteness
The resulting LP has 2|T | variables, two per timepoint (up-
per and lower bounds). It has |A| more variables (control-
lable assignments). It has 2|G| variables, for the lower and
upper bounds on each contingent link. It has 2|C| con-
straints, 2 per requirement constraint. It has 2|G| constraints,
2 per contingent constraint. fixed relative to submitted ver-
sion Denote y∗ = maxi yi (similarly (z∗); It has 2(y∗ +
z∗)|Cu| constraints, at most 2(y∗+z∗) per AR constraint on
an uncontrollable timepoint, handling both the upper bound
and lower bound violation risks. We also know |G| = |R|
since each uncontrollable timepoint is constrained relative
to one controllable timepoint. Thus, Karamakar’s Algorithm
or interior point methods will take O(|T |3) to solve the re-
sulting LP. This discussion proves the following:

Theorem 1. Given a Semi-Simple EPSTN Pe, a schedule
maximizing the expected value of the constraints can be
found in O(|T |3).

While in general there can be many such optimal sched-
ules, and in fact, ρd(d(ai, rj)), leading to optimality, all such
combinations with the same expected value are defined by a
face of the polytope of the LP.

Given an EPSTN Pe, we know there is a simple EPSTN
P ′e with Cs’⊆ Cs. Even if Pe is semi-simple, it is still possi-
ble that the optimal Cs’ ⊂ Cs. Clearly, the optimal solution
can be found by relaxing every subset of the O(|Cs|) re-
quirement constraints c(ai, aj) and using the LP described
above as a sub-solver. If we enumerate each of the exponen-
tially many subsets of requirement constraints and solve the
LP for the resulting EPSTN as described above, we can sim-
ply keep track of the best solution found for each feasible
LP. The objective function in the LP omits the value of the
STN constraints, since they must be satisfied by solutions to
the LP. It is a simple matter to ensure these values are added
to the objective value of the best solution to the LPs. Depth
first search requires no more than polynomial space, and has

complexityO(2|Cs||T |3). This is consistent, in general, with
results for DTPPs (Peinter, Moffitt, and Pollack 2005).

Both the LP for solving EPSTNs described in the previous
section and the algorithm for the general EPSTN case are
sound, in that a schedule satisfying the LP constraints has
expected value bounded below by the value of the objective
function. This is because of the piecewise linear function
in the LP bounds above the probability of failure. However,
we must conclude that the resulting algorithm is incomplete.
While we can arbitrarily approximate the CDF F and its in-
verse with an increasing number of linear constraints, we
will in general bound above the risk, and thus bound below
the expected value, using this approach. Moreover, we have
not explicitly assumed that any pair of probabilities P (Ωi)
and P (Ωj) in an EPSTN are conditionally independent. If
the uncertain durations are not independent, then the alloca-
tion of risk will generally over-constrain the STNU. To see
this, note that the STNU captures risk in an n-dimensional
box, while correlated risk distributions could be covered by
other ‘shapes’ with less restrictive STNU constraints.

4.3 Testing for Simplicity
The search described above can be implemented as a tree
search over sets of requirement constraints to exclude from
our EPSTN in the quest for the schedule maximizing the
expected value. An inexpensive test for simplicity can be
used to terminate the exponential search described above,
and potentially reduce search time. This test leverages the
existence of an optimal solution for a semi-simple EPSTN.
Consider an optimal schedule s∗ for a semi-simple EPSTN
Pe, and consider the triangle formed by constraints g(ai, rj),
c(ri, aj) and c(ai, aj). From the construction of the LP, we
know the expected value of c(ri, aj) in s∗ is
qc(ri, aj) (1− δs∗ij − δs∗ji )
where
δs∗ij =

∫ s(aj)−s(ai)−uri,aj
−∞ P (Ωi).

δs∗ji =
∫∞
s(aj)−s(ai)−lri,aj

P (Ωi).
The sacrifice of any constraint can only improve the

expected value of this contingent constraint by at most
qc(ri, aj) (δs∗ij + δs∗ji ). This leads to the following definition:
Definition 10 (Gain). Given a semi-simple EPTSN Pe, and
a schedule s∗ maximizing the expected value. Let δs∗ij be the
value of δij in the optimal solution to the LP defining s∗.
The gain γ(Pe, s∗) =

∑
c(ri,aj)∈Cu (qc(ri, aj) (δs∗ij + δs∗ji )).

By construction, the gain for of each possible optimal so-
lution will be identical. Let v(s∗) denote the value of an op-
timal solution to the LP constructed from a particular semi-
simple EPST. The gain is simply∑

c(ri,aj)∈Cu(qc(ri, aj) )− v(s∗),
demonstrating that the gain is identical for all optimal s∗.
Even so, the values of δs∗ij and δs∗ji can vary on the polytope
surface. As we will now see, it is convenient to define the
gain in terms of the values of δs∗ij in the solution defining s∗.
A straightforward test for simplicity follows:
Lemma 1. Given a semi-simple EPTSN Pe, and a sched-
ule s∗ maximizing the expected value. Then Pe is simple if
γ(Pe, s∗) ≤ minc(ai,aj)∈Cs qc(ai, aj).



The above test determines whether sacrificing the least
valuable STN constraint can (optimistically) improve the ex-
pected value by all of the gain achievable. If even this opti-
mistic tradeoff is not favorable, then s∗ is one of the best pos-
sible schedules when all constraints are satisfied, therefore
Pe is simple. The test is necessary but not sufficient; the test
may fail when Pe is simple. In particular, if we look at Fig-
ure 1, we see that removing c(a4, a5) cannot relax c(a1, r1)
because the two constraints are not on a cycle. If qc(a4, a5)
≥ γ(Pe, s∗), the test would fail, and search might fruitlessly
attempt to relax c(a4, a5). If we can restrict the c(ai, aj)
considered in Lemma 1, or if we can bound the value of
γ(Pe, s∗) that can be ‘bought back’ by relaxing a constraint,
then we will have a more informative test for simplicity.

Consider again a triangle of constraints involving ai, aj
and ri, and two requirement constraints c(ai, aj), c(ri, aj),
and a contingent constraint g(ai, rj). There are two cycles
in the distance graph D, one for the upper bound arc and
one for the lower bound arc of c(ri, aj). Once the assign-
ment from s∗ is found, we see that cycles in D are zero-
cost because all timepoints are assigned a fixed time, and
thus all timeoints are a fixed distance (upper bound equals
lower bound). The edges on these cycles derived from the
requirement constraints limit increasing coverage on the AR
constraints. Consider any cycle including the directed arc
ri → ai. Intuitively, increasing uai,ri by ε potentially im-
proves the expected cost, but would reduce the distance of
this arc by −ε, so any simple cycle including this now has
distance−ε. Similarly, decreasing lai,ri by ε reduces the dis-
tance of this arc by−ε, so any simple cycle including this arc
now has distance−ε. This means eliminating edges on these
‘negative cycles’ is a possible avenue to increase coverage of
the AR constraints, and thus the expected cost.

Enumerating cycles in graphs is generally exponential
(Valiant 1979). Once we have identified all of the cycles in a
graph, we can explore the tradeoffs of removing c(ai, aj) by
collecting the set of AR constraints c(rx, ay) on cycles in-
volving c(ai, aj). Removing any STN constraints c(ai, aj)
on such a cycle can only increase the expected value by re-
laxing the cycles and allowing the coverage of more prob-
ability for these cases. These relaxations may decrease the
expected value, as noted in Figure 2. The tradeoffs become
complex when multiple uncertain durations are on a single
cycle, or when cycles share edges, since relaxing a single
requirement constraint could increase coverage of multiple
uncertain durations. While cycle-sets could be identified al-
gorithmically by finding the negative cycles in the distance
graph, we want to find the STN constraints that could be
deleted by search more directly. This motivates the follow-
ing definition:

Definition 11 (Cycle-Set). Given a semi-simple EPTSN Pe,
let G(Pe) be the undirected graph such that each edge of
G is a constraint in Pe. Let G(Pe, ai, aj) ⊂ G(Pe) be the
subgraph consisting of all cycles including both edge (ai,aj)
and a second edge (ak,rk) (it is possible that ak = ai). Then
the cycle-set Yai,aj consists of c(ai, aj) ∈ G(Pe, ai, aj).

The intuition is that the cycle-set Yai,aj captures all AR
constraints whose expected value could be improved by

eliminating c(ai, aj). or other free constraints c(ax, ay) ∈
Yai,aj . When multiple AR constraints are present, it is un-
clear whether the best strategy is to remove individual con-
straints or the shared constraints. Thus, the collection of all
c(ax, ay) over all cycle-sets identifies the set of STN con-
straints whose elimination could improve the expected value
of a schedule, and therefore allows us to focus the search. In
general, many cycle-sets may be equivalent; we will assume
below that Yai,aj refers to the ‘canonical’ cycle-set for any
free constraint c(ax, ay) ∈ Yai,aj . We can now give a more
refined form of Lemma 1:

Theorem 2. Given a semi-simple EPTSN Pe, and a sched-
ule s∗ maximizing the expected value. Let Y = ∪(Yai,ai).
Pe is simple if γ(Pe, s∗) ≤ minc(ai,aj)∈Y qc(ai, aj).

Excluding edges that can’t help eliminate cycles reduces
the number of scenarios in which a low-value STN con-
straint makes it appear that Pe is not simple, therefore re-
ducing needless search. The next step in refining the test for
simplicity is to observe that AR constraints can only be im-
proved upon by deleting STN constraints within their cycle-
set; hence, the increase in gain can be computed for each
cycle-set separately. This is useful because the test now en-
sures the cost-benefit tradeoff only evaluates the increased
expected value of AR constraints that could possibly be re-
laxed by removal of a low-cost requirement link.

Definition 12 (Cycle-Set-Gain). Given a semi-simple
EPTSN Pe, and a schedule s∗ maximizing the expected
value. Let δs∗ij be the value of δij in the optimal solu-
tion to the LP defining s∗. The Cycle-Set-Gain γ(Yai,aj )
=
∑

c(ai,rk)∈Yai,aj
(qc(ai, rk) (δs∗ij + δs∗ji )).

Corollary 1. Given a semi-simple EPTSN Pe, and a sched-
ule s∗ maximizing the expected value. Then Pe is simple if
(∀ Yai,aj ) γ(Yai,aj ) ≤ minc(ai,aj)∈Yai,aj qc(ai, aj).

Corollary 1 is still a necessary but not sufficient condition
for simplicity. It can, however, be more precise in identifying
simplicity than Theorem 2; this is accomplished by bound-
ing the benefit offset by any constraint deletion, as well as
removing some low value constraints from consideration in
the test, thereby further reducing the false-negative simplic-
ity assessments. Unlike (Yu, Fang, and Williams 2015), re-
moving constraints is not driven by constraint violations, but
by identifying opportunities to improve the expected value.

Low-order polynomial time cycle finding algorithms that
do not find all cycles can’t be used to identify Yai,aj be-
cause we might incorrectly pass the simplicity test and
prematurely terminate search. Identifying cycles with high
run-time cost is also unacceptable as an inner-loop early-
termination test. However, if the up-front cost of finding the
cycles is paid, Corollary 1 can be used during search with
low run-time cost. Notably, we must only store the edges
of the cycles associated with each Yai,ai , not the actual cy-
cles, meaning that a data structure of O(|Cs||Cu|) size and
similarly low order lookup cost is sufficient. As search con-
tinues, edges are removed, and cycles are broken. While in-
cremental recomputation of the cycles is too expensive, at
a minimum the removed edges can be accounted for, and



minc(ai,aj)∈Tai,aj qc(ai, aj) updated for each Yai,ai , if nec-
essary. Ad-hoc analysis of the cycles may allow more edges
to be removed at low cost (e.g. single non-nested cycles).
Finally, many EPSTNs with the same distance graph, but
different qc(ti, tj) and bounds, can benefit from a one-time
construction of the cycle-sets, thereby amortizing the up-
front exponential cost.

4.4 Bounding the Search Costs
It is tempting to think that exponential search for the best
subset of Cs in a semi-simple EPSTN is unnecessary. Un-
fortunately, as we saw above in the test for simplicity, in
general this will not be the case; one might need to search
over edges shared between cycles. However, we can use the
gain to evaluate the largest set of STN constraints whose
sacrifice could, possibly, be offset by the gain. The size of
this set can be used to bound the search cost.

Theorem 3. Given a semi-simple EPTSN Pe, and a
schedule s∗ maximizing the expected value. Let M ⊂
Cs be the largest cardinality set such that

∑
c∈M

qc(ai, aj) ≤ γ(Pe, s∗). Then the search cost cannot exceed

O
((∑|M |

i=1

(|Cs|
i

))
|T |3

)
.

Proof. To compute the largest cardinality set M : sort
qc(ai, aj) in increasing order. Begin with an empty set. Add
c(ai, aj) to the set until the next largest qc(ai, aj) would pro-
duce a set M such that

∑
caiaj∈M

qc(ai, aj) > γ(Pe, s∗).

There are at most
∑|M |

i=1

(|Cs|
i

)
subsets of STN constraints

that could be offset by γ(Pe, s∗). Solving the LP after relax-
ing each subset costs O(|T |3).

Theorem 3 shows that, if the difference between γ(Pe, s∗)
and the ‘typical’ magnitude of qc(ai, aj) is small, then the
resulting search cost will be low, since |M | will tend to be
small. On the other hand, if the difference between γ(Pe, s∗)
and the ‘typical’ magnitude of qc(ai, aj) is large enough that
|M | scales as some fraction of |Cs|, then

(|Cs|
|M |
)

will grow ex-
ponentially, and search cost will as well. Theorem 3 is sim-
ple to use during search, but will generally over-estimate the
exponential costs of search. This is because the bound does
not take into account whether the requirement constraints’
values that contribute to large |M | will actually lead to in-
creased utility by loosening constraints on an uncertain du-
ration.

An alternative bound on the exponent can be computed
by only counting STN constraints in cycle-sets; only delet-
ing these constraints can actually lead to relaxing some AR
constraints, and hence increase expected utility. This result
exploits the independence of the cycle-sets. The AR con-
straints on each cycle-set can be relaxed independently; the
maximum sized cycle-set therefore dominated the exponent
in search. This bound is captured in the following result:

Theorem 4. Given a semi-simple EPTSN Pe, and a sched-
ule s∗ maximizing the expected value. Let Yai,aj denote the
cycle-sets. Let Ym = maxc(ai,aj)(|Yai,aj |). Then the search
cost upper bound is O

(
2Ym |T |3

)
.

Unfortunately, this result requires incurring the up-front
exponential cost of finding cycle-sets.

Theorems 3 and 4 can be combined to further drive down
the exponent by identifying, for each cycle set, the largest
set of cheap constraints that could offset the gain on that
cycleset.

Corollary 2. Let Mai,aj be the maximum cardinal-
ity subset of cycleset Yai,aj such that

∑
c∈Yai,aj

qc(ai, aj) ≤ γ(Yai,aj ). The maximum search cost is

now O(
∑|Mai,aj

|
i=1

(|Yai,aj |
i

)
T 3).

The resulting exponent is guaranteed to be an improve-
ment over using either bound alone. The advantage of us-
ing Theorem 3 is that it does not require finding cycles be-
forehand, but combining the two theorems leads to much
stronger bounds than either alone.

5 Conclusions and Future Work
When presented with a control problem on probabilistic
simple temporal networks, the usual strategy of establish-
ing controllability may fail when constraints are too strin-
gent. To address this, we formally define a new type of con-
trollability problem, the Expected Value Probabilistic Sim-
ple Temporal Network (EPSTN), and address the Expected
Value Strong Controllability (EvSC) problem of finding a
schedule maximizing the expected value of satisfied con-
straints. We first extend a previously developed linear pro-
gramming (LP) formulation to find a schedule for a special
case. The expected value of this schedule bounds below the
true expected value using a piecewise linear approximation
of the probabilities in the EPSTN. This LP must be solved
at each branch of a search that discards constraints to al-
low covering more and more probability mass. While this
search may be exponential in the number of simple tem-
poral constraints in the EPSTN, we bound the exponent by
reasoning about the tradeoff between the lost value of each
constraint and the expected gain. Search can be pruned us-
ing termination rules that depend on identifying unfavorable
cost-benefit tradeoffs, which may depend on the cycle struc-
ture of the constraint graph.

An empirical study of EvSC will require generating prob-
lem instances that require trading STN constraints for in-
creased coverage of the AR constraints. The problem classes
of (Lund et al. 2017) and (Santana et al. 2016) are good
starting points, since many of the problems in the datasets
studied in these works are not strongly controllable. How-
ever, it isn’t obvious how to choose qc(ti, tj) to create in-
teresting problem classes. Performing a sensitivity analysis
on qc(ti, tj) will lead to interesting problem class variants.
Variations in the probability distributions and their charac-
teristics are also worth investigating, especially asymmetric
and heavy-tailed distributions. Once this is done, the best
algorithms can be found by implementing and testing the
simplicity tests and exponent-bounding concepts described
in the theoretical results.

In this paper we have addressed only the problem of
EvSC. The next step is to check for Expected Value Dy-
namic Controllability. Doing this will provide executives



with the ability to respond dynamically to unexpected out-
comes in order to maximize the expected value of satisfied
constraints, which existing risk-bounding and constraint-
relaxing strategies simply cannot do. The solution to this
problem is likely to be quite different than the techniques
described in this work.

References
Boyan, J., and Littman, M. 2000. Exact solutions to time-
dependent MDPs. In NIPS, 1026–1032.
Fang, C.; Yu, P.; and Williams, B. 2014. Chance-constrained prob-
abilistic simple temporal problems. In Proceedings of the National
Conference on Artificial Intelligence, 2264 – 2270.
Ibragimov, I. A. 1956. On the composition of unimodal distribu-
tions. Teor. Veroyatnost. i Primenen. 1(2):283–288.
Lund, K.; Dietrich, S.; Chow, S.; and Boerkoel, J. 2017. Robust
execution of temporal plans. In Proceedings of the National Con-
ference on Artificial Intelligence, 3597 – 3604.
Muscettola, N.; Morris, P.; and Vidal, T. 2001. Dynamic control
of plans with temporal uncertainty. In Proceedings of the 17th

International Joint Conference on Artificial Intelligence.
Peinter, B.; Moffitt, M. D.; and Pollack, M. E. 2005. Solving
overconstrained disjunctive temporal problems with preferences.
In Proceedings of the 15th International Conference on Automated
Planning and Scheduling.
Rossi, F.; Venable, K. B.; and Yorke-Smith, N. 2006. Uncertainty
in soft temporal constraint problems: A general framework and
controllability algorithms for the fuzzy case. Journal of Artificial
Intelligence Research 27:617–674.
Santana, P.; Vaquero, T.; Toledo, C.; Wang, A.; and Williams, B.
2016. Paris: A polynomial-time, risk-sensitive scheduling algo-
rithm for probabilistic simple temporal networks with uncertainty.
In Proceedings of the National Conference on Artificial Intelli-
gence, 267 – 275.
Tsamardinos, I. 2002. A probabilistic approach to robust execution
of temporal plans with uncertainty. In Methods and Applications
of Artificial Intelligence, 97 – 108.
Valiant, L. G. 1979. The complexity of enumeration and reliability
problems. SIAM Journal of Computing 8:410–421.
Vidal, T., and Fargier, H. 1999. Handling contingency in temporal
constraint networks: from consistency to controllabilities. Journal
of Experimental and Theoretical Artificial Intelligence 11(1):23 –
45.
Vidal, T., and Ghallab, M. 1996. Dealing with uncertain durations
in temporal constraint networks dedicated to planning. In Proceed-
ings of the 12th European Conference on Artificial Intelligence, 48
– 54.
Weld, D., and Mausam. 2006. Probabilistic temporal planning with
uncertain durations. In Proceedings of the National Conference on
Artificial Intelligence, 880 – 887.
Yu, P.; Fang, C.; and Williams, B. 2015. Resolving over-
constrained probabilistic temporal problems through chance con-
straint relaxation. In Proceedings of the National Conference on
Artificial Intelligence, 3425 – 3431.


