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Abstract 20 

The CALIOP data processing scheme only retrieves extinction profiles in those portions of the 21 

return signal where cloud or aerosol layers have been identified by the CALIOP layer detection 22 

scheme. In this study we use two years of CALIOP and MODIS data to quantify the aerosol optical 23 

depth of undetected weakly backscattering layers. Aerosol extinction and column-averaged lidar 24 

ratio is retrieved from CALIOP Level 1B (Version 4) profile using MODIS AOD as a constraint 25 

over oceans from March 2013 to February 2015. To quantify the undetected layer AOD (ULA), 26 

an unconstrained retrieval is applied globally using a lidar ratio of 28.75 sr estimated from 27 

constrained retrievals during the daytime over the ocean. We find a global mean ULA of 0.031 ± 28 

0.052. There is no significant difference in ULA between land and ocean. However, the fraction 29 

of undetected aerosol layers rises considerably during daytime, when the large amount of solar 30 

background noise lowers the signal to noise ratio (SNR).  For this reason, there is a difference in 31 

ULA between day (0.036 ± 0.066) and night (0.025 ± 0.021). ULA is larger in the northern 32 

hemisphere and relatively larger at high latitudes. Large ULA for the Polar Regions is strongly 33 

related to the cases where the CALIOP Level 2 Product reports zero AOD. This study provides an 34 

estimate of the complement of AOD that is not detected by lidar, and bounds the CALIOP AOD 35 

uncertainty to provide corrections for science studies that employ the CALIOP Level 2 AOD. 36 

 37 
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1. Introduction 42 

The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) is a space-borne lidar flying 43 

onboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) 44 

mission. CALIPSO was launched in 2006 and has produced vertical profiles of aerosols and cloud 45 

optical properties over the globe for more than ten years [Winker et al., 2010]. CALIOP aerosol 46 

products are widely used for aerosol studies such as aerosol long range transport  [e.g., Huang et 47 

al., 2008; Liu et al., 2008; Uno et al., 2009, Yumimoto et al., 2009], validation of and assimilation 48 

in aerosol models [e.g., Koffi et al., 2012; Kim et al., 2014; Pan et al., 2015; Sheng et al., 2015; 49 

Sekiyama et al., 2010], estimation of aerosol radiative effect [e.g., Huang et al., 2009; Oikawa et 50 

al., 2013; Anderson et al., 2015; Matus et al., 2015], and aerosol above cloud (AAC) effects [e.g., 51 

Chand et al., 2009; Kacenelenbogen et al., 2014; Liu et al., 2015].  52 

Since CALIPSO launched, many studies have been conducted to validate both CALIOP Level 1B 53 

and 2 Products. Validation studies show that the version 1 CALIOP Level 1B Product agrees 54 

reasonably well with ground-based or airborne lidar measurements [e.g., McGill et al., 2007; Kim 55 

et al., 2008]. Mamouri et al. [2009], Mona et al. [2009], and Pappalardo et al. [2010] compared 56 

the total attenuated backscatter at 532 nm from CALIOP with ground-based lidar measurements 57 

from EARLINET (European Aerosol Research Lidar Network; Bösenberg et al., 2003) and found 58 

that CALIOP Version 2.0 data was biased low in the free troposphere (above 3 km) and lower in 59 

the planetary boundary layer (PBL). Comparisons with airborne High Spectral Resolution Lidar 60 

(HSRL) showed that CALIOP version 3 total attenuated backscatter (TAB) at 532 nm agrees well 61 

with collocated HSRL measurements not only for the free atmosphere but for the PBL as well 62 

[Rogers et al., 2011]. Initial assessments of the CALIOP version 4 level 1B data show excellent 63 

agreement with the HSRL data set [Toth et al., 2106]. 64 
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Level 2 Products show poor agreement in aerosol optical depth (AOD) with ground-based, 65 

airborne, and space-borne measurements. Although there are differences in magnitude, most 66 

studies report that CALIOP AOD is biased low [e.g., Kacenelenbogen et al., 2011; Kittaka et al., 67 

2011; Redemann et al., 2012; Schuster et al., 2012; Kim et al., 2013; Omar et al., 2013]. Several 68 

studies have attributed the low bias to the lidar ratios used in the CALIOP aerosol retrieval. 69 

Wandinger et al. [2010] found CALIPSO dust extinction coefficient values are about 30% lower 70 

than those obtained from collocated ground-based Raman lidar retrievals, and attribute this finding 71 

to multiple scattering effects which are not accounted for in CALIOP inversions. Schuster et al. 72 

[2012] showed that the CALIOP AOD for dust has low bias (-29%) compared to AERONET 73 

(Aerosol Robotic Network) and that lidar ratios than higher than the 40 sr used in CALIOP 74 

retrievals for dust are typically retrieved from AERONET measurements (e.g., 49.7 sr in the Sahel, 75 

42.6 sr in the Middle East, and 49.7 sr at Kanpur, India). Oo and Holz [2011] found that the 76 

CALIOP lidar ratio in marine environments is often low and the CALIOP‐derived AOD bias is 77 

correlated with the aerosol particle size retrieved by the Moderate Resolution Imaging 78 

Spectroradiometer (MODIS). 79 

On the other hand, Rogers et al. [2014] reported that lidar ratios retrieved from the airborne HSRL 80 

measurements during the CALIOP validation flights in the North America are lower than the 81 

CALIOP values except for marine and clean continental aerosols. Moreover, they found that, while 82 

the CALIOP column AODs are generally biased low, the CALIOP layer AODs are almost always 83 

higher than HSRL AODs. This implies that undetected weakly backscattering aerosols in the free 84 

atmosphere offer a more plausible reason for the low bias of the CALIOP column AOD than the 85 

underestimation of lidar ratio. Rogers et al. [2014] found that CALIOP underestimates column 86 

AOD by ~0.02 due to the undetected aerosols in the free atmosphere over the North American and 87 
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Caribbean regions at night. Kacenelenbogen et al. [2014] also report a similar result but for 88 

aerosol-above-cloud (AAC). They note that CALIOP detects AAC only in ~23% of the cases in 89 

which it is observed by airborne HSRL. In some cases CALIOP fails to detect aerosol in the PBL. 90 

Kim et al. [2013] found that the marine boundary aerosols below the elevated smoke layers are 91 

frequently undetected by the CALIOP layer detection algorithm due to attenuation, which leads to 92 

underestimation of CALIOP AOD for smoke aerosols. Thorsen and Fu [2015] also showed that 93 

CALIOP detects significantly less aerosol layers for the mid and lower atmosphere compared to 94 

ground-based Raman lidars at two Atmospheric Radiation Measurement (ARM) sites. Moreover, 95 

they noted that the undetected aerosols lead to underestimation of the CALIOP-inferred aerosol 96 

direct radiative effect by 30 – 50%. 97 

Though Rogers et al. [2014] quantified the undetected CALIOP AOD using airborne HSRL for 98 

the North America and the Caribbean region, in this study we characterize the optical depth of the 99 

undetected aerosol on a global scale. For the purposes of this study, undetected aerosol layers 100 

include spatially diffuse aerosols that the CALIOP detection scheme routinely misses and are not 101 

limited to features with clearly defined boundaries. Both constrained and unconstrained aerosol 102 

retrievals are performed using two years (March 2013 – February 2015) of the CALIOP Level 1B 103 

data. The constrained aerosol retrieval using AOD from MODIS on the Aqua satellite is described 104 

in Section 4.1. We derive an estimated lidar ratio from the MODIS-AOD constrained retrieval and 105 

apply it where the constrained retrieval is not feasible. Since, the MODIS AOD is available only 106 

for daytime and the uncertainty over land is relatively large, we perform an unconstrained retrieval 107 

globally using the estimated lidar ratio for the undetected layers at nighttime and over land to 108 

investigate the spatio-temporal variation of the undetected CALIOP AOD in Section 4.2. 109 

  110 



6 
 

2. Data 111 

2.1 CALIOP 112 

The total attenuated backscatter (TAB) at 532 nm from the CALIOP Level 1B Product (Version 113 

4) is used to retrieve aerosol extinction. The TAB is the measured lidar signal that is ranged-114 

corrected and normalized for range-independent parameters such as laser energy, amplifier gain, 115 

and calibration constant [Powell et al., 2009]. The molecular and ozone number density profiles 116 

from the NASA Global Modeling and Assimilation Office (GMAO) [Bloom et al., 2005], provided 117 

as part of the CALIOP Level 1B Products, are used for molecular extinction and ozone absorption 118 

in the aerosol extinction retrieval. To determine aerosol extinction using the MODIS AOD as a 119 

constraint, we average 45 – 60 profiles of the TAB (333 m in horizontal resolution) depending on 120 

the distance between the CALIPSO ground track and MODIS grid (see section 3.1). For the 121 

retrieval with the estimated lidar ratio (Section 4.2), we average 60 profiles, i.e., 20 km in 122 

horizontal resolution. Profiles containing cloud layers are rejected using the Level 2 Cloud Layer 123 

Product (333 m, Version 3). Aerosol extinction is retrieved when 30 or more TAB profiles remain 124 

after removing cloud contamination. Before the averaging of TAB profiles, signals below the 125 

Earth’s surface are removed to avoid a contamination by surface returns using the digital elevation 126 

map (DEM) surface elevation data from the CALIOP Level 1B Products.  Vertical resolution for 127 

the TAB at 532 nm varies with altitude from 30 m to 300 m. We adjust this to 60 m from the 128 

surface to 20.2 km and 180 m from 20.2 km to 30.1 km to match vertical resolution of the CALIOP 129 

Level 2 Aerosol Profile Products. Though the Level 2 Aerosol Profile Product does not provide 130 

aerosol extinction above 30 km up to 35 km, aerosol extinction is retrieved with vertical resolution 131 

of 300 m from the Level 1B TAB profiles in this study. The cloud optical depth (COD) and 132 

stratospheric optical depth (SOD) at 532 nm for corresponding CALIOP Level 2 Products are used 133 
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to remove TAB profiles including cloud and stratospheric features from the retrieval. For this task 134 

we use CALIOP Version 3.30 products from March 2013 to February 2015 (two years) employing 135 

the same GMAO meteorological data set of the Goddard Earth Observing System Version 5.9.1 136 

(GEOS5) Forward Processing for Instrument Teams (FP-IT). 137 

 138 

2.2 MODIS 139 

MODIS is a satellite sensor onboard Terra (since 2000) and Aqua (since 2002) providing essential 140 

information on the characteristics of global aerosols [Remer et al., 2008]. MODIS measures 141 

radiances in 36 channels with a wide spectral range from 0.4 μm to 14.4 μm. It has a broad swath 142 

of 2330 km and relatively fine spatial resolution (250 m to 1 km depending on band), which can 143 

provide global coverage every one to two days. Since CALIPSO and Aqua are in the ‘A-Train 144 

Constellation’ [L’Ecuyer and Jiang, 2010], they are in the same orbit with a time gap of less than 145 

2 minutes. Therefore, CALIOP and MODIS (hereafter, MODIS refers the MODIS instrument 146 

onboard Aqua) observe aerosol optical properties of the same target nearly simultaneously. 147 

In this study, MODIS AOD (Effective_Optical_Depth_Average_Ocean) retrievals at 550 nm from 148 

Level 2 Aerosol Products (MYD04_L2) Collection 6 [Levy et al., 2013] are used as a constraint 149 

for aerosol extinction retrievals from the CALIOP TAB profiles. Because the expected uncertainty 150 

of MODIS AOD is better over ocean (±0.05τ ±0.03) than over land (±0.15τ ±0.05) [Remer et al., 151 

2005, 2008; Levy et al., 2010], we used the MODIS AOD to constrain aerosol extinction only over 152 

ocean. For QA (Quality Assurance) and cloud contamination of MODIS AOD, AODs with the 153 

QA flag ‘Quality_Assurance_Ocean’ equal to or higher than 1 (marginal) and 154 

‘Aerosol_Cloud_Fraction’ equal to zero are selected. AODs are reported at wavelengths of 532 155 
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nm and 550 nm by CALIOP and MODIS, respectively, which can lead to discrepancy in AOD of 156 

~3% for an Ångström Exponent of 1. The Ångström Exponent for wavelengths between 0.55 and 157 

0.86 µm (Angstrom_Exponent_1_Ocean) is used to convert 550 nm MODIS AOD to the 532 nm 158 

AOD for constraining CALIOP inversions.  159 

  160 
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3. Methodology 161 

3.1 Collocation of CALIOP and MODIS Measurements 162 

MODIS Level 2 Aerosol Products provide aerosol optical properties with a horizontal resolution 163 

of 10 km by 10 km near nadir, whereas the CALIOP laser has a footprint of 70 m in diameter at 164 

the surface. CALIOP provides Level 1B profiles with a horizontal resolution of 333 m and Level 165 

2 Products of 5 km along the ground track. The following steps are applied to collocate CALIOP 166 

and MODIS data: 167 

(1) Find a quality assured MODIS 10 km x 10 km pixel in the Level 2 Aerosol Product which 168 

lies within 5 km of the CALIPSO ground track. 169 

(2) Identify CALIOP Level 1B TAB profiles within 10 km from the center of the MODIS 170 

pixel. 171 

(3) Of these, discard TAB profiles which contain cloud signals using CALIOP 333-m Level 2 172 

Cloud product. 173 

(4) The collocated dataset consists of 30 or more cloud-free TAB profiles with a cloud optical 174 

depth (COD) and stratospheric optical depth (SOD) of zero and the MODIS pixel from (1). 175 

Aerosol extinction is retrieved from the averaged CALIOP Level 1B collocated TAB profiles. 176 

Typically, each dataset is horizontally averaged for 16 – 20 km (48 – 60 profiles) based on the 177 

relative distance between the MODIS pixel and the CALIPSO ground track. 178 

 179 

3.2 AOD constrained retrieval 180 
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An iterative method, similar to Young and Vaughan [2009], is employed to retrieve aerosol 181 

extinction. The CALIOP Level 2 algorithm retrieves aerosol extinction from top to base of the 182 

detected aerosol layer [Young and Vaughan, 2009; Vaughan et al., 2009]. In this study, the retrieval 183 

range is extended from the detected layer top to higher altitudes up to 35 km. Retrieved aerosol 184 

extinction for undetected layers is very small and shows large fluctuations with frequent negative 185 

values because of low signal to noise ratio (SNR). The negative extinction has no physical meaning 186 

but has not been omitted to avoid bias when calculating AOD and mean extinction profiles. 187 

The TAB 𝛽′(𝑟) provided by the CALIOP Level 1B Product can be written as 188 

𝛽′(𝑟) = [𝛽𝑚(𝑟) + 𝛽𝑝(𝑟)]𝑇𝑚
2 (𝑟0, 𝑟)𝑇𝑝

2(𝑟0, 𝑟)𝑇𝑜
2(𝑟0, 𝑟),                                   (1) 189 

where 𝛽(𝑟) is the backscatter coefficient at range 𝑟 from the satellite, 𝑇2(𝑟0, 𝑟) represents the two-190 

way transmittance between a calibration region at 𝑟𝑐 (36-39 km for the Version 4) and range 𝑟, and 191 

subscripts m, p, and o refer to molecular, particles (aerosols), and ozone, respectively. The 192 

molecular and ozone contributions in the Equation (1) are known from their vertical profiles of 193 

number density. The two-way transmittance of particles is expressed by 194 

𝑇𝑝
2(𝑟0, 𝑟) = 𝑒𝑥𝑝 [−2 ∫ 𝜎𝑝(𝑟′)𝑑𝑟′

𝑟

𝑟0
],                                                   (2) 195 

Where 𝜎𝑝(𝑟) is the aerosol extinction coefficient at range 𝑟. Since the Equation (1) is ill-posed 196 

with two unknowns (aerosol backscatter and extinction coefficients) in one equation, the 197 

extinction-to-backscatter ratio (lidar ratio) for aerosol, 𝑆𝑝(𝑟), which is defined as  198 

𝑆𝑝(𝑟) = 𝜎𝑝(𝑟) 𝛽𝑝(𝑟)⁄                                                               (3) 199 

is widely used to retrieve backscatter and extinction, in the so called unconstrained solution 200 

[Fernald et al., 1972; Fernald, 1984]. If additional information is available, however, such as 201 
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transmittance and AOD, the equation can be solved without assuming a lidar ratio leading to the 202 

so called constrained solution [Young, 1995; Welton et al., 2000]. The CALIOP Level 2 retrieval 203 

algorithm uses both constrained and unconstrained retrievals using two-way transmittance and pre-204 

determined lidar ratios for each aerosol type [Omar et al., 2009; Young and Vaughan, 2009]. 205 

The retrieval method using MODIS AOD as a constraint in this study is similar to the approach 206 

described in Burton et al. [2010].  An analogous technique for ground-based lidar measurements 207 

uses AODs from Sun photometers [e.g., Welton et al., 2000; Voss et al., 2001; Murayama et al., 208 

2003]. A flowchart for the retrieval is shown in Figure 1. The collocated dataset includes MODIS 209 

(AOD, QA, cloud fraction, and Ångström Exponent) and CALIOP (TAB, molecular and ozone 210 

number density, aerosol layer top and base altitudes, COD, SOD, and surface elevation). Using an 211 

initial lidar ratio (𝑆0), we retrieve aerosol extinction coefficients. After retrieving aerosol 212 

extinction profile (𝜎𝑝), the CALIOP AOD (𝜏𝐶𝐴𝐿) is calculated by vertical integration of the 213 

retrieved aerosol extinction coefficients. The aerosol lidar ratio (𝑆𝑝) is then adjusted by comparing 214 

the AOD from CALIOP (𝜏𝐶𝐴𝐿) with MODIS (𝜏𝑀𝑂𝐷). The iterative retrieval ends when the 215 

difference of AOD between CALIOP and MODIS, 𝜀, becomes less than 1%. For the vertical 216 

integration of aerosol extinction, the lower limit (𝑠𝑓𝑐) is 120 m above the surface to ensure that 217 

the averaged TAB profiles exclude surface returns, and the upper limit (𝑡𝑜𝑝) is extended from top 218 

of the detected layers up to 35 km above mean sea level. The bias in the undetected layer AOD 219 

(ULA) introduced by ignoring the aerosol in the lowest 120 m of the atmosphere is negligible (less 220 

than 1%). For the purposes of this study, the lidar ratio is assumed constant in the atmospheric 221 

column (e.g., as in Burton et al. [2010] and Dawson et al. [2015]).  222 

We hypothesize that there are undetected aerosol layers above and between the detected aerosol 223 

layers and regions where CALIOP finds no layers (CALIOP AOD = 0). Since CALIOP AOD is 224 
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calculated only from the detected layers, the CALIOP AOD is smaller than the total column AOD. 225 

Further, we hypothesize that the AOD retrieved including clear regions will be closer to the total 226 

column AOD as we increase the range above the detected layer. This will be tested by 227 

incrementally increasing top height of the column from 5 km to 35 km, and noting the retrieved 228 

column AOD and lidar ratios. Since the CALIOP Level 1B (Version 4) Products are normalized 229 

to the molecular signal at 36 – 39 km, the initial altitude for the retrieval cannot be extended higher 230 

than this range. In order to investigate the ULA from the CALIOP Level 2 algorithm, aerosol 231 

extinction profiles retrieved in this study are integrated by excluding layers where the vertical 232 

feature mask (VFM) from CALIOP Level 2 Profile Product reports an aerosol layer. 233 

 234 

3.3 Unconstrained retrieval 235 

The MODIS AOD constrained retrieval is possible only at daytime. Moreover, the retrieval is 236 

limited to the ocean in this study because of the large uncertainty in MODIS AOD over land. In 237 

order to extend the retrieval to land and at nighttime, the unconstrained retrieval is applied using 238 

an estimated lidar ratio for the undetected layers determined from a distribution of the constrained 239 

retrievals. Collocated datasets of clean cases where CALIOP detects only marine boundary layer 240 

are chosen to estimate lidar ratio for the undetected layers. Because the lidar ratio for clean marine 241 

aerosol is well known, we can fix the lidar ratio for marine boundary layer at 23 sr [Burton et al., 242 

2013; Rogers et al., 2014]. Thus, the lidar ratio for undetected layers can be determined from the 243 

AOD constrained retrieval (Figure 1) by fixing the lidar ratio for clean marine aerosol and 244 

adjusting lidar ratio only for the undetected layers. Note that all results in Section 4.2 are from the 245 

unconstrained retrieval using the estimated lidar ratio and TAB only. 246 

247 
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4. Results 248 

4.1 Retrieval using MODIS AOD as a constraint 249 

The CALIOP Level 2 algorithm retrieves aerosol extinction only for detected layers whereas 250 

MODIS AOD is for the whole atmospheric column from the top of the atmosphere (TOA) to the 251 

surface. Thus, aerosol extinction retrievals from higher altitudes are more accurate when using 252 

MODIS AOD as a constraint because they are more inclusive of the undetected features. In this 253 

study, the extinction is retrieved from the CALIOP Level 1B Product using initial top altitudes of 254 

35 km, 25 km, 15 km, 5 km and top of the detected layer as shown in Figure 2 for March 2013 to 255 

February 2015. The retrieved lidar ratio distributions are shown in Figure 3. For aerosol extinction 256 

retrieved from the top of the detected layer to the surface using MODIS AOD as a constraint 257 

(Figure 3e), the lidar ratios are large with the mean of 57.32 sr. This is because the MODIS AOD 258 

is larger than CALIOP AOD for most of the dataset as reported by many previous studies [e.g., 259 

Oo and Holz, 2011; Redemann et al., 2012; Kim et al., 2013]. The larger lidar ratio compensates 260 

for the missing AOD from CALIOP. As the initial altitude for the retrieval (hereafter referred to 261 

as the initial altitude) is increased, the lidar ratio decreases, an indication that as more undetected 262 

layers are accounted for, the column lidar ratio is closer to truth and the distribution is narrower. 263 

Table 1 shows mean AODs for MODIS, CALIOP, and retrieved in this study for the detected and 264 

undetected layers from different initial altitudes from March 2013 to February 2015. In Table 1, 265 

the total retrieved AOD (sum of detected and undetected) always equals to MODIS AOD which 266 

is used as constraint. The CALIOP AOD corresponds to the AOD for detected layers, but has 267 

different values because the lidar ratios used in the retrievals are different. As shown in Figure 3, 268 

lidar ratio decreases as the initial altitude increases, which results in decrease of retrieved AOD 269 
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for the detected layers. On the other hand, since more undetected layers are included, ULA 270 

increases as the initial altitude increases. The values in Table 1 are only for successful retrievals 271 

and might be different from mean AODs for CALIOP and MODIS reported by previous studies. 272 

Here, the success rate in Table 1 represents successful retrievals out of total retrieval attempts. The 273 

retrieval sometimes diverges and fails to find solution, which leads to “failed” retrievals.  274 

 The global mean profiles of total retrieved extinction for different initial altitudes are shown in 275 

Figure 4. In the free atmosphere, aerosol extinction is small when the initial altitude is low. 276 

Because AOD above the initial altitude is assumed to be zero, the two-way transmittance of aerosol 277 

from the calibration altitude to the initial altitude is overestimated in Equation 1 when the initial 278 

altitude is low, which leads to small aerosol extinction. However, aerosol extinction increases 279 

rapidly with decrease of altitude for low initial altitudes due to larger lidar ratios. For this reason, 280 

when the initial altitude for AOD constrained retrieval is not high enough, aerosol extinction is 281 

underestimated for the free atmosphere but overestimated for the low atmosphere near the surface. 282 

The lidar ratios obtained from the AOD constrained retrieval are averaged values for whole 283 

atmospheric column including both detected and undetected layers. The ULA shown in Table 1 284 

thus increases or decreases based on changes in lidar ratio for the undetected layers. A global mean 285 

lidar ratio for undetected layers is estimated from the AOD constrained retrieval using the method 286 

described in Section 3.3. The mean (± standard deviation) and median (± median absolute 287 

deviation) lidar ratio for undetected layers retrieved from these samples are 32.62 ± 18.62 sr and 288 

28.75 ± 10.29 sr, respectively (Figure 5). Since the distribution is highly skewed and has a large 289 

standard deviation, the median is used as the representative lidar ratio for the undetected layers. 290 

We assume that the undetected layers are mostly dominated by clean background aerosols and 291 

spatio-temporal variation of the lidar ratio for the undetected layers is negligible. 292 
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 293 

4.2 Unconstrained retrieval for the undetected layer AOD  294 

Figure 5 shows the distribution of lidar ratios of undetected layers retrieved using the procedure 295 

described in section 3.3.  Using the median value of 28.75 sr for the undetected aerosol layers, 296 

aerosol extinction is retrieved from the CALIOP Level 1B Product from 35 km to the surface for 297 

both day and night, over land and ocean. We use the lidar ratios reported in the CALIOP Level 2 298 

Product for the detected layers. The mean AODs for detected (CALIOP Level 2 Products) and 299 

undetected layers (retrieved in this study) from the unconstrained retrieval are summarized in 300 

Table 2. The global mean ULA is 0.031 ± 0.052. The total retrieved AOD and corresponding 301 

CALIOP AOD are 0.116 ± 0.149 and 0.070 ± 0.123, respectively. The summation of AOD for 302 

detected (CALIOP) and undetected layers should equal to whole column AOD in Table 1. 303 

However, the CALIOP AOD is different from the AOD for detected layers retrieved in this study 304 

because of the difference in horizontal and vertical averaging and the correction for the two-way 305 

transmittance above the layer that is applied in this study but not in the CALIOP Level 2 retrieval 306 

algorithm. An overestimation of the two-way transmittance of aerosol by assuming no aerosol 307 

above the detected layers for the CALIOP Level 2 retrieval leads to low CALIOP AOD compared 308 

with AOD retrieved in this study [Young et al., 2013]. 309 

Compared to the constrained retrieval results, the mean AODs for the sum of detected and 310 

undetected layers are smaller for unconstrained retrievals. This is primarily a sampling issue. The 311 

smaller CALIOP AOD for the unconstrained retrieval is mainly due to the inclusion of low AODs 312 

retrieved over snow-covered regions in high latitudes, especially in Polar Regions. Because 313 

MODIS rarely retrieves AOD with high confidence over bright surfaces, many records with low 314 

AOD over those regions are excluded for the constrained retrieval. Smaller mean ULA for the 315 
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unconstrained retrieval is caused by differences in the lidar ratio. The (mean ± standard deviation) 316 

lidar ratio for constrained retrieval (31.75 ± 12.26 sr) are determined by MODIS AOD as shown 317 

in Figure 3(a), whereas a median lidar ratio of 28.75 sr (Figure 5) determined from a constrained 318 

retrieval of all layers above the marine boundary layer (MBL), is used for unconstrained retrieval. 319 

The ULA is close to the mean bias range between 0.03 and 0.04 from Redemann et al. [2012] and 320 

comparable with other studies; mean AOD bias of 0.043 between CALIOP and MODIS reported 321 

by Kim et al. [2013], and mean bias of 0.064 from Oo and Holz [2011]. This implies that a major 322 

reason for the underestimation of AOD by CALIOP when compared to MODIS AOD is due to the 323 

undetected layers by the CALIOP Level 2 layer detection algorithm.  324 

 325 

4.2.1 Undetected layer AOD – day vs. night 326 

The ULA during day and night varies significantly in both its mean and standard deviation (Table 327 

1, Figure 6a, 6b). The broader distribution in Figure 6(a) arises from the lower SNR in the CALIOP 328 

measurements during daytime compared to nighttime. The mean ULA for daytime (0.036 ± 0.066) 329 

is ~44% larger than nighttime (0.025 ± 0.021).  Our nighttime ULA estimate is slightly larger than 330 

the value of ~0.02 reported by Rogers et al. [2014]. This is not unexpected, as in this study we use 331 

CALIOP data to retrieve aerosol extinction over the globe up to an altitude of 35 km, whereas the 332 

Rogers et al. estimate is derived from HSRL measurements acquired only in North America and 333 

the Caribbean, and their AOD integration height was limited to ~7.5 km (i.e., the aircraft flight 334 

altitude). Another difference between the two studies is that we specifically include those CALIOP 335 

profiles in which no aerosols were detected (i.e., AOD = 0) in cloud-free skies.  While excluding 336 

these data is of little consequence within the limited temporal and spatial domain considered by 337 

Rogers et al. [2014], when examining data on a global scale, we find that the CALIOP Level 2 338 
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layer detection algorithm fails to identify aerosols in 17–20% of the cases where we subsequently 339 

retrieved aerosol extinction in the 30°N–40°N latitude band (i.e., in the same general region as 340 

many of the Rogers et al. [2014] measurements). While the Rogers et al. [2014] study concludes 341 

that for nighttime measurements the AOD from missing layers is insignificant compared with 342 

errors in the CALIOP AOD arising from other sources, our results suggest instead that ULA during 343 

nighttime (0.025) is not negligible when compared with the corresponding mean AOD (0.074) 344 

reported in the CALIOP version 3 data products.  During daytime, Rogers et al. [2014] find that 345 

CALIOP fails to detect aerosols in roughly half of the profiles in which HSRL measures and AOD 346 

less than 0.1.  Our results are similar.  Our analyses show that CALIOP detects only 60% of total 347 

AOD during daytime.  CALIOP’s detection efficiency is much better at night than during, and 348 

hence the daytime ULA (0.036) is much larger than the nighttime value.  349 

Vertical profiles of aerosol extinction for undetected layers for day and night are shown in Figure 350 

6(c) along with aerosol extinction profiles from the CALIOP Level 2 Profile Products which 351 

represent the extinction for detected layers. CALIOP detects a higher AOD during nighttime at 352 

altitudes above 1 km. Aerosol extinction below 1 km, on the other hand, is larger during daytime 353 

than nighttime probably due to enhanced generation of anthropogenic aerosols during daytime 354 

over land [Smirnov et al., 2002]. Unlike extinction profiles for detected layers, undetected aerosol 355 

extinction for daytime is larger than nighttime not only near the surface but also in the upper 356 

atmosphere. The total attenuated backscatter from the CALIOP Level 1B Products is noisier during 357 

daytime than nighttime and more likely to confound detection of tenuous aerosol layers in the 358 

CALIOP layer detection algorithm [Vaughan et al., 2009]. Winker et al. [2013] showed that the 359 

detection thresholds used in the CALIOP Level 2 data processing is much larger for daytime than 360 
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nighttime. Rogers et al. [2014] reported similar estimation of the minimum extinction detection 361 

threshold for CALIOP; 0.012 km-1 for nighttime and 0.067 km-1 for daytime.  362 

 363 

4.2.2 Undetected layer AOD – land vs. ocean 364 

The ULA over land (0.033 ± 0.059) is ~10% larger than over ocean (0.030 ± 0.046), but similar 365 

within the error bars. The histograms show similar probability distributions of AOD (Table 2, 366 

Figure 7a, 7b). However, the vertical distributions of the extinction over land and ocean are 367 

different (Figure 7c). The undetected aerosols are more frequently elevated to higher altitudes over 368 

land than over ocean. The extinction profile over land with the ordinate of above ground level 369 

(AGL) instead of above mean sea level (AMSL), is similar to the ocean profile above 1.5 km. 370 

Aerosols can be elevated to higher altitude (AMSL) over land than ocean because of geographical 371 

effects. A significant difference in the aerosol extinction between land and ocean appears near the 372 

surface. Since aerosols in the boundary layer are well detected, the undetected aerosol extinction 373 

decreases near the surface over ocean. On the other hand, large undetected extinction below 1.5 374 

km AGL over land indicates that aerosols near the land surface are more frequently undetected. 375 

Figure 6(c) and Figure 7(c) show that the aerosol extinction for undetected layers decreases 376 

exponentially with altitude. The global mean undetected aerosol extinction is ~0.002 km-1 at 5 km 377 

and ~0.001 km-1 at 10 km, which is consistent with previous reports for “background” aerosol 378 

extinction. Kent et al. [1998] found the mean extinction for typical background aerosols of 0.0034 379 

km-1 at 532 nm from LITE measurements in the southern hemisphere (between 5°S and 45°S) from 380 

6 km to the tropopause. Winker et al. [2013] report that the average lower limit on aerosol 381 

extinction between 6 km and 9 km is about 0.001 km-1 at 525 nm using Stratospheric Aerosol and 382 
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Gas Experiment (SAGE II) satellite data. Winker et al. [2013] also retrieved the aerosol extinction 383 

for whole column from the CALIOP data starting at 12 km to the surface using a constant aerosol 384 

lidar ratio. They report that the CALIOP Level 3 (monthly mean) profiles generally underestimate 385 

free tropospheric aerosol loading in clean conditions but no more than about 0.003 km-1. The 386 

underestimation of CALIOP aerosol extinction corresponds to the undetected aerosol extinction 387 

shown in this study. 388 

 389 

4.2.3 Undetected layer AOD – spatial distribution 390 

Global distributions of the ULA show a significant difference in magnitude between day and night 391 

(Figure 8). The plots show several features of the global distribution of ULA; (1) similar in pattern 392 

between day and night, (2) high in the Northern Hemisphere, (3) relatively high over land and 393 

outflow of major aerosol source regions (especially for smoke) at mid and low latitudes, (4) low 394 

over elevated land surfaces, (5) high at high latitudes.  395 

Figure 9 shows zonal mean aerosol extinctions for (a) total, (b) detected and (c) undetected layers. 396 

Figure 9(a) and Figure 9(b) show that the major structure of aerosols is well captured by CALIOP 397 

Level 2 layer detection algorithm and the most of aerosols are concentrated near the surface and 398 

maximum extinction appears below 1 km AMSL. On the other hand, the maximum undetected 399 

extinction (Figure 9c) is located 1 – 2 km AMSL and decreases near the surface at mid and low 400 

latitudes (60ºS - 60ºN). This implies that aerosols near the surface (PBL) are relatively well 401 

detected but aerosols near the top of the PBL and in the free troposphere are more frequently 402 

undetected. Figure 10 shows aerosol extinction profiles for total and undetected layers along with 403 

relative frequency for the undetected layers averaged for 60ºS - 60ºN. The total extinction 404 
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decreases with altitude whereas the relative frequency of the undetected layers increases. Since the 405 

undetected extinction profile can be represented as a product of the total extinction and the relative 406 

frequency of undetected layers, the maximum altitude for the undetected extinction is located near 407 

1.5 km. An interesting feature is found in Figure 9(c) around 20 km in altitude over the tropics. 408 

Stratosphere-troposphere exchange (STE) and dehydration are the main mechanisms for transport 409 

of aerosol to the stratosphere [Wang et al., 1996]. For example, overshooting clouds associated 410 

with deep convective system can transport tropospheric aerosols to the stratosphere. The results 411 

shown in this study are from the undetected or background aerosols excluding detected aerosols 412 

such as volcanic aerosols and polar stratospheric aerosols (PSAs) and are therefore representative 413 

of weak features only.  414 

Though the total extinction is very small in Figure 9(a), the maximum undetected extinction occurs 415 

in Polar Regions (Small extinction values below 3 km AMSL in the Antarctic region are due to 416 

the surface elevation of Antarctica.). Figure 11(a) shows distributions of zonal mean AODs for 417 

total retrieved and undetected layers and CALIOP Level 2 Products which correspond to detected 418 

layers. The CALIOP AOD is smaller than the total retrieved AOD by 0.046 on average, but general 419 

features of the maximum around 10ºN, minor peak at 50ºS and low AOD at high latitudes are 420 

consistent with previous work of modeling and observations [e.g., Myhre et al., 2007; Toth et al., 421 

2013; Lacagnina et al., 2015]. The ULA, which corresponds to a vertical integration of Figure 422 

9(c), does not show significant variation due to latitude. The ULA is relatively small from 50ºS to 423 

30ºN and somewhat larger for the northern hemisphere and the Polar Regions. Figure 11(b) shows 424 

the ratio of ULA to total AOD and the ratio of cases where the CALIOP detects no aerosol layers 425 

(AOD = 0) to the whole data for cloud-free conditions. This zero-AOD for CALIOP represents 426 
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cases where the CALIPO Level 2 layer detection algorithm does not detect aerosols even in the 427 

PBL. This accounts for large fraction of ULA over the Polar Regions near the surface. 428 

 429 

4.2.4 Source of uncertainty in ULA 430 

For this study, the signal-to-noise ratio (SNR) of the CALIOP signal at any altitude region is 431 

defined as 𝜇/𝜎, where 𝜇 is the mean signal and 𝜎 is the standard deviation.  Low SNR for 432 

undetected layers introduces an uncertainty and bias in the retrieval. Young et al. [2013] point out 433 

that the retrievals are positive-biased for low SNR (less than or equal to 1) and the bias increases 434 

with decreasing SNR. At single shot resolution, the SNR of the CALIOP Level 1B TAB is 435 

substantially less than 1 throughout the entire profile, and thus can introduce a positive bias into 436 

the retrieved AOD.  To minimize this effect, TAB profiles are averaged to 20 km in horizontal and 437 

smoothed vertically with a sliding window of 300 m – 1500 m (varies with altitude) before the 438 

retrieval. The typical SNR in this study is 0.5 – 1 for day and 1 – 2 for night at around 35 km where 439 

the retrieval is initiated, which can lead to a slight positive bias in ULA.  440 

The aerosol backscatter and extinction from the renormalization altitude to the surface can be 441 

solved from Equation (1) rewritten as 442 

𝛽𝑝(𝑟) = 𝛽′
𝑁

(𝑟) [𝑇𝑚
2 (𝑟𝑁 , 𝑟)𝑇𝑝

2(𝑟𝑁 , 𝑟)𝑇𝑜
2(𝑟𝑁, 𝑟)]⁄ − 𝛽𝑚(𝑟),                                 (4) 443 

where 𝑇𝑝
2(𝑟𝑁 , 𝑟) = 𝑒𝑥𝑝 [−2 ∫ 𝑆𝑝 𝛽𝑝(𝑟)(𝑟′)𝑑𝑟′

𝑟

𝑟𝑁
] and 𝑟𝑁is the altitude where the retrieval is 444 

initiated [Young and Vaughan, 2009; Young et al., 2013]. 𝛽′
𝑁

(𝑟) is renormalized attenuated 445 

backscatter defined as 446 

𝛽′
𝑁

(𝑟) = 𝛽′(𝑟) [𝑇𝑚
2 (𝑟0, 𝑟𝑁)𝑇𝑝

2(𝑟0, 𝑟𝑁)𝑇𝑜
2(𝑟0, 𝑟𝑁)]⁄  447 
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= [𝛽𝑚(𝑟) + 𝛽𝑝(𝑟)]𝑇𝑚
2 (𝑟𝑁, 𝑟)𝑇𝑝

2(𝑟𝑁 , 𝑟)𝑇𝑜
2(𝑟𝑁 , 𝑟) .                             (5) 448 

Since 𝑟𝑁 (= 35 km) for unconstrained retrieval in this study is very close to 𝑟0 which is determined 449 

between 36 – 39 km, error in the renormalization is not significant. Thus, major sources of error 450 

in ULA for the unconstrained retrieval are calibration factor and lidar ratio in Equation (4). The 451 

uncertainty in the calibration factor includes uncertainties in the molecular backscatter and two-452 

way transmittance, and the estimated scattering ratio at the calibration range [Young et al., 2013]. 453 

The uncertainty in the lidar ratio corresponds to the errors in the constrained retrieval because it is 454 

determined from the constrained retrieval using MODIS AOD as a constraint. Assuming the lidar 455 

ratio is constant without spatio-temporal variability for undetected layers also introduces 456 

uncertainty in the extinction retrieval [Burton et al., 2010].    457 

Figure 12 shows simple sensitivity tests with respect to the calibration factor and the lidar ratio. 458 

ULA is very sensitive to both calibration factor and lidar ratio. Using comparisons with collocated 459 

airborne HSRL measurements, Rogers et al. [2011] estimate calibration coefficient uncertainties 460 

for the Version 3 CALIOP Level 1B Products as 2.7% ± 2.1% at night and 2.9% ± 3.9% during 461 

daytime, with the CALIOP attenuated backscatter coefficients being biased low relative to the 462 

HSRL measurements (i.e., the V3 CALIOP calibration coefficients are biased high). Vernier et al. 463 

(2009) estimate that CALIOP level 1B Version 3 TAB is systematically biased low by 2% to as 464 

much as 10%, depending on latitude and season, due to unacknowledged aerosol loading in the 465 

Version 3 calibration region between 30 – 34 km. They suggest calibrating in the relatively aerosol-466 

free region of 36–39 km identified in both SAGE and CALIOP data. This suggestion is 467 

implemented in CALIOP data processing for Version 4 Product which is used in this study 468 

[Getzewich et al., 2016]. Calibration biases relative to the HSRL data set are now reduced to 0.2% 469 

± 2.4% at night and -0.2% ± 3.9% during daytime [Toth et al., 2106]. Figure 12(a) shows that the 470 
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error of 5% in the calibration results in large ULA bias (-57%), but relatively small bias in ULA 471 

(2.5%) for the calibration error of 0.2%. 472 

Uncertainty in ULA due to error in the lidar ratio is more significant. Voss et al. [2001] found the 473 

lidar ratio of 32 ± 6 sr for the clean Northern Hemisphere aerosol measured during the Aerosols99 474 

cruise. Ansmann et al. [2001] report the lidar ratios around 35 sr for background-like aerosol during 475 

the Second Aerosol Characterization Experiment (ACE 2). Similarly, CALIPSO Version 3 476 

algorithm uses the lidar ratio of 35 sr for clean background (clean continental) aerosol [Omar et 477 

al., 2009]. Larger lidar ratios for the background aerosols are used by Heese and Wiegner [2008] 478 

(55 sr) and Immler and Schrems [2003] (44 ± 5 sr), whereas Tesche et al. [2007] found 479 

unexpectedly low lidar ratios of approximately 25 sr for a case of background aerosol with a low 480 

optical depth of 0.05 from Raman lidar in China. The mean (32.62 ± 18.62 sr) and median (28.75 481 

± 10.29 sr) lidar ratio for undetected layers retrieved in this study is slightly smaller than these 482 

values. However, the lidar ratio for undetected layers estimated in this study includes not only 483 

background aerosols but also undetected aerosols of various types. Moreover, optical properties of 484 

background aerosols in the upper troposphere and stratosphere can be different from those in the 485 

low troposphere. Kent et al. [1998] shows that the lidar ratio in the stratosphere and upper 486 

stratosphere lies in the relatively broad range 20 – 50 sr at 532 nm from Mie calculations for 487 

aerosols from biogenic, anthropogenic or volcanic sources. An error of 10 sr in the lidar ratio leads 488 

to ~50% in ULA when the lidar ratio for undetected layer is about 30 sr. However, ULA increases 489 

rapidly for lidar ratios larger than 40 sr (Figure 12b). 490 

  491 
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5. Conclusions 492 

Aerosol extinction is retrieved from the total attenuated backscatter at 532 nm of CALIOP Level 493 

1B Products, without an a priori assumption of an aerosol lidar ratio, using collocated MODIS 494 

AOD as a constraint at daytime over ocean. We found that the retrieved lidar ratio depends on the 495 

altitude at which the retrieval is initiated implying that the AOD from undetected layers above the 496 

aerosol layers reported in the CALIOP Level 2 products is not negligible and can affect the 497 

column-averaged lidar ratio and AOD. In this study, the lidar ratio for undetected layers is 498 

estimated using distributions from the AOD constrained method, and applied to all undetected 499 

layers including nighttime and over land. Major findings are as follows. 500 

 - The global mean (± standard deviation) and median (± median absolute deviation) aerosol lidar 501 

ratio for the undetected layers are 32.62 ± 18.62 sr and 28.75 ± 10.29 sr, respectively, from 502 

CALIOP Level 1B Products using MODIS AOD as a constraint. From an unconstrained retrieval 503 

using the estimated lidar ratio (28.75 sr), the global mean AOD for the undetected layers in 504 

CALIOP Level 2 Products is 0.031 ± 0.052 which corresponds to 25.9% of mean total retrieved 505 

AOD and 44.3% of mean CALIOP AOD. This result depends on the accuracy of the estimated 506 

lidar ratio value of 28.75 sr.  507 

- ULA values are similar within the error bars between land (0.033 ± 0.059) and ocean (0.030 ± 508 

0.046). Aerosols near the surface are less frequently detected by the CALIOP layer detection 509 

algorithm over land. 510 

 - Whereas the total AOD for daytime (0.113 ± 0.150) is only 6% smaller than nighttime (0.120 ± 511 

0.149), ULA shows a large difference between day (0.036 ± 0.066) and night (0.025 ± 0.021). 512 

The increase in undetected layers during daytime is likely due to lower SNR at daytime. 513 



25 
 

 - ULA is small near the surface but has maximum at 1 – 2 km AMSL for mid and low latitudes 514 

(60ºS - 60ºN). This implies that aerosols in the PBL are relatively well detected but aerosols near 515 

the top of the boundary layer are more frequently undetected.  516 

 - ULA is larger in the northern hemisphere than the southern hemisphere and has minimum at 517 

40ºS and maximum in the Arctic. Large ULA for the Polar Regions is strongly related to the 518 

cases where CALIOP reports zero AOD.  Due to low SNR, CALIOP does not detect aerosol 519 

layers in Polar Regions in more than 60% of cloud free opportunities. 520 

This study provides an estimate of the complement of AOD that is not detected by lidar to bound 521 

CALIOP AOD uncertainty and provide corrections for studies that employ the CALIOP Level 2 522 

AOD. The ULA retrieved in this study includes AODs not only from layers not detected by the 523 

CALIOP Level 2 layer detection algorithm but also from weak background aerosols. These can be 524 

reduced by improving the detection capability of the algorithms and increasing the SNR, e.g., by 525 

increasing spatial averaging to 160 or 240 km. However, the ULA cannot be completely accounted 526 

for unless the CALIOP Level 2 algorithm retrieves whole atmospheric column. It is challenging 527 

to adapt a whole-column retrieval in CALIOP Level 2 algorithm because of the low SNR for the 528 

undetected layers. As shown in Figure 6 and Figure 7, the ULA ranges from -0.1 to values above 529 

+0.2.  530 

 531 

  532 
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Tables 783 

 784 

Table 1. Mean (± standard deviation) AODs for MODIS, CALIOP, and retrieved in this study (detected 785 
and undetected layers) for constrained retrieval with different altitudes for initiating the retrieval. The 786 
numbers of retrieved data with success rates for the retrieval are also shown. The lidar ratios for the 787 
constrained retrieval are shown in Figure 3. 788 

 35 km 25 km 15 km 5 km Layer Top 

MODIS  0.135 ± 0.070 0.136 ± 0.070 0.138 ± 0.071 0.137 ± 0.071 0.137 ± 0.072 

CALIOP 0.094 ± 0.095 0.094 ± 0.095 0.094 ± 0.094 0.092 ± 0.092 0.092 ± 0.094 

Detected layer 0.092 ± 0.074 0.096 ± 0.073 0.103 ± 0.074 0.114 ± 0.071 0.127 ± 0.070 

Undetected layer 0.043 ± 0.033 0.040 ± 0.033 0.035 ± 0.032 0.023 ± 0.027 0.010 ± 0.019 

No. of data 

(success rate) 

150,467 

(0.63) 

165,149 

(0.69) 

180,871 

(0.75) 

201,819 

(0.84) 

205,035 

(0.85) 

 789 

  790 
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Table 2. Mean (± standard deviation) AODs for whole column (retrieved), CALIOP (Level 2 Products), 791 
detected and undetected layers (retrieved), and number of data points used for unconstrained retrieval from 792 
35 km AMSL to surface. The estimated lidar ratio for undetected layers of 28.75 sr. 793 

 All Land Ocean Day Night 

Column 0.116±0.149 0.110±0.172 0.121±0.129 0.113±0.150 0.120±0.149 

CALIOP 0.070±0.123 0.067±0.152 0.072±0.095 0.067±0.124 0.074±0.122 

Detected Layer 0.085±0.139 0.077±0.162 0.091±0.118 0.077±0.131 0.096±0.149 

Undetected Layer 0.031±0.052 0.033±0.059 0.030±0.046 0.036±0.066 0.025±0.021 

No. of data 

(success rate) 

4,153,384 

(0.97) 

1,786,665 

(0.95) 

2,318,241 

(0.98) 

2,356,336 

(0.97) 

1,797,048 

(0.97) 

 794 

  795 
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Figures 796 

 797 

 798 

Figure 1. A flowchart for the aerosol extinction retrieval using MODIS AOD as a constraint.  799 
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 800 

Figure 2. Initial altitudes for the AOD constrained retrieval; from (a) 35 km, (b) 25 km, (c) 15 km, (d) 5 801 
km, and (e) the top of the layer detected by the CALIOP Level 2 algorithm. The lower boundary is 120 m 802 
above the surface to avoid contamination by surface returns.  803 
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 804 

Figure 3. Frequency distributions of aerosol lidar ratio for different initial altitudes shown in Figure 2. Lidar 805 
ratios are retrieved from CALIOP Level 1B Product using MODIS AOD as a constraint over ocean from 806 
March 2013 to February 2015. The initial altitudes are (a) 35 km, (b) 25 km, (c) 15 km, (d) 5 km, and (e) 807 
top of the aerosol layer from the CALIOP Level 2 Product. The mean (± standard deviation), median (± 808 
median absolute deviation), and number of data are shown.  809 
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 810 

Figure 4. Global mean profiles of total extinction from AOD constrained retrieval for each initial altitude 811 
shown in Figure 2 from March 2013 to February 2015.  812 

 813 

 814 

 815 

Figure 5. Frequency distributions of aerosol lidar ratio for the undetected layers above marine boundary 816 
layer from the AOD constrained retrieval from March 2013 to February 2015. Single layer cases of clean 817 
marine aerosol near the surface are selected and the lidar ratio of 23 sr is used for clean marine layer.  818 
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 819 

Figure 6. Histograms of global mean ULA for (a) daytime and (b) nighttime retrieved from CALIOP Level 820 
1B Product using an estimated lidar ratio of 28.75 sr from March 2013 to February 2015. The black bar 821 
represents a bin at which the undetected layer AOD is zero. (c) Aerosol extinction profiles from CALIOP 822 
Level 2 (Version 3.30) Profile Product (dashed lines) and undetected layers retrieved in this study (solid 823 
lines). Blue and red represent daytime and nighttime, respectively. Global mean molecular extinction 824 
(Rayleigh scattering) is shown in black dotted line. 825 
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 826 

Figure 7. Same as Figure 6 but over (a) land and (b) ocean. (c) Aerosol extinction profiles for the undetected 827 
layers over land (blue-solid) and ocean (red-solid) above mean sea level (AMSL). Blue-dashed line is for 828 
land above ground level (AGL).  829 
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 830 

Figure 8. Global distributions of ULA for (a) daytime and (b) nighttime retrieved using estimated lidar ratio 831 
of 28.75 sr from March 2013 to February 2015.  832 
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 833 

Figure 9. Distribution of zonal mean aerosol extinctions for (a) total, (b) detected, and (c) undetected layers 834 
from March 2013 to February 2015. (a) and (c) are retrieved in this study but (b) is from the CALIOP Level 835 
2 Profile Products. Altitudes are AMSL and the highest color scale for (c) is 10 times smaller than (a) and 836 
(b). 837 
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 839 

Figure 10. Aerosol extinction profiles for total (red) and undetected layers (blue). Black dashed line is 840 
relative frequency of the undetected layers.  841 
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 842 

Figure 11. (a) Zonal mean total (detected + undetected) AOD (black), CALIOP AOD (blue), and ULA 843 
(red). (b) Relative frequency of cases that CALIOP does not detect any aerosol layers (AOD = 0) for 844 
horizontal averaging of 20 km (red) and ratio of undetected layer AOD to total AOD (blue).  845 
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 847 

Figure 12. Relative bias in ULA depending on (a) calibration bias and (b) lidar ratio expressed the 848 
difference in ULA from the value estimated using a lidar ratio of 28.75 sr. Error bars are standard 849 
deviations. 850 
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