

INSTALLATION, DOCUMENTATION, TUTORIALS

Installation software requirements

- Fortran 90 compiler (ifort, gfortran 4.4+) : all
- C compiler (qcc 4.4+, icc) : all
- C++ compiler (q++ 4.4+, icc) : USURP
- OpenGL, X11, Tcl/Tk 8.6.8 or earlier: OVERGRID
- Python, swig, gnuplot : OVERSMART
- Tcl wish, xmgrace or gnuplot : OVERPLOT

Installation instructions

- chimera2.2/doc/{INSTALLATION.html, overgrid.html}

Supported platforms

- Linux, Mac OS-X, (Windows: workable, unsupported)

Documentation

- chimera2.2/doc/man.html -> *.html

Tutorials

chimera2.2/tutorials/* contains tutorials for OVERGRID,
 Script Library, and various scripting exercises

PRE-PROCESSING STEPS AND BEST PRACTICE

Task: Given complex geometry definition, create input files needed for overset grid CFD analysis

- Grid file containing overset volume grids and iblanks
- Connectivity file containing fringe points, donor stencils, interpolation coefficients
- Flow solver input file with boundary conditions for each grid
- Input file for performing forces and moments integration on components of interest
- Input files for coupled physics
 - Prescribed/6-DOF input files for relative motion problems
- Species convection
- Structural deformation

Best practice:

- Develop pre-processing script to create all input files needed above
- Use CGT's OVERGRID to check and visualize individual steps
- Use CGT's Script Library to record steps into script
- Check grid and connectivity quality using variety of tools

EXECUTABLES

Run configure script to generate Makefiles

configure -- help (get list of options)

Executables

- single precision set
- double precision set

File Attributes for I/O

- big/little endian
 - controlled by environment variable (ifort, gfortran)
 - controlled by compiler flag (pgf90)
- single/double precision and big/little endian auto-detected by FFIO enabled modules
- file conversion and attribute determination using overConvert

OVERGRID auto-detects single/double precision, big/little endian

PRE-PROCESSING USING CGT

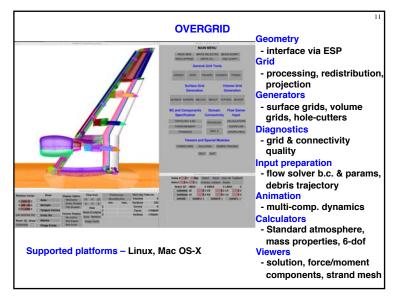
Geometry Creation and Manipulation

Surface Grid Generation

- on STEP, IGES, CAD via discretized surface geometry descriptions (triangulation and structured patches)
- algebraic, hyperbolic

Volume Grid Generation

- near-body curvilinear (hyperbolic)
- off-body Cartesian


Domain Connectivity Inputs

- Xray map creation and hole-cut instructions
- PEGASUS5
- C3P

Flow Solver Inputs (OVERFLOW)

- boundary conditions
- component hierarchy and prescribed/6-DOF dynamics
- prescribed dynamics animation (OVERGRID)

GEOMETRY CREATION Script Library has macros to create Combine with basic macros to generate more complex shapes **Points** Straight lines Translate **Analytic curves** Scale Cylinders Rotate Spheres Mirror **Frustums** Extract Cartesian boxes Concatenate Airfoil shapes Revolve > NACA 4 and 5 digit series - Duplicate > PARSEC

GEOMETRY INPUT

STEP, IGES via Engineering Sketch Pad (ESP)

- Boundary Representation (BRep) solids
- Use EGADS2SRF module to generate discrete representations
- Open source

Native CAD (Pro-E, Catia V5, Parasolid, OpenCASCADE, SolidWorks, UniGraphics, FELISA) via CAPRI library from CADNexus

- Use CAD2SRF module to generate surface triangulations
- Need CAD license and CAPRI users license
- Not tested under CGT 2.2

Surface Triangulation

- CART3D (.tri, .triq, .trix)
- UCD (.ucd)
- STL (.stl)
- FRO (.fro)
- FAST (.fst)

- PLOT3D format

CGT SCRIPT LIBRARY

Tcl macros -10x more compact scripts, > 3x faster development time

Low - Mid Level

- File manipulation (e.g., combine files, format conversion,...)
- Geometry creation (e.g., points, lines, analytic curves, cylinders,...)
- Grid information (e.g., interrogate grid dimensions, coordinates, arc lengths, formats,...)
- Grid editing (e.g., extract, concatenate, split, duplicate, swap/ reverse indices, scale, translate, rotate, mirror, revolve, ...)
- Grid redistribution
- Surface grid generation (TFI and hyperbolic)
- Volume grid generation (hyperbolic and Cartesian)
- X-ray hole cutter generation and hole cut instructions creation
- Pegasus5 and C3P input preparation
- Force/moments computation inputs
- OVERFLOW boundary conditions inputs and namelist i/o

Top Level

- Grid-based approach (Configuration Management Scripts, PEG5)
- Component-based approach (duplicated/moving comp., X-rays)

PRE-PROCESSING STRATEGY USING SCRIPTS

Scripting approach

- rapid replay of all steps
- easy to parameterize inputs (e.g., grid stretching, spacings, etc.)
- easy to make small changes
- recommended even for one-of-a-kind cases
- modification needed if surface topology changes

Surface Grid Generation

- generate grids from
- surface triangulation
- surface feature curves Derived from STEP/IGES/CAD, or supplied

Volume Grid Generation

- near-body hyperbolic grids, off-body Cartesian grids

Domain Connectivity, Force/Moments Computation, Flow Solver Inputs

- construct and store common database in script (boundary conditions, component definitions, etc.)

POST-PROCESSING USING CGT

Forces and Moments Computation (mixsur/overint, usurp)

Solution Convergence Analysis

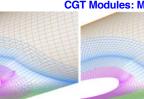
- solution/turb. model residuals, forces/moments
- one page overview (oversmart)
- individual plots (overplot)

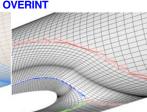
Flow Visualization (overgrid)

- scalar and vector functions
- turb, model dependent variables, species partial densities
- unsteady 2-D solution animation

Component Line Loads (triload)

- sectional and cumulative line loads
- Cp on plane cuts


Dynamics Animation (overgrid)


- 6-DOF dynamics output from flow solver

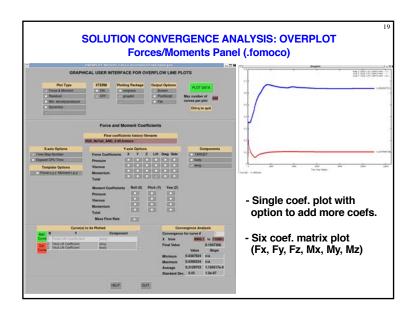
DISTRIBUTED TEAM-BASED SCRIPT DEVELOPMENT

- Identify components of a complex configuration
- A component is a geometric part and may be modeled by one or more grids
- Create stand-alone script for each component
- generation of surface and volume grids
- domain connectivity inputs (X-ray maps)
- solver boundary conditions
- forces and moments integration inputs
- Each component script can be created by different developers
- Use file repository system to update script so that each team member can get most up-to-date version of each script
- Share global parameters file (e.g., wall spacing, global spacing, str. ratio, etc.)
- Each developer is responsible for grid connectivity of individual component
- · Create master script to call component scripts, assemble final grid system, generate input files for domain connectivity, force/ moment integration, flow solver

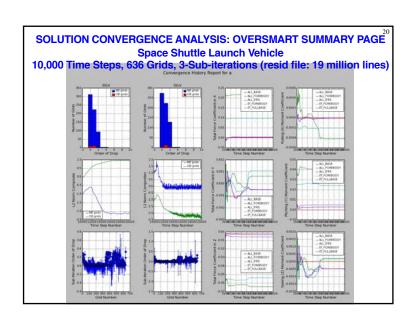
FORCES/MOMENTS INTEGRATION APPROACH 1 -**INTEGRATE ON HYBRID SURFACE MESH CGT Modules: MIXSUR, OVERINT**

Hybrid mesh generator (MIXSUR)

- Automatically blank overlapping quads
- Automatically fill narrow gap with triangles
- Very fast but may sometimes contain a few bad triangles (200 surface grids, 2 million+ surface pts, 22 sec., 1 proc.)


Integration tool (OVERINT)

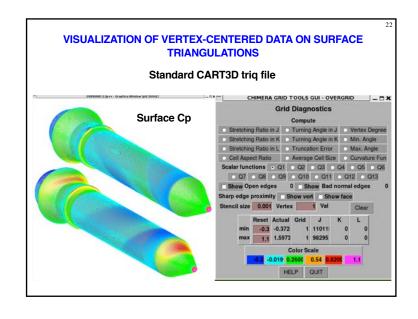
- Integrates on non-overlapping quads and triangles
- Integrates linear function exactly

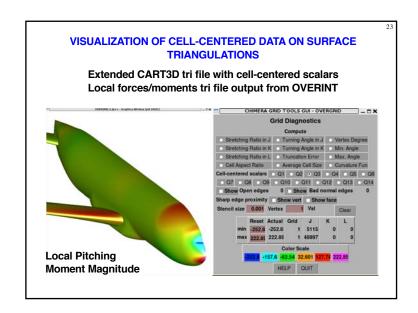

Chan, W. M., Enhancements to the Hybrid Mesh Approach to Surface Loads Integration On Overset Structured Grids, AIAA Paper 2009-3990

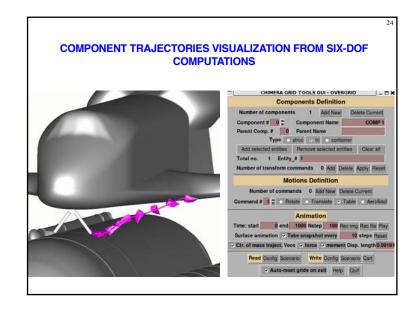
OVERINT OUTPUT FILES

- Surface triangulation solution file derived from hybrid surface mesh generated by MIXSUR (.triq)
- Surface distributions of local forces and moments
- Four unstructured surface triangulation files, each with cell-centered scalar variables (extended CART3D .i.tri format)
 - (1) Cell ∆F
 - (2) Cell ΔF / Cell area
 - (3) Cell ∆M
 - (4) Cell ΔM / Cell area
- Scalars: X, Y, Z components of forces/moments total magnitude, pressure, viscous, momentum contributions local cell area

FORCES/MOMENTS INTEGRATION APPROACH 2 -**INTEGRATE ON WEIGHTED QUADS CGT Module: USURP** $W_1 = 1$ Polygon subtraction in 3-D $W_2 = (A_Q - A_{OV})/A_Q$ A_Q = Area of quadrilateral $A_{OV} = Area of overlap$ Quad panel weights calculator and integrator (USURP) - Automatically computes panel weight for each guad - Always returns a result by integrating over all quads - No hybrid mesh => no visual checks - Does not integrate linear function exactly - Also has standalone and OVERFLOW modes Boger, D. and Dreyer, J., Prediction of Hydrodynamic Forces and Moments for Underwater Vehicles Using Overset Grids, AIAA Paper 2006-1148

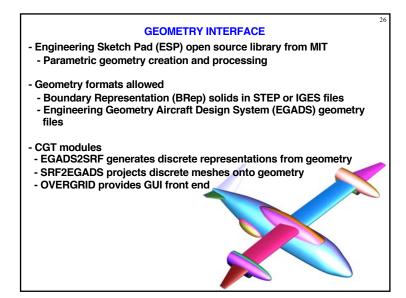

SOLUTION VISUALIZATION

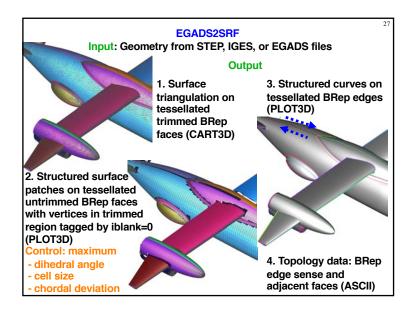

- Flow variables

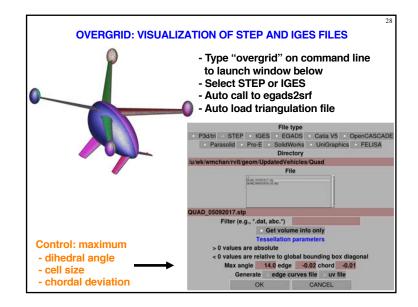

- Surface triangulations
- vertex and cell-centered scalars (.tri, .triq, .trix)

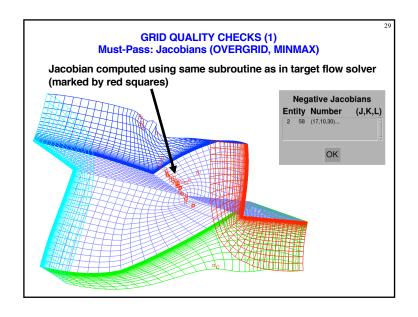
- Overset structured surface and volume grids
- steady (scalars and vectors)
- unsteady (scalars)
- 2-D moving body with adaptive grids (scalars)

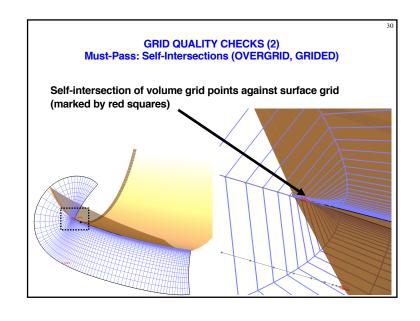
- 6-DOF component trajectories

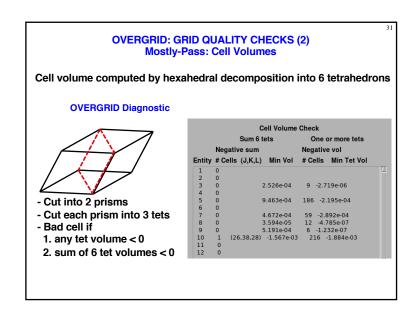


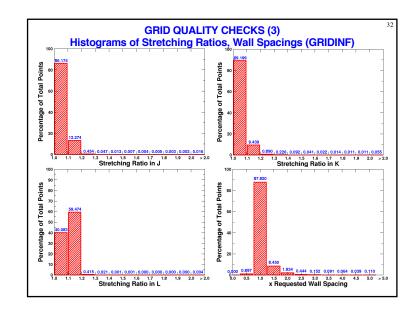


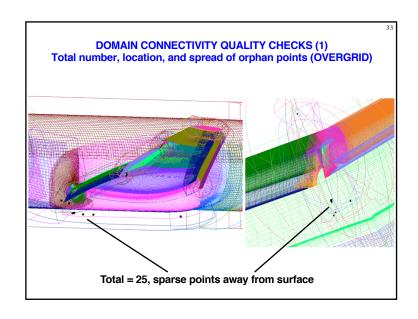


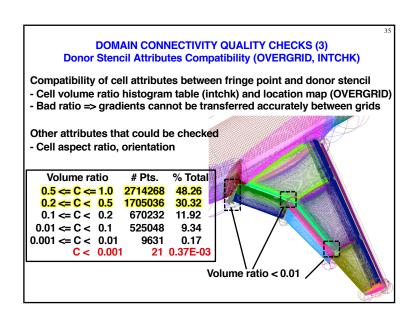

MAIN NEW FEATURES IN CGT 2.2

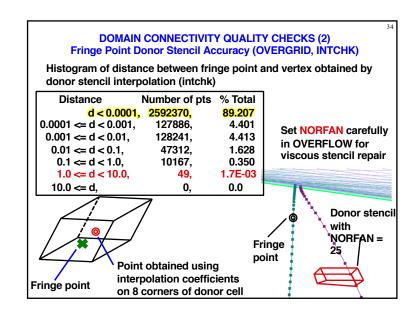

- Geometry interface for STEP and IGES files via Engineering Sketch Pad (ESP) (EGADS2SRF, SRF2EGADS, OVERGRID)
- Diagnostics for grid quality, domain connectivity (GRIDINF, INTCHK, OVERGRID)
- Visualization of
- cut planes for curvilinear grids/solutions (OVERGRID)
- components defined for forces/moments computation (OVERGRID)
- Command-line options for image dump (OVERGRID)
- Auto-determination/conversion of file types/attributes (FFIO Lib., overConvert)
- Multi-threaded Tcl script execution for volume mesh generation (Script Library)
- Residual history plots for components (OVERPLOT)
- Line loads computation (TRILOAD)
- Tutorial for script development for complete overset CFD pre-processing tasks
- See chimera2.2/doc/cgt2.2.txt for more details

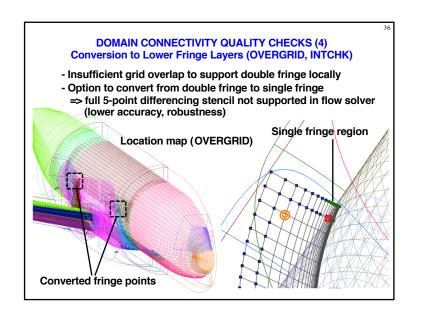


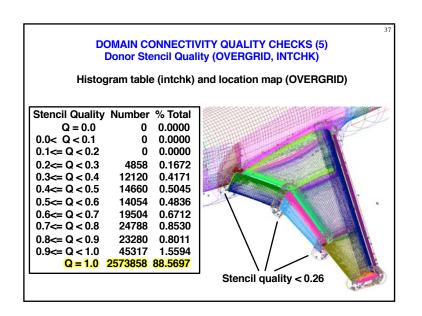


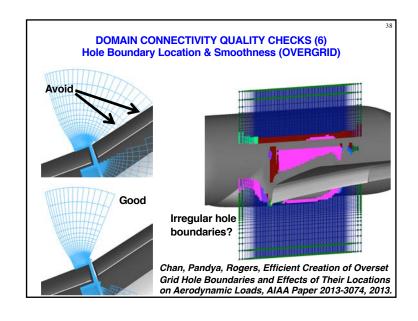


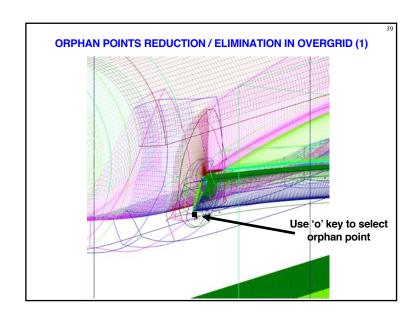


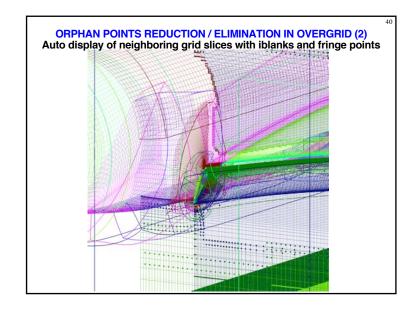


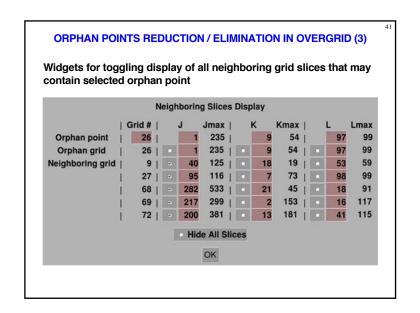


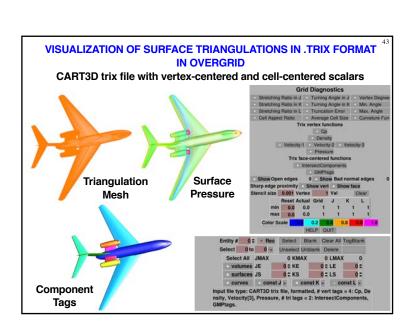


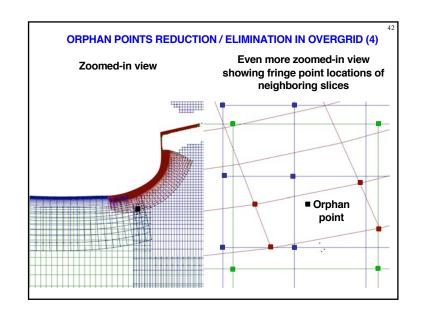


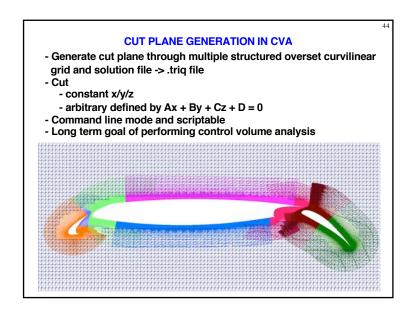


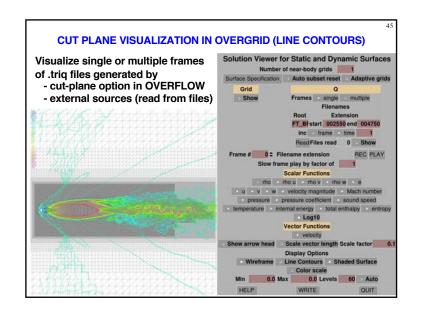


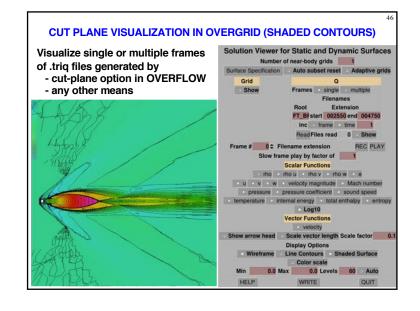


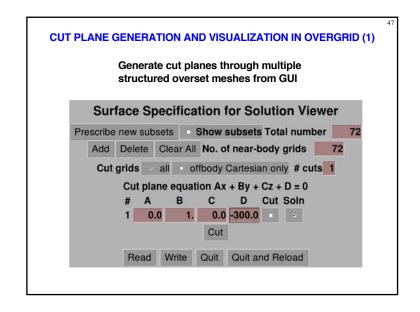


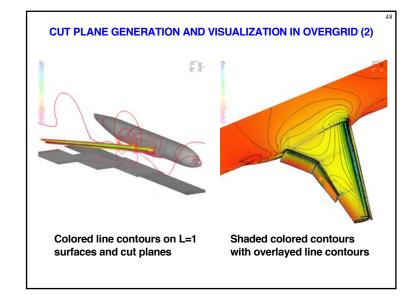


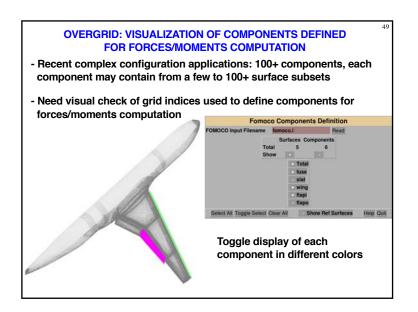


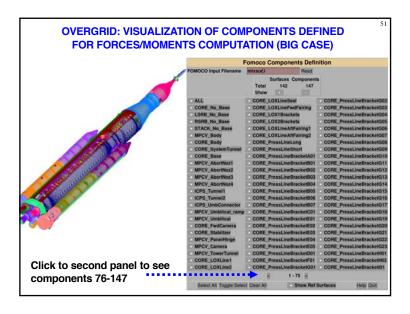


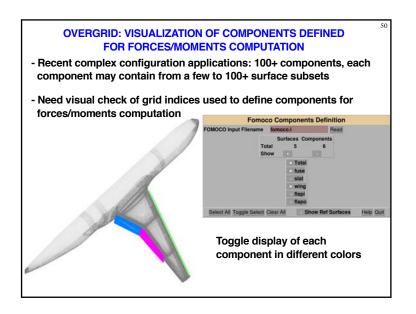












OVERGRID: COMMAND LINE OPTIONS Scripted dumping of image files in non-interactive mode enabled by command line options : dual screen -l/-r : location of smaller screen for horizontal stack (I=left, r=right) +x/+v : x and v shifts for window placement -cmd : read command line arguments from specified file -cntrfun/-shadfun/-wirefun: 0/1 turn off or on contour/shaded/wireframe display for solution function -dp : use double precision mode to read ascii structured grid files -fun : plot function fun_name in solution viewer, valid fun_name include q1,q2,...,u,v,w,velocity magnitude,Mach number,pressure,Cp, sound speed,temperature,internal energy,total enthalpy,entropy : dump image to specified filename (non-interactive mode) -maxval/-minval: set max/min value of contours to specified value -nlevel : set number of contour levels -noax/-nogrid : do not display axis/grid wireframe -nolog: do not write overgrid.log file -qfile : load structured grid solution from specified solution file : load solution subsets from specified subsets file -sub : load view point from specified viewpoint file -vp

FORTRAN FILE I/O (FFIO) LIBRARY AND OVERCONVERT

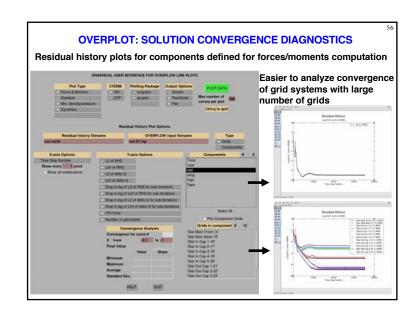
Auto detection of type and attributes of files encountered in overset CFD analysis process using number and size of record markers

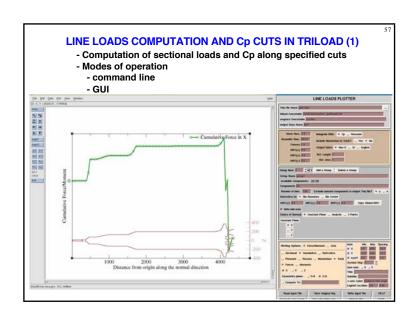
File types

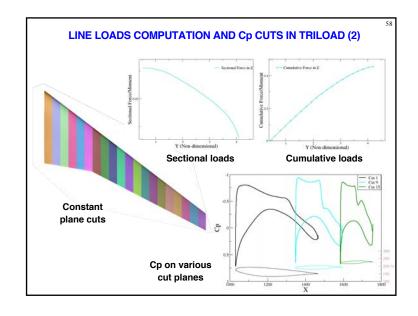
- PLOT3D grid, solution, and function
- OVERFLOW solution (one or two time levels)
- CART3D grid and solution files (.tri, .i.tri, .triq)
- X-ray map
- Interpolation stencil data (INTOUT/XINTOUT)

File attributes

- ASCII / unformatted single / unformatted double
- Big / little endian
- PLOT3D grid (single/multiple grid, with/without iblanks, 2D/3D)
- Solution (PLOT3D/OVERFLOW, with/without 2nd order restart)


Commonly used FFIO enabled CGT modules


- GRIDED, TRIGED, SRAP, SURGRD, HYPGEN, BOXGR, GEN_X, GRIDINF MINMAX, LSECT, COMBINEMX, COMBINEMQ, TRILOADCMV, QINFO


Use overConvert to report/check file type and attributes, and to convert between different attributes

MULTI-THREADED TCL SCRIPT FOR VOLUME MESH GENERATION Script library procedure for generating a system of hyperbolic volume grids using multiple Tcl threads GenHypVolThread [list grid1.sur grid1.vol \$strlist1 \$bclist1 \$smulist1]\ [list grid2.sur grid2.vol \$strlist2 \$bclist2 \$smulist2]\ ... [list gridN.sur gridN.vol \$strlistN \$bclistN \$smulistN] where grid{i}.sur = input surface grid filename grid{i}.vol = output volume grid filename strlist{i} = stretching function parameters list bclist{i} = boundary conditions parameters list smulist{i} = smoothing parameters list smulist{i} = smoothing parameters list

OVERCONVERT SAMPLE OUTPUT overConvert -i filename -v -h -s unformatted file Machine is Little Endian File is Big Endian 74 records found in input file Number of Grids in multiple grid file: 72 Double Precision, no IBlanks Data is 3D Grid 3: 15x27x59 (23.9K Points) Grid 25: 17x41x54 (37.6K Points) Grid 13: 35x19x59 (39.2K Points) Grid 20: 17x43x54 (39.5K Points) Grid 69: 289x159x117 (5.4M Points) Grid 58: 386x153x98 (5.8M Points) Grid 72: 381x181x115 (7.9M Points) Grid 30: 215x538x97 (11.2M Points) Total points in file: 72.92M Total cells in file: 70.93M

MISCELLANEOUS NEW FEATURES FROM DIFFERENT MODULES

DIFFXQ - compute differences between two structured mesh files in

- grid coordinates
- solution values
- iblank values (connectivity)

TRIGED - triangulation editing tool

- read .stl, .fro files (in addition to .tri, .triq, .ucd, .fst)
- report bounding box and edge length statistics
- fast search for duplicated vertices
- perturb vertices along local surface normal by specified distance
- compute differences between two .triq files (different nvert, ntri)

QINFO - solution file header info tool

- report min/max of each Q

QED – perform editing of solution files

- swap J/K, K/L, J/L indices
- reverse J, K, K indices
- mirror velocity vector about x/y/z=0 plane
- rotate velocity vector

TUTORIALS IN CGT 2.2: OVERGRID - Under chimera2.2/tutorials/gui - Updated for OVERGRID version 2.4 A detailed OVERGRID demo is available at: The OVERGRID Graphical User Interface in Chimera Grid Tools (Parts 1, 2, 3) http://www.nas.nasa.gov/publications/ams/2014/05-13-14.html http://www.nas.nasa.gov/publications/ams/2014/05-20-14.html http://www.nas.nasa.gov/publications/ams/2014/05-29-14.html

TUTORIALS IN CGT 2.2: SCRIPTING

- General Script Library procedures (chimera2.2/tutorials/scriptlib)

- Script development using the configuration (Build) scripts (chimera2.2/tutorials/scripts)
- James' rocket (JCLV) scripting example (chimera2.2/tutorials/jclv)
- Complete process includes geometry creation, surface and volume mesh generation, input preparation for domain connectivity, flow solution, forces/moments computation
- Grid-centric approach (Build scripts)
- Each grid file contains 1 grid
- Domain connectivity options (PEGASUS5, OVERFLOW-DCF)
- Component-centric approach
- Each grid file contains all grids for 1 component
- Domain connectivity options (OVERFLOW-DCF, PEGASUS5, C3P)

This work has been partially funded by NASA's

Transformational Tools and Technologies (TTT) Project

ACKNOWLEDGEMENTS

Advanced Air Transport Technology (AATT) Project

Revolutionary Vertical Lift Technology (RVLT) Project

Space Launch System (SLS) Program

2