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• Background
– Aeroacoustics overview

• Testing Overview
– Facilities
– Configurations

• Data Analysis
• Results

– Effects of fairing Shoulder geometry
– Downstream effects of protuberances
– Effects of interstage flanges
– Multibody effects
– Fairing configuration comparison
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Background

.3

• Aeroacoustics is the energy transferred into the vehicle structure 
from pressure fluctuations (sound) on the surface

• Common unsteady flow features include:
– Turbulent boundary layers
– Regions of separated flow at compression and expansion corners
– Shock waves

• Particularly terminal shocks generated by localized supersonic flow
– Alternating flows

• Shifting between attached and separated boundary layer
– Wake flows

• Unsteady phenomena are most 
prevalent in the transonic regime 
(~0.7<M<1.2)

• Typically derived for fluctuations 
above 20 Hz

– Localized to panels/compartments 
in immediate vicinity  

– Below 20 Hz is considered buffet 
(full vehicle mode excitation)

Ares 1-X passing through transonic regime



www.nasa.gov/sls

Background
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• Aeroacoustics is an input to vibroacoustics, which determines 
the structural response caused by the surface pressure 
fluctuations

– vibration of primary structure (panels) and secondary structure 
(equipment shelves, pressure bottles, pressure lines, etc.) is a critical 
component of vehicle design

Reverberant Acoustic Test Facility –
NASA Plum Brook Station
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• Two facilities have been used for SLS aeroacoustic environment 
development

– NASA Ames Unitary Plan Wind Tunnel
• Continuous flow
• 11’ x 11’ Transonic Test Section (Mach 0.7 to Mach 1.4)
• 9’ x 7’ Supersonic Test Section (Mach 1.55 to Mach 2.5)

– NASA Marshall Trisonic Wind Tunnel
• Intermittent blow-down
• 14” x 14” Test Section with multiple nozzles (Mach 0.2 to Mach 5)

• Evolvable approach has led to testing of multiple configurations
– Block 1 with crew

– Block 1B with crew

– Block 1B cargo

Testing Overview
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Ames UPWT 11’x11’
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Configuration Changes
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• Variations in the configurations tested allows for isolation of the effects of certain 
outer mold line features

– Applicable to many launch vehicle designs

Stage adapter variants

Payload fairing variants
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Data Acquisition and Analysis

Fourier Transform

Scale from 
Tunnel to Flight

∆𝐶𝐶𝑝𝑝,𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
= ∆𝐶𝐶𝑝𝑝,𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

∆𝐶𝐶𝑝𝑝,𝑟𝑟𝑟𝑟𝑟𝑟= �𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟′
𝑞𝑞∞

𝑆𝑆𝑆𝑆 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑆𝑆𝑆𝑆 = �𝑓𝑓𝑓𝑓 𝑈𝑈∞

• Amplitude
– Fluctuating pressure coefficient

• Frequency
– Strouhal number

High frequency pressure 
transducers

~100 – 200 per model
~200,000 samples/second
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Results – Stage Adapter Contour
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• Schlieren imagery used to perform low cost trade study
– Dark regions represent high density gradients
– Supposition that larger regions correspond to higher 

fluctuating pressure levels
– Comparisons below @ M=0.9, α/β = 0

Sharp Corner Rounded Corner Conic 3rd Order 
Polynomial

• High frequency pressure measurements obtained for 
the sharp corner and rounded corner configurations

– The expansion is spread out over the rounded corner 
and the magnitude of the gradient reduced

– Results in ~5 dB decrease immediately downstream of 
the shoulder

Rounded corner enveloped measurements 
subtracted from sharp corner. Envelopes 

over all M,α,β
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Results – Nozzle Wake Effects
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• Unsteady CFD results indicated interaction of the nozzle wake 
flow with the stage adapter expansion region

– Relatively dense grid of sensors placed here to measure effects

• Up to ~50% variation in levels circumferentially across 
sensor patch in 10 to 100 Hz band

– Effect of alignment of nozzle on peaks not consistent
– Flow evolving from simple expansion to terminal shock system
– Possibility that there is some interaction between the nozzle 

wake and these flow features which interferes in certain 
locations constructively or destructively

• Unsteady pressure sensitive paint (uPSP) measurements 
taken during test provide opportunity to inspect 
phenomena with higher spatial resolution and at more 
Mach numbers
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Results - Flanges
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• Flanges in close proximity produce a significant effect
– Flange in isolation will produce 5 to 7 dB increase in OAFPL
– Flanges in short succession produce ~10 dB increase in OAFPL

Pixel variance enhanced shadowgraph, 
courtesy of Ted Garbeff, NASA Ames

Mach Sweep at α,β=0. White sensors from original test 
campaign, red sensors added for second

• Largest increases occur at supersonic Mach numbers 
once shocks form on flanges

• Altered interaction between flow separation and shock 
resulting in higher acoustic levels
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Results – Multibody Interactions
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• Booster field/factory joints added to model effects on the flow in the immediate 
vicinity of the forward attach

• Unexpectedly the joints had the largest impact on the Core Stage Hydrogen Tank
– Joints are ~1 inch full scale and were expected to be buried in the boundary layer
– Resulted in local flow separation and shocks which impinge on the Core
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Results – Payload Fairing
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• Three separate fairing configurations tested in transonic tunnel
– Alternate configurations enhance payload volume

• Peak measured levels on the 
cylindrical section occur at  
~Mach 0.85 for each 
configuration

– Possibility that absolute peak 
for alternate tangent-ogive is 
missed due to lack of sensors 
at upstream most portion of 
the shoulder

– The peak for the biconic 
after the second expansion 
may occur farther 
downstream from the 
shoulder than the tangent-
ogive configurations

Baseline  
tangent-ogive

Alternate  
tangent-ogive

Alternate
biconic

• The biconic experiences 
largest measured levels after 
the first expansion

– Potential buffet issue
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Conclusions
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• Configuration changes can be utilized to isolate the effects of specific 
features which are applicable to a broad range launch vehicles

• Observations:

– Rounded corners on fairings can reduce maximum loads by ~5dB

– Flow features, such as those produced by abort nozzle wakes, are 
not localized and can propagate far downstream, interfering with 
other flow phenomena

– Flanges in isolation can produce up to a 7 dB increase locally, while 
flanges in quick succession can produce up to a 10 dB increase

– Multibody fluctuating pressure environments are difficult to predict 
or anticipate. It is therefore critical to model vehicle features at the 
highest fidelity practical
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