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Abstract.     Kalman filter based spacecraft attitude estimation has been used in many space missions and has 
been widely discussed in literature. While some models in spacecraft attitude estimation include spacecraft 
dynamics, most do not. To our best knowledge, there is no analysis to determine which model is a better choice. In this 
paper, we discuss the reasons why spacecraft dynamics should be considered in the Kalman filter based spacecraft 
attitude estimation problem. We also propose a reduced quaternion spacecraft dynamics model which admits 
additive noise. Geometry of the reduced quaternion model and the additive noise are discussed. This formulation 
makes computation easier than the one with full quaternion. Simulations are conducted to justify our claims. 

Keywords:    Extended Kalman filter; linearization; spacecraft attitude estimation 

1. Introduction

The Kalman filter found its earliest applications in some high-profile missions in the aerospace
industry, such as the Apollo project McGee et al. (1985). Spacecraft attitude estimation has been a 
major research area since the Kalman filter was invented Lefferts et al. (1982). Although many 
different methods have been proposed, most models suggest using only quaternion kinematics 
equations of motion for the attitude estimation without considering spacecraft dynamics. See, for 
example, some widely cited survey papers Lefferts et al. (1982), Crassidis et al. (2007) and references 
therein. This model reduces the problem size but discards useful spacecraft attitude information 
available in the spacecraft dynamics equation. The drawbacks of this simplified model are (a) when 
gyros measurements have significant noise, the spacecraft dynamics information is not used to 
prevent the degradation of the attitude estimation, and (b) when gyro measurements are not available 
(as a matter of fact, gyros are not used in most small spacecraft, for example, Stoltz et al. (1998)), 
the simplified model cannot be used to estimate the spacecraft attitude. Moreover, the simplified 
model without the spacecraft dynamics cannot estimate the attitude rates even through the gyros 
measurements are used in the estimation. In contrast, the attitude rates can be estimated directly by 
the Kalman filter with spacecraft dynamics. There are papers that consider models including the 
spacecraft dynamics in Kalman filter designs, for example, Lovera et al. (2002), Khan et al. (2001). 
But to the best of our knowledge, there is no discussion of which model is a better fit to the 
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application of spacecraft attitude estimation, and there is no performance comparison for Kalman 
filters using the two different models. In this paper, we will discuss the importance of the spacecraft 
dynamics to the attitude estimation problem and examine the performance difference between 
models that incorporate spacecraft dynamics and models that do not. As it is well-known that the 
models for the attitude estimation and for spacecraft dynamics are nonlinear, some natural choices 
for solving the estimation problem are either extended Kalman filter (EKF) or unscented Kalman 
filter (UKF).  

We recognize the recent trend of using an unscented Kalman filter instead of the extended 
Kalman filter in spacecraft attitude estimation problem Julier et al. (2000), Cheon et al. (2007), 
Crassidis et al. (2003).  However we are also aware of some simulation comparison between the 
two methods and different opinions about the potential advantages of unscented Kalman filter 
performed by LaViola (2003). Given the facts that (a) it is not clear which filter is better and (b) 
EKF is computational cheaper than UKF, we will consider only the extended Kalman filter in this 
paper.  

A special feature of the spacecraft attitude estimation problem is that the quaternion has a norm 
constraint, and many methods have been proposed to deal with this constraint Markley (2003), 
Zanetti et al. (2009), Persson et al. (2013), Forbes et al. (2014). These methods are more complicated 
in concept and more expensive in computation than traditional EKF without the norm constraint. 
Therefore, we suggest using a reduced quaternion model which does not need the norm constraint 
Yang (2010, 2014). The drawback of using reduced quaternion is that it has a singular point. Since 
this singular point is the farthest point from the equilibrium point Yang (2010), the reduced 
quaternion model should be a good choice for normal mode control system design which controls 
the attitude to align with a reference frame.  

The remainder of the paper is organized as follows. Section 2 provides a description of the 
extended Kalman filter for spacecraft attitude estimation that follows common practice, i.e., using a 
model without spacecraft dynamics. Section 3 provides a parallel description of the extended 
Kalman filter for spacecraft attitude estimation that is our vision, i.e., using a model with spacecraft 
dynamics. The merits of the proposed model over commonly used models are discussed. Simulations 
and results for these two methods are presented in Section 4 to demonstrate the superiority of using 
a model with spacecraft dynamics. The conclusions are summarized in Section 5. 

2. Extended Kalman filter without spacecraft dynamics

This type of model is widely used in literature (see Lefferts (1982)) for spacecraft attitude

estimation and can be expressed as follows. Let 
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be the quaternion that represents the rotation of the body frame relative to the inertial frame, where 

ê  is the unit vector of the rotational axis and  is the rotational angle; the rate of change of the 



quaternion is given by Wertz (1978) 
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where  TI 32`1   is the body rotational rate with respect to the inertial frame 

represented in the body frame. However, using this full quaternion model introduces a singularity 
in the covariance matrix (see Lefferts et al. (1982)). Therefore, we suggest using a reduced 
representation derived in Yang (2014) given as follows. 
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where 1 is the process noise, and  is a matrix given by 
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with 2
3
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11)( qqqqg  . The reduced model embeds the unit length requirement in )(qg

which means that there is no need to consider the unit length constraint in EKF as it was treated in 
Zanetti (2009). This model therefore significantly simplifies the problem. In Yang (2014), it is 
shown that a reduced quaternion model has other merits: it admits an analytic LQR design, and the 
LQR design globally stabilizes the original nonlinear spacecraft system. Assuming that three rate 
gyros and quaternion measurement sensors are installed on board, the measurement equation can be 
written as Crassidis et al. (2003) 
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where   is a drift in the angular rate measurement, 2  is the process noise, y  is the angular 

rate measurement obtained from gyros, yq  is the quaternion measurement (which can be obtained 

by using QUEST method by Shuster (1981) or analytic method by Yang et al. (2014) for 
measurements of astronomical vectors, such as sun sensor, magnetometer, gravitometer, and star 
trackers), and 1  and 2  are measurement noise.  

 
The reduced quaternion geometry of yq  can be seen from the following argument. The noise 2  

can be viewed as a reduced rotational quaternion whose rotational axis is ||||/ 22   and rotational 
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mathematical treatment for this model is much easier than the multiplicative perturbation model. 
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The simplest discrete version of (6) can be obtained by explicit Euler's method. However, the 
discrete formula obtained by this method as pointed in Stoer et al. (1993) is normally not stable for 
stiff differential equations. In Zanetti et al. (2009), the trapezoidal implicit method was proposed. 
But this method as pointed in Stoer et al. (1993) involves the solution of nonlinear system of 
equations which can be very expensive in computation. We suggest using the linearly implicit Euler 

method described in Sanda et al. (2013) and Hairer et al. (2014). Let dt  be the sampling time 
period and 
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The discrete version of (6) is therefore given as follows: 
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As always, we assume that k and k  are white noise signals and the following relations hold: 
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We need some explicit expression of (8a) to obtain the formulas of the extended Kalman filter. Note 
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The extended Kalman filter iteration is as follows: 
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Since ku is not available, it is suggested in Lefferts et al. (1982) to set kkykkk k
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Clearly, the extended Kalman filter using this model cannot be updated without three dimensional 

gyro measurements
ky . Moreover, the simplified model without the spacecraft dynamics cannot 



estimate the attitude rates because the rates are not in the state variable of the filter. In the next 
section, we will show that even if the gyro measurements are available, using this model is not as 
good as using a model which incorporates the spacecraft dynamics. In section 4, we will use 
simulation to compare the performance of two different methods to support our claim. 
 

To improve the estimation accuracy of 1| kkx
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, we can reduce the step size of dt . But in some 

applications, the measurements may be available only after several sampling period. In this case, a 
multi-rate Kalman filter should be considered (see Yang (2006)), which is beyond the scope of this 
paper. 
 
3. Extended Kalman filter with spacecraft dynamics  
 

Using the method in Yang (2010, 2014), we can write this type of model as follows. 
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where TTT q ],[ is the state vector, u  is the control torque, y is the measurement vector, 
TTT ],[ 21   is the process noise (assumed to be zero-mean white Gaussian) which models various 

disturbance torques,  is the measurement noise (also assumed to be zero-mean white Gaussian), 

J is the inertia matrix of the spacecraft, and  is defined in (4). The control torques are in general 

known, for example, given the measured geomagnetic vector m  and the current applied to the 
magnetic torque rods, the control torque can be calculated by the method of Shinde et al. (2016). 
Depending on the design, we may have angular rate measurements y  and quaternion 

measurement yq ; or we may have only quaternion measurement yq . Assuming that three gyros and 

quaternion measurement sensors are installed on board, the measurement equation can be written as 
in Crassidis et al. (2003) 
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where  is a drift in the angular rate measurement, 3 is the process noise, y is the angular rate 

measurement, yq is the quaternion measurement, and 1 and 2 are measurement noise. The 

overall system equations are given as follows: 
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The discrete version of (18) is given by 
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Note that for two vectors Twwww ],,[ 321 and Tvvvv ],,[ 321 , the cross product of vw  can 

be written as the product of matrix w and vector v where 
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We also assume k and k are white noise signals satisfying equations (9). For  
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For kuxF ),(3 , we have 
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The extended Kalman filter iteration is as follows: 
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The beauty of the Kalman filter using spacecraft dynamics can be seen from (26f). The best 
estimation is composed of two parts. The first part is a prediction 1| kkx


which is based on the 



spacecraft dynamics and the inertia matrix information for the specific spacecraft. The second part 
is a correction ky~ which is based on observations. The filter gain kK is constantly adjusted such 

that (a) if the measurement noise is higher, the gain is reduced so that the estimation depends more 
on the system dynamics model, and (b) if measurement noise is lower, the gain is increased so that 
the estimation depends more on the measurement. That is the reason why spacecraft dynamics 
should be included in the attitude estimation problem even if angular rate measurements are 
available. The attitude rates can be estimated directly by the Kalman filter with the spacecraft 
dynamics. 
 

As mentionedpreviously, the Kalman filter with spacecraft dynamics can work without the (gyro) 
measurement of spacecraft angular velocity vector with respect to the inertial frame. In this case, 
gyro measurement drift    is inconsequential. Therefore, the continuous system (18) is reduced 

to  
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 qqy      (27c) 

We still use (19) for this system but TTT qx ],[ , yqy  , TTT ],[ 21   ,   and 

 IC 0 .The discrete version of (27) is given by 
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where k is the same as in (21). We also assume k and k are white noise signals satisfying 

equations (9). For  
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The extended Kalman filter will be the same as (26). 
 
4. Simulation test 
 

The extended Kalman filters with and without spacecraft dynamics have been implemented in 
Simulink to assess their performances. The inertia matrix J of the spacecraft in the simulation has 
the following values taken from Zhou (2005): 
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The unit of J is kg-m2. The state and measurement noise variance matrices kQ and kR are positive 
definite and represent the noise magnitudes of the angular and angular rate in state dynamics and 
measurement instruments.  While the dimensions of kQ in the extended Kalman filters (with or 
without spacecraft dynamics) are different, kR is the same for both filters and given by 

61.0 IRk   
where 6I  is a 66 identity matrix. State dynamics noise kQ for the filter without spacecraft 
dynamics is given by 
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For the filter with spacecraft dynamics,  kQ  is given by a similar but different dimensional matrix 
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The initial values of the states 0|0x


 and the covariance 0|0P   are set to zeroes. The true and 
estimated quaternions for the Kalman filters with and without spacecraft dynamics are shown in 
Figure 1 through Figure 4.  

 



 
Figure 1 the first component of the estimated and true quaternion 

 

 
Figure 2 the second component of the estimated and true quaternion 
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Figure 3 the third component of the estimated and true quaternion 

 

 
Figure 4 the scalar component of the estimated and true quaternion 

 
 

The test case shown in Figure 1 through Figure 4 represents the filter performance with the 
spacecraft undergoing a fast attitude slew. The torque for the maneuver is a sine wave as a function 
of time. The largest roll, pitch, and yaw angles during the slew are about 178, 76, and 177 degrees, 
which can be calculated based on the quaternion shown in Figure 1 through Figure 4. The test case 
is a very aggressive maneuver with the most active spacecraft dynamics. In such an aggressive 
scenario the filter with the spacecraft dynamics performs better. 

 
Figures 1-4 show that the estimated attitudes for both filters follow the true attitude, but the 

estimation using spacecraft dynamics is clearly better than the estimation without using spacecraft 
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dynamics. The attitude errors between the estimated and true attitude are represented by the Euler 
angles, roll, pitch, and yaw angle errors. The attitude errors of the extended Kalman filters with and 
without spacecraft dynamics are compared. The mean and standard deviation of the attitude errors 
with and without SC dynamics are summarized in Table 1. 
 

Table 1 Mean and standard deviation of the attitude errors with and without SC dynamics 

 Attitude error mean (deg) Attitude error 
standard deviation (deg) 

Roll with SC dynamics -0.1573 2.6827 
Roll without SC dynamics 0.4145 4.8599 
Pitch with SC dynamics 1.0122 3.4061 
Pitch without SC dynamics 1.1230 7.7963 
Yaw with SC dynamics 0.0675 2.7551 
Yaw without SC dynamics 0.3741 4.9706 

 
Although the test mentioned above shows that using spacecraft model in Kalman filter is a better 

strategy, we would like to examine a case where the spacecraft model is inaccurate, for example, in 

the inertia matrix. The impact of the uncertainties and variations of the inertia matrix J  to the 
performance of the estimation is investigated by a set of Monte Carlo runs.  The six different 
elements J11, J22, J33, J12, J13, and J23, of the inertia matrix are varied uniformly and randomly between 
50% and 150% of their nominal values in the Monte Carlo runs. J21 is equal to J12. J31 is equal to J13. 
J32 is equal to J23. Therefore, the inertia tensor is symmetric when the six different elements change. 
The uncertainties are 50% of the nominal values.  For example, the nominal value of J11 is 1200 
kg.m2. In the Monte- Carlo runs, J11 will vary uniformly and randomly between 600 and 1800 kg.m2. 

 
The six different elements J11, J22, J33, J12, J13, and J23, of the inertia matrix are varied uniformly 

and randomly between 50% and 150% of their nominal values. The changes do not make the inertia 
tensor negative definite. The reason is as follows. In the worst case, the three diagonal terms J11, J22, 
and J33 are 50% of their nominal values and the three off-diagonal terms J12, J13, and J23 are 150% of 
their nominal values. The inertia tensor becomes:  

 
The above inertia tensor is still a diagonally dominant matrix and is positive definite. 
 

Figure 5 through Figure 7 show the variation of the attitude error mean for 300 Monte-Carlo runs. 
The attitude error mean and attitude error standard deviation are shown in Table 2. The impact of 

the uncertainties of the inertia matrix J to the performance of the Kalman filter estimation is small. 
 
The filter with spacecraft dynamics needs more computations. However, with current flight 

computer’s capability the CPU usage of the filter’s computation is not a major concern.      
 

Table 2 Means of the attitude error mean and standard deviation for 300 Monte‐Carlo runs 
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Euler angles Mean of the attitude error 
mean (deg) 

Mean of the attitude error 
standard deviation (deg) 

Roll -0.1622 2.6794 
Pitch 1.0087 3.4046 
Yaw 0.0595 2.7610 

  

 
Figure 5 the variation of the yaw angle error mean in the Monte‐Carlo runs 

 

 

 
Figure 6 the variation of the pitch angle error mean in the Monte‐Carlo runs 
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Figure 7 the variation of the roll angle error mean in the Monte‐Carlo runs 

 
5. Conclusions 
 

In this paper, we compared two different models that can be used for spacecraft attitude 
estimation. One model does not use spacecraft dynamics and is more popular in the guidance, 
navigation, and control community; the other model includes the spacecraft dynamics and has not 
been investigated as much as the first model. We adopted a reduced quaternion spacecraft dynamics 
model which admits additive noise. Geometry of the reduced quaternion model and the additive 
noise was discussed. This approach leads to easier computation. The simplified model without the 
spacecraft dynamics cannot estimate the attitude rates even through the gyros measurements are 
used in the estimation. In contrast, the attitude rates can be estimated directly by the Kalman filter 
with the spacecraft dynamics. Our analysis and simulation results show that the second model and 
the corresponding extended Kalman filter is a better choice in attitude determination because the 
method uses more information and gives more accurate attitude estimation.  
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