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Abstract In this paper, we show that modal logic is
a valuable tool for the formal analysis of human er-
rors in aviation safety. We develop a modal logic called

Agent Safety Logic (ASL), based on epistemic logic,
doxastic logic, and a safety logic grounded in a flight
safety manual. We identify a class of human error that
has contributed to several aviation incidents involving

a specific kind of pilot knowledge failure, and formally
analyze it. The use of ASL suggests how future avionics
might increase aircraft safety.

1 Introduction

Modal logic provides a rich set of tools for formal meth-
ods research. We apply modal logic to the domain of
aviation safety to reason about pilot behavior during

mishaps. Central to the quality of a pilot’s decision-
making is his situational awareness. Situational aware-
ness is generally agreed to involve the pilot’s knowing
the pertinent facts of the aircraft’s state so as to predict
its behavior in a changing environment. Danger arises
when the pilot lacks knowledge of the aircraft’s state,
but does not realize he lacks it. Thus there is a diver-
gence between what the pilot believes to be the case and
the actual state of the world. This divergence affects his
actions, the quality of which often determine the out-
come of the mishap. Formal methods from philosophy,
mathematics, computer science, and economics have
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been used to model and reason about an agent’s knowl-
edge, beliefs, and rational decision-making. Specifically,
epistemic logic allows logicians to reason formally about

an agent’s state of knowledge. Doxastic logic allows logi-
cians to reason formally about an agent’s state of belief.
We introduce a Safety modality for reasoning about the
quality of a pilot’s actions, whether they are safely per-

mitted. We use the resulting logic, Agent Safety Logic
(ASL), to analyze a class of aviation incidents involving
a failure of what is called negative introspection: know-

ing what one’s unknowns are. Simply put, the combined
logics allow us to trace a logical thread from the pilot’s
actions to the information he lacks.

This paper proceeds as follows. Section 2 presents
summaries of several aviation incidents spanning the

past 40 years and identifies the relevant knowledge fail-
ures that played a crucial role in the pilots’ dangerous
actions. Section 3 introduces the modal logics we shall

combine into ASL, and apply ASL to the class of pilot
errors previously identified. Section 4 identifies future
work. Section 5 discusses related work, and Section 6
concludes.

2 The Problem

This section provides summaries of several aviation
incidents that involve a failure of negative introspection
as an important component. We should note that we do
not claim that a failure of negative introspection is the
sole cause of any of these incidents. What typically hap-
pens in these cases is that the avionics encounters some
contradiction in its data and gives control of the air-
plane to the pilot. The pilot then comes to rely on the
false piece of data, not realizing that it is in conflict with
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other sources of information. He then provides input to

the airplane that makes the situation worse. We focus

on this one aspect of what is undoubtedly a much larger

chain of events contributing to the crash. Indeed, a va-

riety of factors often contribute to aviation incidents.

Likewise, the interaction among crew members often

contributes to the incident in complex ways. We hope

to analyze the information flow among crew members

in future work, but for this paper we show that our for-

mal methods can successfully analyze a single moment

of action for the pilot flying.

The following cases are all crewed flights that ex-

perienced a complex sequence of failures leading to fa-

tal accidents. One element of each sequence involves a

pilot not knowing that he does not know some impor-

tant piece of information about the state of the plane,

and taking incorrect actions. The pilot is confused, but

unaware of the missing or contradictory data that is

the true source of the confusion. We draw a distinction

between simple confusion and this particular kind of

knowledge failure for the following reason: if a pilot is

simply confused about some state of the aircraft, and

knows what he is confused about, he has available to

him many protocols that can clear up his confusion or

mitigate risk in spite of the confusion. Often, he can

look to other instruments, or if that’s not an option,

provide control inputs specific to the type of confusion

he is experiencing. For example, merely being confused

about one’s airspeed is not necessarily a problem, be-

cause a certain combination of thrust and pitch will

guarantee that airspeed remains in a safe envelope un-

til the problem is resolved. Pilots learn these procedures

during training, and flight operations manuals specify

which procedures to take in various circumstances.

The problems here arise when the pilot is unaware

of the nature of his confusion, or fails to cross-check his

instrument with the other instruments. In these situa-

tions, the pilot does not know that he does not know

something, and may provide control inputs that make

the situation worse, based on his false belief. It is this

special kind of confusion, unawareness, that plays a role

in the following cases.

Air India flight 855 from Mumbai, India to

Dubai, UAE, January 1, 1978 [23] [21]. The Boeing

747 was flying over the Arabian Sea at night, when the

captain’s Attitude Indicator became incorrectly fixed in

a right bank position. After miscommunication with the

First Officer, whose Attitude Indicator read correctly,

the pilot came to mistakenly believe that the plane was

in a right bank, and directed the aircraft into a steep left

bank. An additional backup Attitude Indicator would

have settled the matter, but the Flight Engineer’s at-

tempt to draw this to the pilot’s attention proved too

late, as seconds later the aircraft crashed into the sea.

Aeroperu flight 603 from Miami, Florida to

Santiago, Chile, October 2, 1996 [14]. Around mid-

night and shortly after takeoff, the pilots became over-

whelmed by a series of contradictory alarms, prevent-

ing an accurate assessment of the state of the Boeing

757. They knew they had a serious problem, but their

specific knowledge failure here concerned their true al-

titude. A maintenance worker had placed tape over the

static ports, which are required for a variety of instru-

ment readings, including altitude. Among the contra-

dictory alarms was the ground proximity warning sys-

tem, which the pilots ignored, believing it to be a false

alarm. According to the incident report, they believed

the alarm was false because an Air Traffic Controller re-

ceived the aircraft’s false instrument readings, and read

them back to the pilots as if they were independently

confirmed. Unable to verify their altitude visually, and

failing to notice the more accurate radar altitude read-

ing due to information overload, the pilots allowed the

plane to descend to the ocean’s surface.

Birgenair flight 301 from Puerto Plata, Do-

minican Republic to Frankfurt, Germany, Febru-

ary 6, 1996 [13]. For 30 days the Boeing 757 sat dor-

mant in a hangar in the Dominican Republic without

a protective cover on its Pitot tubes. Somehow, likely

due to a mud-dauber wasp nest, one of the Pitot tubes

became clogged. The pilot noticed that his indicated

airspeed was incorrect (too slow) during takeoff, but as

the trapped air began to expand during ascent it cre-

ated an artificially high indicated airspeed, and the pi-

lot believed the problem to be fixed. Soon an overspeed

alarm began to sound, resulting in the pilot decreasing

thrust, despite an accurate reading from the co-pilot’s

airspeed indicator and the center console backup indi-

cator both contradicting the pilot’s indicator. The stall

warning began to sound, causing information overload

and confusion. Unaware of his dangerously low speed

and high attitude, the pilot attempted to save the plane

by increasing thrust, resulting in an engine flame out.

The plane spiraled into the ocean.

Air France flight 447 from Rio de Janeiro,

Brazil to Paris, France, June 1, 2009 [4]. The

Airbus A330 encountered adverse weather over the At-

lantic ocean, resulting in a clogged Pitot-static system.

Consequently, the airspeed indicators delivered unreli-

able data concerning airspeed to the pilot flying, re-

sulting in confusion. A chain of events transpired in

which the pilot overcorrected the plane’s horizontal at-

titude again and again, and continued to input nose

up pitch commands, all while losing airspeed. Perhaps

most confusing to the pilot was the following situation:



Formal Analysis of Pilot Error with Agent Safety Logic 3

the aircraft’s angle of attack (AOA) was so high it was

considered invalid by the computer, so no stall warning

sounded until the nose pitched down into the valid AOA

range, at which point the stall warning would sound.

When the pilot pulled up, the AOA would be consid-

ered invalid again, and the stall warning would cease.

The aircraft entered a spin and crashed into the ocean.

Palmer [25] argues that had the pilot merely taken no

action, the Pitot tubes would have cleared in a matter

of seconds, and the autopilot could have returned to

Normal Mode.

In each of the above cases, the pilot does not know

some crucial piece of information, and he is unaware

of this failure, even though he knows there is a prob-

lem in general. Several cases also involve confusion due

to information overload and contradictory alarms. The

relevant data often were directly available to the pilot

in each case, but he failed to notice them, and formed a

false belief based on what he saw. Had he noticed, there

is a good chance he would have realized his knowledge

failure and ceased to provide problematic inputs to the

aircraft. Thus, the problem is not an absence of infor-

mation, but that a more appropriate management of

its relationship with the pilot’s mental state is needed.

Examining these incidents on this level of abstraction

reveals a specific similarity among them. Having estab-

lished that this class of errors exists, we turn to their

formal analysis using epistemic logic.

3 The Logic

The logics we use in this paper belong to a family

of modal logics, which increase the expressiveness of

propositional logic with modal operators for things like

necessity and possibility [19,29,5]. Epistemic logic is

a modal logic for reasoning about knowledge [16,15].

It was developed by philosophers and economists who

were interested in formally analyzing knowledge in agent-

based systems. Doxastic logic is a related logic for rea-

soning about belief [17]. Modal logics often share a re-

lated semantics, called Kripke semantics, and they dif-

fer primarily in the details of those semantics and their

interpretation or application to the real world.

A Kripke frame is a tuple 〈W,Ri〉, where W is a

non-empty set of possible worlds, and each Ri is a re-

lation between worlds. We can obtain different modal-

ities by varying conditions that constrain the relation.

A modal logic corresponds to a class of frames with

each axiom in the logic uniquely determined by a single

frame condition. A multi-modal logic, that is, a logic

with more than one modal operator, has a relation Ri

for each modal operator. Our logic contains modal op-

erators for a single pilot’s belief and knowledge, with

relations Rb and Rk respectively.

A Kripke structure is a graph that serves as seman-

tics for modal logics. Formally, the structure is a tuple

〈W,Ri ,V〉, where W is a set of worlds, R is a relation

R ⊆ W ×W, and V is a valuation function that takes

a propositional constant and returns the set of worlds

in which the proposition is true. A Kripke structure is

basically a Kripke frame with propositional constants

added to each world, corresponding to what is true and

false in each world.

The general syntax for a modal logic is the following:

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | �ϕ,

where p is a propositional constant from some set of

propositional constants, and � denotes necessity.

The language has the semantics given in Figure 1

We define ∨ , ⇒ in the usual way, and the operator

♦ ≡ ¬�¬, denoting possibility. Our modal logics for

this paper will be identical syntactically and seman-

tically to these general definitions, but for the syntax

and semantics for the modal operators, which will have

relations specific to them.

In addition to the above semantics, all normal modal

logics include the following rules of inference:

Necessitation:
` ϕ
` �ϕ

Modus Ponens:

` ϕ
` ϕ ⇒ ψ

` ψ

The modal logic we describe is normal, and so in-

cludes the above inference rules, with the appropriately

substituted modal operator in the case of Necessitation.

Having described modal logic in general, we now

turn to the specific modal logics to be used in this pa-

per.

3.1 Epistemic Logic

In all of the cases we consider, we wish to reason

about what a pilot does not know, and as such, we must

be able to formally express this. This section describes

the epistemic logic that we will use.

The syntax and semantics are the same as those

for all modal logics, with the relation Rk denoting an

epistemic relation between worlds for a pilot. The re-

lation captures the notion of how the world might be,

given the evidence available to the agent. For our pi-

lot, a world is the current state of the airplane, and the
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For w ∈W,R ⊆W ×W,

V : PropConst→ P(W),

W,w |= p iff w ∈ V(p)

W,w |= ¬ϕ iff not W,w |= ϕ

W,w |= ϕ ∧ ψ iff W,w |= ϕ and W,w |= ψ

W,w |= �ϕ iff For all u s.t. wRu, W,u |= ϕ

not W,w |= False.

Fig. 1: The Semantics of Modal Logic

way the world might be depends on what his instru-

ments say. If one altimeter reads 30, 000 feet and an-

other reads 20, 000 feet, then the pilot considers both

to be possible, and therefore does not know his altitude.

That is, of course, assuming he notices the discrepancy.

If he has paid attention to only one altimeter, then he

might believe something false. To capture this scenario,

we introduce doxastic logic in the next section.

We use the normal Kripke semantics for truth in our

models. The relation defined over the Kripke frame is

reflexive and transitive, satisfying the desired epistemic

properties, presented below. We denote knowledge with

the K operator, which corresponds to � above. We de-

note epistemic possibility, the dual of knowledge, with

〈K〉 , defined 〈K〉 ≡ ¬K¬, just as with ♦ above.

Epistemic logic includes the following axioms with

corresponding frame conditions, which represent ideal-

ized assumptions about knowledge.

The first axiom holds for all Kripke structures, so

any system to be reasoned about using a modal logic

with Kripke semantics must include this axiom.

Axiom 1 (Distribution of K )

K (ϕ ⇒ ψ) ⇒ (Kϕ ⇒ Kψ). An agent knows every-

thing that is a logical consequence to his knowledge, also

called logical omniscience.

We follow the standard view in epistemology that

truth is a necessary condition for knowledge. Formally,

this corresponds to a frame condition saying the epis-

temic relation is reflexive, meaning that for all worlds

w, (w,w) ∈ Rk, yielding the following axiom:

Axiom 2 (Knowledge is True) Kϕ ⇒ ϕ

The next axiom says that an agent may reflect on

what he knows and be aware of it, called Positive In-

trospection.

Axiom 3 (Positive Introspection) Kϕ ⇒ K Kϕ.

If an agent knows that φ, then he knows that he knows

that φ.

The axiom of Positive introspection corresponds to a

transitive property of the epistemic relation.

The fourth condition says that an agent can reflect

on what he currently does not know and be aware of

it. In Rumsfeldian terms, all unknowns are known un-

knowns. Formally, this corresponds to a frame condition

that the epistemic relation satisfies the Euclidean prop-

erty, which, in conjunction with the other properties,

makes the relation an equivalence relation.1

Property 1 (Negative Introspection) ¬Kϕ ⇒ K¬Kϕ.

If an agent does not know φ, then he knows that he

does not know φ.

A moment’s reflection reveals that the idealized as-

sumptions do not hold generally for human knowledge.

However, assuming them as idealizations causes no harm

for the most part, with the exception of Negative Intro-

spection. We are concerned with identifying failures of

negative introspection for the pilot and correcting them.

We can assist the pilot in becoming more like an ideal

reasoner, resulting in better decisions. In formalizing

the above class of errors, we relax the assumption that

the pilot has negative introspection, but we keep the

other properties as axioms. To avoid confusion, nega-

tive introspection is labelled as a mere property which

may or may not be true of a model. Table 1 summarizes

the frame conditions and the corresponding axioms of

our epistemic logic.

Theorem 1 For all formulas φ and ψ, and models M

with Rk as a reflexive, transitive relation, the following

hold:

1. M |= (Kϕ ∧ K (ϕ ⇒ ψ)) ⇒ Kψ.

2. M |= Kϕ ⇒ ϕ.

3. M |= Kϕ ⇒ K Kϕ.

Proof See [16] pages 33-34. ut

1 A Euclidean relation is defined as follows, for any relation
R, and elements x,y, z, if (x,y) ∈ R, and (x, z) ∈ R, then
(y, z) ∈ R.



Formal Analysis of Pilot Error with Agent Safety Logic 5

Frame Condition Axiom
N/A Distribution Axiom (Knowledge)

K (ϕ ⇒ ψ) ⇒ (Kϕ ⇒ Kψ).
Reflexive Knowledge is True
wRkw Kϕ ⇒ ϕ

Transitive Epistemic Positive Introspection
wRku ∧ uRkv =⇒ wRkv Kϕ ⇒ KKϕ.

Table 1: Epistemic Logic Frame Conditions and Corresponding Axioms

Our model of a pilot’s mental situation requires a

distinction between belief and knowledge, and we have

the logical tools accomplish this by introducing another

modality. Next we introduce and discuss doxastic logic.

3.2 Doxastic Logic

The syntax for doxastic logic is exactly analogous to

that of epistemic logic, with the B operator replacing

K , and 〈B〉 replacing 〈K〉 [17]. Similarly, the seman-

tics are Kripke structures, with the accessibility relation

determined by slightly different frame conditions.

Doxastic logic, like Epistemic logic, allows B to dis-

tribute over ⇒ :

Axiom 4 (Distribution of B )

B (ϕ ⇒ ψ) ⇒ (Bϕ ⇒ Bψ).

The primary difference between knowledge and be-

lief is that beliefs might be false. Thus, the doxastic

relation should not be valid on reflexive frames, a con-

dition which guarantees truth. Instead, we follow the

literature by imposing a relaxed condition, that agents’

beliefs are consistent. Formally, this corresponds to a

serial frame condition on the doxastic relation stating

that for all w, there exists a u such that wRbu.

Axiom 5 (Non-Contradiction) Bϕ ⇒ 〈B 〉ϕ. An

agent does not believe conflicting beliefs. Equivalently

¬(Bϕ ∧ B¬ϕ).

Just as with knowledge, and perhaps more realis-

tically, we assume agents have positive introspection

regarding beliefs.

Axiom 6 (Belief Positive Introspection)

Bϕ ⇒ B Bϕ. If an agent believes that ϕ, then he be-

lieves that he believes ϕ.

The standard approach to doxastic logic, as with

epistemic logic, imposes a Euclidean condition on the

doxastic relation. Without reflexivity, this does not amount

to equivalence, but it is still expressed by a negative in-

trospection property exactly analogous to the one we

omit regarding knowledge. We include it for our doxas-

tic relation.

Axiom 7 (Belief Negative Introspection)

¬Bϕ ⇒ B¬Bϕ. If an agent does not believe that φ,

then he believes that he does not believe that φ.

The above axioms are valid for frames with a serial,

transitive, and reflexive doxastic relation. Table 2 sum-

marizes the frame conditions and their corresponding

axioms.

Theorem 2 For all formulas φ and ψ, and models M

with Rb as a serial, transitive, Euclidean relation, the

following hold:

1. M |= (Bϕ ∧ B (ϕ ⇒ ψ)) ⇒ Bψ.

2. M |= ¬B (ϕ ∧ ¬ϕ).

3. M |= Bϕ ⇒ B Bϕ.

4. M |= ¬Bϕ ⇒ B¬Bϕ.

Proof ( 1) Suppose M,w |= (Bϕ ∧ B (ϕ ⇒ ψ)). Then

M,w |= Bϕ and M,w |= (Bϕ ⇒ Bψ). By Rb, for all u

such that wRbu, u |= ϕ and u |= ϕ ⇒ ψ. So u |= ψ.

Thus, for all u, where wRbu, u |= ψ, and therefore

M,w |= Bψ.

(2) Suppose that M,w |= B (ϕ ∧ ¬ϕ). Because Rb

is serial, there exists some u such that wRbu, and by

definition of B , it must be that u |= ϕ ∧ ¬ϕ, a contra-

diction. Thus, for all w ,M,w |= ¬B (ϕ ∧ ¬ϕ).

(3) Suppose M,w |= Bϕ, then M, u |= ϕ for all u

such that wRbu. Since Rb is serial, there is a world v

such that uRbv Because Rb is transitive then wRbv .

From the definition of B and wRbv it follows that

v |= ϕ. Since uRbv we can conclude u |= Bϕ. Since

wRbu,M,w |= B Bϕ.

(4) Suppose M,w |= ¬Bϕ. Because Rb is Euclidean,

for all w , u, v , if wRbu and wRbv , then uRbv . By def-

inition of 〈B〉 ,w |= 〈B〉 ¬ϕ, so for some u, such that

wRbu, u |= ¬ϕ. For all v , such that wRbv , vRbu. Thus,

v |= 〈B〉 ¬ϕ, or equivalently, v |= ¬Bϕ. Therefore,

M,w |= B¬Bϕ. ut

This concludes our discussion of the doxastic compo-

nent to our logic, and we now turn to combining the

modalities.
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Frame Condition Axiom
N/A Distribution Axiom (Belief)

B (ϕ ⇒ ψ) ⇒ (Bϕ ⇒ Bψ)
Serial Non-Contradiction
∀ w ∃ u. (w,u) ∈ Rb ¬B (φ ∧ ¬ϕ).
Transitive Belief Positive Introspection
(w,u) ∈ Rb and (u,v) ∈ Rb ⇒ (w,v) ∈ Rb Bϕ ⇒ BBϕ.

Euclidean Belief Negative Introspection
(w,u) ∈ Rb and (w,v) ∈ Rb ⇒ (u,v) ∈ Rb ¬Bϕ ⇒ B¬Bϕ.

Table 2: Doxastisc Logic Frame Conditions and Corresponding Axioms

3.3 Combining the Logics

When we combine these two modal logics, we generate

the multimodal logic ASL, for “Agent Safety Logic”.

We must define the conditions that govern the relation-

ship between the modalities, that is, how knowledge and

belief logically interact.

The semantics of ASL is defined in terms of both

the epistemic and doxastic relation. The frame condi-

tion Rb ⊆ Rk imposes a partial order on the modalities

[1]. The partial order gives rise to a basic property of

knowledge, that knowledge entails belief.

Axiom 8 (Knowledge Entails Belief) Kϕ ⇒ Bϕ.

If a pilot knows that φ, then he believes that φ.

However, knowledge and belief are still distinct from

each other, because one can generate a counterexample

to the converse epistemic principle, that belief entails

knowledge. Instead, we impose a restricted version of

the converse, expressed by an axiom to follow. We de-

note justified belief by the composition of the Rb and

Rk relations: Rk◦Rb. This captures the internal compo-

nent of justification, where the pilot has direct epistemic

access to his reasons for believing a proposition. If he

believes it, and he has a good reason, then he thinks

it is true, so he thinks he knows it. Thus, he justifiedly

believes p iff he believes that he knows p.

Counterexample ¬(Bϕ ⇒ Kϕ). Consider the world

W = {t , u, v} with the following truth assignment v 6∈
V(ϕ), u ∈ V(ϕ), and t ∈ V(ϕ), and the following rela-

tion over W :

Rk = {(v , v)} ∪Rb

Rb = {(v , u), (u, t), (t , u), (t , t), (u, u)}

This is illustrated in Figure 2, where Rk is represented

by the dotted edge and Rb by the solid edges. We there-

fore have v |= Bϕ, because u, t |= ϕ, but v |= ¬Kϕ,

because v |= ¬ϕ.

Axiom 9 (Justified Belief) Bϕ ⇒ B Kϕ. If a pilot

believes that ϕ, then he believes that he knows that ϕ.

u : ϕ

v : ¬ϕ

Bϕ;¬Kϕ

t : ϕ

Fig. 2: Counterexample

This corresponds to the frame condition (Rk◦Rb) ⊆ Rb,

and represents the restricted converse of Axiom 8, and

the view that pilots believe things about the aircraft

only if they have good reason, like a particular instru-

ment reading indicating as much. We can think of this

property as representing the notion that all pilot beliefs

are justified, even if they are in fact false.

Table 3 summarizes the axioms and frame condi-

tions of the combined logic.

The following lemma follows from Axiom 9.

Lemma 1 (Epistemic Principle 2)

B Kϕ ⇒ ¬K¬Kϕ. If a pilot believes that he knows

that ϕ, then he does not know that he does not know

that ϕ.

Proof From Axiom 5 B Kϕ ⇒ 〈B 〉Kϕ, and the con-

traposition of Axiom 8 yields 〈B 〉Kϕ ⇒ ¬K¬Kϕ. ut

For this principle to be applied to the real world, we

must ask whether agents can believe they know some-

thing even if they know that they do not know it, for

in that case the principle would be falsified. Cases like

this might occur when sensory input conflicts with level-

headed rational thinking, as in a hallucination or spatial
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Frame Condition Axiom
Partially Ordered Knowledge Entails Belief
Rb ⊆ Rk Kϕ ⇒ Bϕ.

Composition Justified Belief
(Rk ◦Rb) ⊆ Rb Bϕ ⇒ BKϕ

Table 3: EDL Frame Conditions and Corresponding Axioms

χ4

χ5 χ3

χ1 χ2

χ6

χ7

C ′′C ′

C

Fig. 3: FSM (α) = C ∨ C ′ ∨ C ′′.

MSC (α) = (χ1 ∧ χ2) = χ

disorientation. Indeed, such confusions can occur dur-

ing flight, where a pilot’s senses create a powerful feeling

of one orientation or another, which disagrees with all

reason and instrumentation. Pilots are trained to ignore

their senses in these situations, and rely instead on their

instruments. This research does not address pilot train-

ing, so we assume the pilots in our model follow their

training, and resist beliefs that conflict with knowledge

based on instrumentation. The cases we have selected

for analysis involve false beliefs based on faulty instru-

ments or inattention, not adverse sensory perception,

so we avoid the cases where Lemma 1 might not apply.

This concludes our discussion of epistemic and dox-

astic logic. We now turn to a formalization of safety.

3.4 Formalizing Safety

Results from game theory and decision theory establish

a strong connection between the quality of an agent’s

decision and his epistemic state [2] [3]. We follow the

spirit of these results in our formalization of pilot ratio-

nality, although we leave many formal details for future

work. Note that we use ‘rationality’ as a technical term

here, meaning roughly that an agent makes decisions

based on minimizing some measure of disutility associ-

ated with actions, determined by a flight safety manual.

For rationality, we are concerned only with whether

a pilot’s action is safe given what he believes the current

flight data to be. Safety propositions are of the form ‘the

flight data χ say action α is safe’. A pilot’s rationality

then, is a logical connection between action and beliefs

about safety propositions.

Think of the flight safety manual as an association

between actions and complete configurations of instru-

ment readings, formalized as the function FSM (α):

FSM (α) = (χ0 ∧ ... ∧ χn) ∨ (χm ∧ ... ∧ χk )...

It indicates the conditions χi under which an action is

safe. Each conjunction (χi ∧ ... ∧ χj) is a maximally

complete configuration C of instrument readings, χi .

Each instrument reading χi is an atomic proposition

of type FD ⊂ PropConst, where FD stands for flight

data. Each action α is an atomic proposition of type

Actions ⊂ PropConst. For notation purposes, if a con-

figuration’s conjunction does not contain a propositional

constant, then that constant is false in the conjunction.

The flight safety manual may indicate that an action

is safe under many possible configurations. We identify

the instrument readings that are true in all safe config-

urations by simplifying the FSM , extracting each con-

stant and its negation, for example:

simplify((p ∧ q ∧ s) ∨ (p ∧ q ∧ ¬s)) = p ∧ q

To associate with each action a particular partial

configuration, we define the minimal safety condition

MSC :

MSC (α)
def
= simplify(FSM (α)),

which yields a conjunction of χi instrument readings

true in all safe configurations. This conjunction is no

longer maximally complete, so it is called a partial con-

figuration. We refer to this conjunction with the special

name χ.2 Figure 3 illustrates the definition of FSM and

MSC of α.

A safety proposition can be formalized using a modal

operator S, where χSα stands for: the configuration χ

says α is safe, according to the flight safety manual.

2 A special case is if the FSM (α) simplifies to complemen-
tary conjunctions, in which case χ is their disjunction.
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We extend the syntax of our logic to include safety.

ϕ ::= ... | χSα | ,

For the semantics of S, we have the following:

w |= χSα iff w |= χ ∧ ∃v , w(Safety)v ∧ v |= α

We define the Safety relation in terms of the MSC re-

lation:

Safety
def
= {(w , v)|w ∈ V (MSC (α)), v ∈ V (α)}.

The following lemma holds.

Lemma 2 (Safety to Flight Data) χSα ⇒ χ. If χ

says α is safe, then χ is true.

Proof Suppose w |= χSα. Then w |= χ, by the seman-

tics of S. ut

In addition, we define

Safety(w)
def
= {v |(w , v) ∈ Safety},

where Safety(w) is a partial application of the Safety

relation, returning the set of worlds in the relevant

codomain, specifically those with the permissible ac-

tions. This allows us to define basic pilot safety.

For basic pilot safety, the notion of rationality we

are concerned with, we want the following intuitive sit-

uation to hold. Take a world at which α holds and step

down the doxastic relation to another world, w′, where

χ the minimal safety condition of α is true, and from

there one may find a world v reachable by the Safety

relation where α is true, capturing the notion that a

pilot believes he is in a world where α is safe according

to the current flight data. Formally, this is:

Property 2 (Basic Pilot Safety Condition) A pilot has

basic safety iff for all actions α, and for all w ∈ V(α),

Rb(w) ⊆ V (χ), where χ = MSC (α), and (Safety ◦
Rb)(w)

⋂
V(α) 6= ∅.

Axiom 10 (Basic Pilot Safety) α ⇒ B (χSα). A

basically safe pilot engages in action α only if he be-

lieves that the flight data indicate the action is safe.3

This is perhaps the weakest claim one can make about

the nature of rationality, wherein the pilot acts only if

he at least believes the action to be overall safe.

Theorem 3 (BPS Valid) Axiom 10 is valid for all

frames with Property 2.

3 Sometimes pilots will take “unsafe” action to mitigate
what they perceive to be the greatest safety concern. For our
purposes, we consider the action’s warrant in terms of the
all-things-considered safety of the plane.

Proof Suppose w |= α. Because the pilot is basically

safe,

Rb(w) ⊆ V (χ) and (Safety ◦Rb)(w)
⋂

V(α) 6= ∅.

The doxastic relation is serial, so there is at least one

world, call it w ′, such that wRbw
′. Then, by the BPS

condition, χ is true at w ′, and we can partially apply

Safety to w ′ and find some v such that w ′(Safety)v , and

v |= α, also by the BPS condition. Recall the semantics

of w ′ |= χSα, that w ′ |= χ and there exists some v ,

where w ′(Safety)v and v |= α. This holds for w ′, so

w ′ |= χSα. Since wRbw
′, it follows that w |= B (χSα).

ut

From this we deduce the following stronger property

of pilot rationality.

Lemma 3 (Pilot Rationality) α ⇒ B K (χSα),

where α is the proposition that the pilot engages in some

action. The pilot performs some action (which turns

out to be dangerous) only if he believes that he knows

that the flight data indicates that the action is safe. In

essence, the pilot acts only in ways that he thinks he

knows are overall safe. The principle highlights the fact

that rational pilots are cautious and risk-averse.

Proof Follows from Axiom 9 and Axiom 10. ut

Finally, we complete the thread from action to knowl-

edge of flight data, with the following theorem.

Theorem 4 (Action to Flight Data) α ⇒ B Kχ.

A pilot engages in an action only if he believes that he

knows some relevant flight data.

Proof Follows from Lemma 3 and Lemma 2. ut

3.5 Analyzing Pilot Error

We can now use these formal tools to analyze the class

of accidents from section 2. We formalize the accidents

in the same way that one might formalize an argument

in natural language, or represent a circuit as a formula

in digital logic. We identify aspects of the case that

matter logically, and appropriately represent them in

the formal language. We start with Air India Flight 855,

wherein the pilot did not know the plane’s attitude, but

provided banking commands as if he did know.

Example (Air India 855) Let α be the proposition,

“the pilot commands a steep left bank.” Let χ be the

flight data expressing the proposition “all artificial hori-

zons indicate a steep right bank”. As a matter of fact,

χ is false, because the current flight data included con-

trary bank attitude data, which proscribed a steep left
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Frame Condition Axiom
BPS Condition Basic Pilot Safety
∀α,∀w ∈ V(α), Rb(w) ⊆ V (χ) and α ⇒ B (χSα)
(Safety ◦Rb)(w)

⋂
V(α) 6= ∅

Table 4: Basic Pilot Safety Frame Condition and Corresponding Axiom

bank. By Axiom 2, we have ¬Kχ. We assume the pilot

is minimally rational, so he commands a steep left bank

only if he believes that he knows the aircraft’s bank at-

titude permits a steep left bank: α ⇒ B K (χSα). Fur-

thermore, it follows that he believes he knows χ, the

flight data that would make α safe: α ⇒ B Kχ. Of

course, it is also a fact of the case that the pilot com-

mands a steep left bank, α. Thus, he believes that he

knows the relevant data: B Kχ. By Epistemic Prinici-

ple 2, it follows that he considers it possible that he

knows his action is permitted by the data: ¬K¬Kχ.

Thus, combining this with the earlier fact of the case,

we have ¬Kχ ∧ ¬K¬Kχ. But recall from proposi-

tional logic that ϕ ∧ ¬ψ ≡ ¬(ϕ ⇒ ψ). Substituting

ϕ := ¬Kχ, and ψ := K¬Kχ, we have,

¬(¬Kχ ⇒ K¬Kχ), which is the failure of negative

introspection about the flight data safety-related to his

dangerous action.

Example (Birgenair 301)

– Let χ ≡ “The airspeed data all indicate a danger-

ously high airspeed”

– α ≡“The pilot reduces thrust.”

Then we have, by the same reasoning as above, a fail-

ure of negative introspection that the airspeed data all

indicate a dangerously high airspeed. That is, he does
not know the airspeed data are such and such, and he

does not know that he lacks this knowledge.

By identical reasoning and the appropriate assign-

ment of propositions, one can formally prove that in

each of the cases previously presented, a failure of neg-

ative introspection logically follows. We illustrate this

in Table 5.

In each case, the pilot performs some dangerous ac-

tion, and he does not know some data appropriately

related to that action, whether it be airspeed or control

mode. Our analysis proceeds by formally representing

the general form of the cases, wherein a pilot is rational,

takes dangerous action, and lacks relevant knowledge.

The analysis yields the following theorem.

Theorem 5 (Negative Introspection Failure) A

rational pilot lacking knowledge of data entailing an ac-

tion to be safe performs that action only if he lacks neg-

ative introspection regarding the safety-related data to

that action.

Proof We assume that the pilot acts in some danger-

ous way, w |= α, and that he lacks knowledge of some

relevant information, w |= ¬Kχ. We proceed to show

that w |= ¬K¬Kχ follows. By Lemma 3 the pilot

does α only if he believes he knows the current flight

data χ says α is safe: α ⇒ B K (χSα), from which by

Theorem 4, w |= α ⇒ B Kχ follows. By Lemma 1,

w |= B Kχ ⇒ ¬K¬Kχ. Thus, w |= ¬K¬Kχ (dis-

charging the assumption w |= α).

Therefore, w |= ¬Kχ ⇒ ¬K¬Kχ. ut

We can see from the above that the pilot’s action

in the case, when formalized in ASL, logically entails

that the pilot lacks negative introspection. Thus, we

have good reason to think that a failure of negative

introspection with respect to certain data plays a cru-

cial role leading up to the incident, as it is a necessary

condition to the action.

We can now identify a key insight resulting from our

formal analysis. If we wish to prevent the pilot from

engaging in the dangerous action, we must enable the

flight deck management system to detect the particular

failure and encourage the pilot’s negative introspection

on the data. If the premises jointly entail a failure of

negative introspection, and we somehow grant the pilot

negative introspection, then one of the premises must

become false, by the logical rule of Modus Tollens. The

only candidate premises to falsify are 1) ¬Kχ and 2)

α, as the rest are theorems.

Theorem 6 (Negative Introspection vs Action)

If a rational pilot with missing safety data has negative

introspection, then he does not execute a dangerous ac-

tion.

For proof, we map the argument from proof of The-

orem 5 into propositional logic.

– Let a ≡ α (the pilot engages in a dangerous action),

– ¬(kf) ≡ ¬Kχ above (the pilot does not know the

flight data related to the action),

– r ≡ Lemma 3 above (the pilot is rational),

– ¬ni ≡ the conclusion above.

Proof (1) (r ∧ a ∧ ¬(kf)) ⇒ ¬ni Thm 5

(2) ni Assumed

(3) ¬r ∨ ¬a ∨ kf from (1), (2)
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Flight Assignment
Aeroperu 603 χ ≡ “No instruments confirm that the altitude is dangerously low”

α ≡ “The pilot reduces pitch”
Air France 447 χ ≡ “All instruments indicate dangerous overspeed”

α ≡ “The pilot increases pitch”

Table 5: Unknown flight data and dangerous actions

(4) ¬kf Assumed

(5) r Assumed

(6) Therefore, ¬a (3), (4), (5)

ut

The lack of knowledge of χ cannot be fixed in most

cases. Typically, the instrumentation is experiencing a

mechanical error of some kind, causing the autopilot

to disconnect and return control to the pilot. In this

case, the instruments are unreliable, and so knowledge

is prevented.

This leaves only pilot rationality and the dangerous

action. We assume pilot rationality for the formal work,

but it is important to keep in mind that our solution

must not inhibit the pilot’s rationality, for example by

contributing to information overload. Thus, our solu-

tion is to encourage negative introspection in such a

way as to also encourage pilot rationality. Doing this

formally falsifies assumption α, that the pilot engages

in dangerous action, giving us good reason to think that

the pilot will actually avoid engaging in the dangerous

action in the real world, assuming our formalization

does a good job modeling the real world.

4 Future Work

Safety in highly automated modern cockpits requires

interdisciplinary input from human factors experts, safety

engineers, systems engineers, and aerospace engineers,

all of whom collaborate to improve safety. We believe

logicians can also make important contributions by for-

mally modeling pilot reasoning. Having demonstrated

the value of analyzing loss of pilot situational aware-

ness from an epistemic logic perspective, we recom-

mend future work to investigate combining modal rea-

soning with modern sensor technology to improve cock-

pit safety.

Our analysis suggests that there is a potential ad-

vantage in an approach that embraces teamwork in

the pilot-autopilot relationship, in which the autopilot

monitors the pilot and actively finds ways to properly

assist, rather than an active decider/passive informer

relationship.

Second, and importantly, our analysis suggests in-

vestigating a shift from an alert model centered on the

idea that brighter is better, toward a more focused

way of differentially brightening the right things at the

right time, and dimming the rest. The flow of informa-

tion from the flight deck to the pilot is a resource to

be managed just like any other, with priority given to

information that can immediately stop the pilot from

doing something dangerous. The phenomenon of infor-

mation overload during emergency situations plays a

large role in the resulting incidents by diminishing the

pilot’s decision-making ability [20] [28]. For whatever

psychological reasons, an excess of information seems

to decrease an agent’s situational awareness. In our for-

malization, this amounts to a falsification of pilot ra-

tionality. So a solution must alert the pilot in a way

that does not overload his senses and diminish his ra-

tional decision-making. If pilot rationality is false, then

an encouragement of negative introspection does not

necessarily prevent a dangerous action. Modern avion-

ics have many safeguards built in to alert the pilot that

they are taking unsafe action. Yet we have seen that

they can overwhelm a crew, and especially an individ-

ual pilot during an emergency. An alternative approach

would seek to encourage negative introspection without

diminishing pilot rationality. We believe this can be ac-

complished by removing extraneous data from the pi-

lot’s attention, by dimming temporarily irrelevant data,

so that he can notice the critical piece of information

without being overwhelmed. In future work, we hope to

collaborate closely with the human factors community

and validate our approach through empirical testing.

5 Related Work

The work presented by this paper lies at the inter-

section of formal methods and human-computer inter-

action.

Previous researchers have applied formal mathemat-

ical methods to the analysis of mode confusion [26], [10],

[27], [8]. Mode confusion is a phenomenon that occurs

when a pilot believes that an airplane is under the auto-

mated protections of a particular autopilot flight mode
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when in fact it is not. Though viewed as a distinct phe-

nomenon, we think cases of mode confusion and nega-

tive introspection failure overlap. A pilot might be con-

fused about the aircraft’s mode, and as a result of this

come to believe false things about the state of the air-

craft. For example, if he believes it is in a mode that

prevents the airspeed from falling below a certain level,

and fails to glance at his airspeed indicator for some

time. He would not know his airspeed, and would not

know that he did not know it.

Chen, Ely, and Luo [11] analyze “Agent A is un-

aware that P” as “Agent A does not know that he does

not know P”, consistent with our analysis of cases in

which a pilot is unaware of some piece of information.

Rushby [26] and Combefis [12] bring formal methods

to bear on the analysis and discovery of automated sur-

prises, which are closely related to the notion of mode

confusion. Where mode confusion refers to a pilot’s not

knowing some feature of the aircraft’s current mode, au-

tomated surprises are the frequent result, where some

feature of the mode produces behavior that the pilot

did not expect.

Oishi et. al. [24] describe a method for identifying

the minimal amount of information required by the pi-

lot in order to safely perform a maneuver, and for prov-

ing that a given interface provides this sufficient infor-

mation. This is extremely promising work in the effort

to reduce information overload, a shared goal of this

paper, and future extensions of our research will surely

appeal to their work in showing that the temporary

removal of instrument data will not result in a more

dangerous circumstance than the one being solved. If

our solution is to, for instance, remove unnecessary in-

strument data in order to show the pilot that the air-

speed data is contradictory, and the correct action in re-

sponse requires knowledge of attitude and thrust, then

our mechanism must not remove those data from the

pilot’s awareness. The work of Oishi et. al. will help us

identify the minimally sufficient information for execut-

ing a correct control input while also highlighting the

failure of negative introspection to the pilot.

Bolton et. al. [6] [7] apply model checking to the

relationship between a human operator and a system.

They do so by incorporating the operator’s behavior

into a task analytic model of the system, along with

task analytic models of its other components. They then

characterize the normative behaviors of the operator as

component tasks to be verified. If a model can be found

in which a normative behavior fails, then this represents

a potential case of human error. This relates to our

work in that it formalizes the human component of a

system and identifies errors that can occur. However,

their approach applies during the specification phase,

while ours identifies a method for relating the pilot’s

actions to his mental picture of the aircraft, which could

be used as part of a real-time safety monitor of the pilot.

For more on the application of modal logic to various

aspects of knowledge and agency, see chapters in the

Handbook of Philosophical Logic [22], the Handbook of

Epistemic Logic [15], any number of recent papers by

van Benthem et. al., [29] for example. Future extensions

of this work will incorporate a modal analysis of action,

extensive work on which has been done by Horty [18]

and Broersen [9], among others.

6 Conclusion and Acknowledgements

In this paper, we applied basic tools from epistemic

logic to the analysis of a specific class of pilot error.

This formal analysis revealed a relationship between

dangerous actions, pilot rationality, and a pilot’s neg-

ative introspection. By exploiting this relationship, we

can mitigate the role the class of error plays in avia-

tion accidents. We illustrated the role logic can play

in the safety engineering community, by taking formal

work done in philosophy and economics, and using it

to analyze the human component of complex systems.

This improves researchers’ ability to automate and rig-

orously test safety procedures meant to mitigate human

error. In future work, we hope to further explore this

work by using our logic to develop algorithms that si-

multaneously encourage negative introspection and pi-

lot rationality.

We would like to acknowledge Kelly Hayhurst and

C. Michael Holloway for their insights on safety. We

would also like to thank Aaron Dutle for helping us im-

prove the presentation of the mathematical results in

the paper. We especially acknowledge Brenton Weath-

ered for his valuable insights in interpreting accident

reports and helping us understand pilot behavior.
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