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Abstract. An assessment of differing boundary/mixed-layer
height measurement methods was performed with a focus on
the Vaisala CL51 instrument and BLView and STRAT soft-
wares. Of primary interest was determining how these differ-
ing methodologies will intercompare when deployed as part5

of a larger instrument network. The intercomparisons were
performed as part of ongoing measurements at the Chem-
istry And Physics of the Atmospheric Boundary Layer Ex-
periment (CAPABLE) site in Hampton, VA and during the
2014 Deriving Information on Surface Conditions from Col-10

umn and Vertically Resolved Observations Relevant to Air
Quality (DISCOVER-AQ) field campaign that took place in
the Denver, CO area. It was observed that data collection
methodology is not as important as the processing algorithm,
and that, generally speaking, sonde-derived boundary layer15

heights are higher than LIDAR-derived mixed-layer heights.

1 Introduction

The atmospheric boundary layer (ABL) is the lowermost
portion of the troposphere that is directly influenced by the

Earth’s surface and responds to surface forcing of heat, mois- 20

ture, pollutant emissions, and momentum on timescale of
an hour or less Stull (1988). The ABL can be defined via
a number of criteria depending on the particular interest (e.g.
the thermodynamic boundary layer, chemical boundary layer
(CBL), aerosol mixed layer, etc.). Traditionally, the ABL has 25

been defined by thermodynamic data (i.e. potential tempera-
ture and/or skew-T plot) obtained from meteorological son-
des. While meteorological sondes have excellent vertical res-
olution, the temporal resolution is generally poor, and ongo-
ing regular sonde launches are labor intensive. Conversely, 30

mixed-layer heights (MLH) as calculated from backscatter
LIDAR instruments provide both excellent vertical and tem-
poral resolution. With respect to air quality, the top of the
ABL often acts like a lid within the lowest layer of the at-
mosphere and temporarily traps the majority of near-surface 35

anthropogenic and biogenic emissions. As a result, the verti-
cal distribution of ambient air pollutants, and associated pre-
cursors, within the ABL and lower-troposphere are strongly
influenced by the height of, and vertical mixing within, the
ABL. 40
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2 Knepp: Assessment of ceilometer MLH

In 2009 the National Research Council highlighted plan-
etary (atmospheric) boundary layer height as a high prior-
ity observation needed to address current inadequacies at
the meso-scale for improved predictions of air quality, short-
range severe-weather forecasting, and regional climate mod-5

eling. More recently, The National Plan for Civil Earth Ob-
servation (NSTC, 2014) called out the need for improved
observation density and sampling of the boundary layer. In
2015, as part of the revisions to the ozone (O3) National Am-
bient Air Quality Standard (NAAQS), EPA finalized a new10

requirement under the Photochemical Assessment Monitor-
ing Stations (PAMS) program for the collection of continu-
ous mixing layer height observations. By 2019, the PAMS
program will involve the implementation of approximately
fifty air-quality sites around the United States, providing15

measurements of MLH on a continuous basis.
From 2011 through 2014 NASA conducted the Deriv-

ing Information on Surface Conditions from Column and
Vertically Resolved Observations Relevant to Air Quality
(DISCOVER-AQ) Earth Venture Suborbital Mission with20

four field deployments: Baltimore/Washington region of
Maryland during 2011; the San Joaquin Valley (SJV) of Cali-
fornia during January-February 2013; Houston, Texas during
September 2013; and the Front Range region of Colorado in
July-August 2014. A primary objective of DISCOVER-AQ25

was to investigate the use of satellite remote sensing abil-
ity to inform air quality at the surface. Since the ABL limits
vertical exchange of primary pollutants, and controls near-
surface pollutant concentrations, the ABL height can directly
influence air quality and chemistry. Therefore, measurements30

during these missions focused on the vertical distribution of
trace gases and aerosols within the ABL and lower tropo-
sphere, and the diurnal variability of these distributions in
conjunction with the ABL.

ABL variability poses a complication in quantitative deter-35

mination of surface trace-gas levels from a remote-sensing
platform Herman et al. (2009); Knepp et al. (2015); Lam-
sal et al. (2008, 2014); Petritoli et al. (2004); Piters et al.
(2012). Therefore, properly accounting for ABL variability
from a continuous measurement system such as LIght De-40

tection And Ranging (LIDAR) will provide invaluable infor-
mation to policy, health, modeling, and remote-sensing com-
munities for applications sensitive to the vertical profiles of
tracers Compton et al. (2013); Martin (2008); Scarino et al.
(2014). Herein is presented results from an intercomparison45

of three backscatter LIDAR’s from the 2014 DISCOVER-AQ
field campaign in Colorado and coincident sonde launches
from the Chemistry and Physics of the Atmospheric Bound-
ary Layer Experiment (CAPABLE) site at NASA’s Langley
Research Center (LaRC) in Hampton, VA.50

2 Instrumentation

2.1 CL51

The Vaisala CL51 ceilometer is a single-wavelength (eye safe
Class 1M InGaAs diode LASER emitting at 910 ± 10 nm,
pulsed at 6.5 kHz with a 110 ns pulse width, and average 55

pulse power of 19.5 mW, with avalanche photodiode detector
centered at 915 nm), single-lens, LIDAR system originally
designed to report cloud-base heights and visibility. More re-
cently, ceilometers have been used to estimate MLH (Emeis
and Schäfer (2006); Emeis et al. (2008a, b); Haeffelin et al. 60

(2012); Morille et al. (2007); Schäfer et al. (2012, 2013);
Schween et al. (2014); Sokol et al. (2014); Wiegner et al.
(2014)). These ceilometers have 10 m vertical resolution
(with 10 m overlap) to a maximum altitude of 15.4 km (±
greater of 1% or 5 m precision), and up to 2 s temporal res- 65

olution (depending on the control software), though profiles
are generally averaged over 16–36 s to improve signal-to-
noise (see Sec. 3.1 for more details). An example backscatter
plot that includes increased signal at 3 km due to transport of
smoke from a Canadian forest fire is presented in Fig. 1. 70

The CL51 was designed to operate continuously, regard-
less of meteorological conditions, in an autonomous manner
with minimal user support. Due to the emission wavelength’s
proximity to the near-infrared water vapor bands these
ceilometers experience water vapor interference, thereby 75

mitigating their utility in retrieval of aerosol optical proper-
ties. However, the interference on aerosol profile and MLH
estimation is negligible (Wiegner et al. (2014)).

Two CL51’s were deployed as part of the 2014
DISCOVER-AQ mission in Colorado (Golden, and Erie, 80

CO). Before and after deployment these ceilometers were
stationed at CAPABLE and the EPA Ambient air Innovative
Research Site (AIRS) in Durham, NC, continually collect-
ing data. The ceilometers were collocated with met-sonde
launch sites during the DISCOVER-AQ campaign and at 85

CAPABLE, allowing a direct intercomparison of the sonde
and LIDAR ABL/MLH methodologies. Furthermore, during
the DISCOVER-AQ campaign the ceilometers were collo-
cated with other LIDAR instruments. Intercomparisons are
presented below. 90

2.1.1 Ceilometer Full-profile Collection

The BLView software not only provides data analysis
(e.g. MLH and cloud-height estimates), but also provides
data-logging/archiving capability. While the CL51 reports
backscatter up to 15.4 km, BLView truncates the profile 95

data collection at 4.5 km. Generally speaking, there is lit-
tle need to collect higher-altitude backscatter data for repro-
cessing purposes due to the relative simplicity of detecting
cloud bases. However, failure to log the full-profile reduces
the ability to monitor upper-troposphere/lower-stratosphere 100

(UTLS) transport of aerosol, smoke, or ash from major
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events. Therefore, a full-profile collection method that can
run side-by-side with the standard data-collection software
was developed and implemented.

Data transmission from the ceilometer to the logging com-
puter was achieved over a simple RS-232 connection that can5

be split into two ports on the logging computer; one port log-
ging to BLView, the other logging to a custom script (e.g. as
written in Python, or terminal emulation). The primary draw-
back of using a secondary script to log the full profile (as
opposed to logging in BLView) is the inability to apply cali-10

bration coefficients to the logged data. However, as shown in
subsequent sections, this impacts neither the MLH estimates
nor the general profile shape substantially.

2.2 MPL

Elastic lidar observations were performed with using a Sigma15

Space Micropulse Lidar (MPL), and the instrument has been
described previously (Spinhirne, 1993; Welton et al., 2000).
Briefly, the MPL transmitter consists of a Nd:YLF laser emit-
ting at 527 nm, pulsed at 2.5 kHz and average pulse power
of 6 – 10 µJ. The receiver consists of a 178 mm telescope20

that collects the backscattered light. The output from the tele-
scope is conveyed to a photon counting silicon avalanche
photo-diode (APD). The APD output is recorded by a field
programmable gate array (FPGA) data system that enables
display and storage of range dependent averaged count rates25

on a laptop computer. The raw data are converted to aerosol
attenuated backscatter by taking into account instrumental
factors that include corrections for detector dead time, geo-
metrical overlap, background subtraction, and range-squared
normalization. Recorded lidar profiles have temporal and30

vertical resolution of one minute and 30 meters, respectively.
The Micro Pulse LIDAR (MPL) system is a single-

wavelength (eye safe Class 2 diode LASER emitting at 532
nm, pulsed at 2.5 kHz with an average pulse power of 3 – 4
µJ) LIDAR for continuous recording of aerosol profiles, op-35

tical properties, and calculating MLH values. The MPL has
a software programmable vertical resolution, with possible
values of 15, 30, and 75 m (up to 25 km), and temporal reso-
lutions ranging from 1 s – 15 minutes.

2.3 Meteorological/Ozone Sondes40

The traditional method of identifying the ABL is using me-
teorological sondes (herein referred to as sondes) to identify
steep gradients within the potential temperature (theta) pro-
file (Fig. 2 A) as identified by the Heffter criteria (Heffter
(1980); Marsik et al. (1995)), which is a product of atmo-45

spheric turbulent kinetic energy. Similar gradients can be
seen in chemical and aerosol profiles as well (Fig. 2 B-C).
For the current study, meteorological sondes from Interna-
tional Met Systems (iMet) and ozone sondes from Droplet
Measurement Technologies (DMT, now En-Sci) were used.50

iMet sondes require no preparation and were used as received

from the manufacturer, while ozone sondes were conditioned
according to the procedure defined by the World Meteorolog-
ical Organization recommendations (Smit (2013)).

Numerous analyses have been presented to illustrate dif- 55

ferences between the various chemical and meteorological
sensors, and how differing meteorological sensors influence
secondary chemical measurements such as ozone (Deshler
et al. (2008); Dirksen et al. (2014); Johnson et al. (2002);
Miloshevich et al. (2004); Nash et al. (2006, 2011); Smit 60

(2013); Stauffer et al. (2014)). Therefore, discussion of these
differences and their influence on ABL will not be made
within the current manuscript.

3 Algorithms

3.1 BLView 65

The Vaisala standard MLH retrieval is based on a proprietary
wavelet/gradient technique built within the logging/analysis
software BLView. BLView makes use of variable time and
altitude averaging when calculating the MLH. Typical av-
eraging time ranges from 14 minutes at night to 52 minutes 70

during the clear-sky, daytime conditions, and is automatically
adjusted within the software according to signal-to-noise. Al-
titude averaging is variable with altitude, and ranges from 80
m near the surface to 360 m above 1.5 km. Further, BLView
selectively removes false-positive MLH identifications by re- 75

quiring a minimum number of similar MLH values (±140 m)
be within the last several minutes.

BLView contains the ability to discriminate between MLH
inversions and changes in backscatter intensity induced by
cloud, precipitation, and fog. 80

An advantage of the BLView software is the standardiza-
tion of the retrieval parameters, and a user interface that pro-
vides flexibility in setting user-specified sensitivities. This
comes at the cost of a database system that makes access to
raw data difficult, and the inability to batch process archived 85

data, posing a severe limitation on reprocessing datasets with
a long record history. However, BLView is expected to move
from these limitations in future releases.

3.2 STRAT

The STRucture of the ATmosphere (STRAT v1.04) algo- 90

rithm was developed under a GNU General Public License
to analyze aerosol vertical profiles, as measured via LIDAR,
estimate cloud heights and aerosol MLH from a variety of
LIDAR instruments, and is currently in use by the Euro-
pean Aerosol Research LIdar NETwork (EARLINET) (Ha- 95

effelin et al. (2012); Hirsikko et al. (2014); Morille et al.
(2007); Pappalardo et al. (2014)). STRAT utilizes a covari-
ance wavelet technique (CWT), of which the full details can
be found in Morille et al. (2007) and Haeffelin et al. (2012).
STRAT can be run exclusively in MatLab, or a combination 100

of MatLab and Python. Due to its wide use throughout the
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Figure 1. Backscatter curtain plot collected on 10-June, 2015 when smoke from a Canadian forest fire was transported over CAPABLE. The
smoke is observed by increased backscatter in the 2500 – 4000 m range.
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Figure 2. Potential temperature, ozone, and backscatter profiles
recorded on 8-June 2015. The ABL, CBL, and MLH can be seen
by the horizontal lines

European network it is considered here as a viable open-
source alternative to BLView.

While BLView provides limited user control of the re-
trieval process, which is beneficial in regards to standardizing
the retrieval process across a network, STRAT provides a sig- 5

nificantly greater amount of user control. Such control is ben-
eficial since retrieval parameters in a heavily polluted region
will likely be different than retrievals done in a clean environ-
ment. Further, STRAT is provided as raw scripts as opposed
to BLView’s compiled executable, making the STRAT plat- 10

form independent and highly user-configurable. STRAT also
has the ability to run batch jobs, which is beneficial when
reprocessing data from instruments that have a long record
history.

The STRAT algorithm implements a user-defined 15

normally-distributed weighting function in both the tem-
poral and vertical domains to smooth the data, similar to
BLView. In the current study, the STRAT parameters were
set to match the BLView settings as much as possible for
intercomparison. An analysis of how well the two MLH 20

algorithms agree is presented below.

3.3 UMBC Algorithm

The UMBC algorithm was developed for estimating MLH
from lidar backscatter profiles using a CWT similar to
STRAT. By using the aerosols as tracers of the atmospheric 25

dynamics, the lidar is a powerful tool for visualizing, in real
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time, with high temporal and spatial evolution of the MLH.
The MLH contains greater aerosol concentration because the
aerosols are trapped in the PBL by a potential temperature
inversion. Therefore, the backscatter signal strength is dra-
matically reduced when it transits from the PBL into the5

free troposphere. A covariance wavelet technique (CWT)
was applied to the lidar signal to estimate these sharp gra-
dient changes in the lidar backscatter profiles to determine
the MLH (Davis et al. 2000; Brooks 2003).

Detailed description of the UMBC algorithm has been10

published elsewhere Compton et al. (2013). The first step
in the MLH algorithm defines the dilation and center of the
Haar function values considered in the CWT. The second
step consists of applying the CWT to the lidar profile for
the appropriate dilation and center of the Haar function val-15

ues. The sharp gradients in the profile that are of interest are
identified by local minima in the resulting wavelet covariance
profile. The local minimum is selected as the MLH, and the
process is repeated for each profile in the data set.

4 Locations20

4.1 CAPABLE

The CAPABLE site (37.103o N, 76.387o W, 5 m ASL)
was established at LaRC, in the greater Hampton Roads re-
gion (collection of cities on coastal Virginia, also known as
Tidewater Virginia: Virginia Beach, Norfolk, Chesapeake,25

Newport News, Hampton, Portsmouth, Suffolk, Poquoson,
Williamsburg), for continuous monitoring of air-quality and
meteorological parameters to bridge the gap between satel-
lite observations and ground conditions (i.e. where pollu-
tants directly impact living organisms), improve applicabil-30

ity of satellite data to the air-quality user community, and
act as a long-term satellite validation site. CAPABLE has a
suite of in-situ and remote-sensing instruments, including a
CL51 ceilometer and sounding station, that allows thorough
sampling of the atmosphere to provide valuable in-situ and35

profile information within the lower troposphere in a highly
complex (i.e. due to bay-breeze events, see Martins et al.
(2012)) and moderately polluted environment that will pro-
vide valuable satellite ground-truthing and model a-priori es-
timates.40

CAPABLE is located on a peninsula between the James
River to the southwest, Chesapeake Bay to the north, and
the Atlantic Ocean to the east. Immediate emission sources
and their locations relative to CAPABLE are: commuter traf-
fic (Wythe Creek Rd to the west ≈15,000 vehicles per day,45

Commander Shepard Blvd to the south at ≈20,000 vehicles
per day; Commander Shepard and Wythe Creek share much
of the same traffic, so it is not reasonable to estimate a to-
tal traffic flow of 35,000 vehicles per day), Yorktown Power
Station (approximately 350 MW, 1150 MW peak) and York-50

town oil refinery to the north-northwest, Langley Air Force

Base to the southeast, Richmond, VA to the west, and Balti-
more/Washington D.C. further to the north.

4.2 Erie, CO/BAO-Tower

Data were collected at the Erie, CO site (40.045o N, 105.005o
55

W, 1500 m ASL) from 14-July–12-August 2014 as part of the
DISCOVER-AQ field mission. The Erie, or BAO-Tower, site
was located at NOAA’s Earth System Research Laboratory’s
(ESRL) Boulder Atmospheric Observatory (BAO) in Erie,
CO, a rural community surrounded by agricultural activity. 60

The Erie site’s primary feature was a 300 m tower (known as
BAO-Tower), which provided a unique profiling ability for
in-situ samplers by mounting them on the tower for static
sampling, or on the carriage to collect "active" profiles. Fur-
ther, a CL31 is permanently located at the site. 65

During DISCOVER-AQ 2014, the University of Wiscon-
sin’s (UW) Space Science and Engineering Center trailer,
which housed a High Spectral Resolution LIDAR (HSRL)
and from which regular sonde launches were performed, was
stationed at the site. The UW trailer temporarily housed a 70

CL51 during the mission. Due to the proximity of the UW
trailer and the CL31, both ceilometers experienced the same
chemical, aerosol, and meteorological conditions.

4.3 Golden, CO

Data were collected at the Golden, CO site (39.750o N, 75

105.183o W, 1850 m ASL) from 14-July–12-August 2014
as part of the DISCOVER-AQ field mission. The Golden site
was located next to the National Renewable Energy Labora-
tory (NREL) on Table Mountain mesa. Due to the site’s ele-
vation on the mesa, and limited emissions sources, conditions 80

at the Golden site were generally clean from an aerosol per-
spective and did not typically experience a well-developed
ABL/ML.

The Golden site housed the EPA trailer, the LaRC ozone
LIDAR, micro-pulse LIDAR (MPL) and LEOSPHERE 85

ALS-450 LIDAR operated by UMBC, a SOund Detection
and Ranging (SODAR) instrument operated by Millersville
University (MU), and regular met-sonde launches from the
MU group.

5 Analysis 90

LIDAR data collected during the DISCOVER-AQ campaign
had sampling times that ranged from 36–60 s, while sonde-
profile data had instantaneous measurement times of 1 s. To
harmonize all datasets onto a common time frame the data
were averaged to 5-minute resolution unless otherwise spec- 95

ified. Further, it is well known that the atmosphere changes
throughout the day due to surface heating, etc. (hence, driv-
ing ABL variability). Therefore, to remove biases caused by
“time-of-day” influences some of the analyses were broken
into four-hour segments. Since the primary objective of the 100
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assessment is to understand how the CL51 MLH compares
with other instruments/methods, all work is presented in re-
lation to the CL51.

The analysis was performed using several ceilometer
MLH products to do a thorough comparison of instruments5

(i.e. CL51, MPL, and met-sondes), collection method (i.e.
allowing BLView to collect profile data with application
of calibration factors vs. logging raw data with a custom
Python script), and data processing algorithm (i.e. BLView
vs. STRAT and custom MLH scripts from UMBC). Assess-10

ment of data acquisition methodology will be presented first,
followed by a comparison of MLH retrieval algorithm on
data collected by a single instrument, and finally a compari-
son of the various instrumentation.

5.1 Data Acquisition15

The objective of the current subsection is to determine
whether the CL51 data-logging methodology influenced the
MLH estimate. As described above, CL51 profile data were
logged using two methodologies: BLView and a custom
Python routine. The BLView software has the advantage of20

applying the ceilometer’s calibration factors and precondi-
tioning the profiles (here referred to as BLView; note: this
refers to the backscatter-profile that is logged by BLView,
not the BLView-calculated MLH), while the Python script
logged the raw incoming data stream up to the full profile25

height (i.e. 15.4 km, this dataset is referred to as full-profile,
or FP). The question being: does application of the LIDAR
calibration factor influence the MLH estimate? This question
will be addressed in section 5.1.2, but first, a viable filter-
ing criteria that removes spurious MLH fluctuations from the30

dataset must be defined prior to analysis. Defining this crite-
ria will be the topic of 5.1.1.

5.1.1 Filtering Procedure

Regardless of the method of data acquisition (i.e. via BLView
or Python) a pragmatic data-selection criteria must be estab-35

lished that provides reasonable assurance that the MLH esti-
mates, which will be fed into chemical models in subsequent
studies, are representative of MLH/ABL conditions. Since
the ABL/MLH vary in a generally-smooth manner it is ex-
pected that the variance within a short time interval will be40

likewise minimal, and that any larger variance is indicative
of other events (e.g. precipitation, contamination). Therefore,
it remains to identify these cutoff criteria for implementing
data filtering. Since the effect of the implementation of these
cutoff criteria will influence the data-acquisition comparison45

(i.e. BLView-corrected data vs. raw data collected via the
Python script), this portion of the analysis is presented first.

Despite the atmosphere’s smooth variation in ABL and
MLH, these parameters do change substantially over long
periods of time (e.g. an hour or day), which significantly in-50

creases the standard deviation over significantly long time

periods. Therefore, the current analysis must be performed
on short-time-series data (e.g. 5 – 10 minutes) to eliminate
a bias caused by natural low-frequency changes. Figure 3
shows a series of histogram plots for data collected at LaRC 55

(the largest dataset within the current analysis), where the
standard deviation was calculated over five-minute intervals.
This figure is elucidative as it shows the distribution of the
MLH standard deviation for both collection methods, with
the vertical dashed lines representing percentiles of the total 60

data collected. It is observed that, excluding the afternoon pe-
riod (12:00 – 19:00 local time where the variability is slightly
increased), 85% of the data fall within one standard deviation
(≈ 0.20 km) regardless of time of day. Therefore, data that
have a five-minute standard deviation greater than 0.20 km 65

were removed from subsequent analysis (labeled “filtered”)
and data that have a relative standard deviation greater than,
or equal to, 20% were also removed.

This filtering method is further supported by observing the
variability in the BLView and Python-collected datasets (both 70

processed in STRAT) in relation to backscatter curtains (Fig.
4) where it is observed that much of the difference between
the BLView and Python-collected data occurs during times of
high variability or precipitation (e.g. 19:00 – 24:00 in Fig. 4).
During such events, neither collection method is expected to 75

provide valid MLH estimates; rather, to overcome such dis-
crepancies, if possible, the MLH algorithms must be adjusted
accordingly.

5.1.2 Collection Method Dependence

To determine whether the data-collection method influ- 80

enced MLH estimates, both BLView and Python-collected
backscatter profiles were processed on a common algorithm
(STRAT), using identical input configuration files. Both the
BLView and FP profiles were processed using the STRAT
algorithm as described above, followed by a 5-minute block 85

average. Figure 5 presents the data as correlation plots with
the z-axis representing the relative standard deviation (i.e.
standard deviation divided by mean; non-filtered data) within
the 5-minute interval. The data were replotted with the z-axis
being representative of the immediate data density (a dimen- 90

sionless value that has been scaled to 1). The data density was
calculated by implementing a Gaussian-based kernel-density
estimation (Scott (1992); Silverman (1986)) as supplied in
Python’s scipy.stats.kde module (represented mathematically
in Eqs. 1–3 where X is the 2 x n vector of the x and y vectors 95

(i.e. flattened and stacked atop one another), n represents the
number of points within each dataset (assuming datasets are
of equal length), f is the Scott’s factor (n

−1
d+4 ), d is the num-

ber of independent datasets analyzed, and Eq. 3 is evaluated
over the range 1 to n. As these density values are later used 100

as weights in subsequent calculations, the output vector is la-
beled w here. It is observed that the majority of the MLH esti-
mates fall along the 1:1 line (center column in Fig. 5), though
there is significant scatter along both axes. The source of the



Knepp: Assessment of ceilometer MLH 7

10−3

10−2

10−1

100
00:00 - 03:59 04:00 - 07:59

Percentiles

75th

85th

90th

97th

10−3

10−2

10−1

08:00 - 11:59 12:00 - 15:59

0.0 0.2 0.4 0.6 0.8
10−3

10−2

10−1

16:00 - 19:59

0.0 0.2 0.4 0.6 0.8 1.0

20:00 - 23:59

Fr
a
ct

io
n
 o

f 
T
o
ta

l

MLH Standard Deviation (km)

CAPABLE: BLView CollectionA

10−3

10−2

10−1

100
00:00 - 03:59 04:00 - 07:59

Percentiles

75th

85th

90th

97th

10−3

10−2

10−1

08:00 - 11:59 12:00 - 15:59

0.0 0.2 0.4 0.6 0.8
10−3

10−2

10−1

16:00 - 19:59

0.0 0.2 0.4 0.6 0.8 1.0

20:00 - 23:59

Fr
a
ct

io
n
 o

f 
T
o
ta

l

MLH Standard Deviation (km)

CAPABLE: Python CollectionB

10−3

10−2

10−1

100
00:00 - 03:59 04:00 - 07:59

Percentiles

75th

85th

90th

97th

10−3

10−2

10−1

08:00 - 11:59 12:00 - 15:59

0.0 0.2 0.4 0.6 0.8
10−3

10−2

10−1

16:00 - 19:59

0.0 0.2 0.4 0.6 0.8 1.0

20:00 - 23:59

Fr
a
ct

io
n
 o

f 
T
o
ta

l

MLH Standard Deviation (km))

CAPABLE: BLView CollectionC

Figure 3. Histogram plots showing the distribution of MLH stan-
dard deviations. Vertical lines represent percentiles. Panels A and B
were processed in STRAT; panel C was processed in BLView.

scatter, as can be seen in the relative standard deviation in-
tensities, is the variability within each five-minute averaging
block, supporting the filter selection criteria.

∆X = X−X[:, i] (1)

E =
∑
j=1

∆Xj ·
cov(X)−1

f−2
•∆Xj (2) 5

w[i] =

∑
k=1

e−Ek√
det [2π · cov(X) · f2]

n

i

{i ∈ N : i≤ n} (3)

Figure 5 was divided into four-hour blocks to identify any
time-of-day dependence. It is observed that regardless of the
time of day most of the data continued to fall along the 1:1
line, as indicated in the density plots, for CAPABLE and 10

BAO-Tower, while the Golden site displays some disruption
in the 16:00 – 19:59 panel. The source of this discrepancy
is currently unknown. However, it has become clear that the
meteorology at the Golden site is different from that observed
at CAPABLE and BAO. It is suggested that this difference is 15

primarily driven by orographic perturbations and the Golden
site being located atop a mesa, both of which may inhibit for-
mation of stable ABL and ML (Bossert et al. (1989); Bossert
and Cotton (1994); Tripoli and Cotton (1989)).

Ceilometer-derived MLH values have application as 20

model a-priori inputs that have been averaged down to one-
hour resolution. The impact of the filtering criteria and re-
sampling to one-hour resolution throughout the day is seen in
Fig. 5 (panels C, F, I), and Table 1 presents statistics on the
aggregate analysis. While the aggregate coefficients of cor- 25

relation and line-of-best-fit (LOBF) equations do not change
substantially after re-sampling to one-hour blocks, the scatter
is dramatically reduced (Fig. 5 panels C, F, I). This is likely
due to the scatter being evenly distributed about the 1:1 line
and the majority of data points falling along the 1:1 line as 30

observed in the data-density panels of Fig. 5.
From the current analysis we conclude that the majority

of the variability was driven by local atmospheric fluctua-
tions and events that cannot be readily accounted for within
the algorithms, and that on the timescales relevant to model 35

inputs and atmospheric variations, there is no significant dif-
ference between the BLView/Python-collected datasets when
processed on a common algorithm. Findings presented in
Section 5.1.3 further support this conclusion.

5.1.3 MLH Algorithm Dependence 40

In the previous section it was demonstrated that the data col-
lection method (i.e. raw serial logger vs. BLView) has little
impact on the derived MLH values when the two datasets are
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Figure 4. Backscatter curtain plot with STRAT-derived MLH values from the BLView (BLV) and Python (FP) collection methods.

R LOBF 〈FP −BL〉 (km)
CAPABLE 5-min 0.87 y = 0.913·x+0.11 −0.02 (1.4)
CAPABLE 1-Hr 0.87 y = 0.925·x+0.11 −0.03 (2.7)
BAO 5-min 0.76 y = 0.817·x+0.25 −0.08 (9.1)
BAO 1-Hr 0.77 y = 0.814·x+0.32 −0.14 (15.1)
Golden 5-min 0.72 y = 0.777·x+0.30 −0.08 (8.1)
Golden 1-Hr 0.77 y = 0.792·x+0.35 −0.14 (13.0)

Table 1. Summary of aggregate statistics for the Python-
collected/STRAT-processed and the BLView-collected/STRAT-
processed MLH estimates (y and x, respectively). Filtering criteria
were applied to both datasets.Values in parentheses indicate percent
of the difference value with respect to the BLView-derived MLH.

processed on a common algorithm (here, STRAT). It remains
to be seen how the two datasets compare when processed in
different algorithms. Whereas collection methods were com-
pared in the previous section, the algorithms will be com-
pared here. Data collected by the Python script were pro-5

cessed using the STRAT algorithm, and are compared with
data collected, and processed, by BLView.

Figure 6 presents scatter plots similar to Fig. 5, but with
data collected and processed by differing means. It is ob-
served that the majority of data continued to fall along the10

1:1 line, as attested by the density plots, and that much of
the scatter is caused by short-term variability. However, in
contrast to Fig. 5, the scatter is neither as evenly distributed
nor as tightly grouped about the 1:1 line. The STRAT-derived
MLHs were generally lower than those calculated in BLView15

(according to slopes) at all sites, while the aggregate mean

difference shows the opposite for the Colorado sites (Table
2), which is likely being driven by outliers.

It is readily observed that the agreement between the two
datasets is less than when a common algorithm was em- 20

ployed (Table 2). Despite the increased scatter, there remains
a significant subset of data that lies along the 1:1 line. As a
test for how well the data sit along the 1:1 line the R and
LOBF values were re-calculated with weights applied ac-
cording to Eq. (3) (i.e. weighting according to data density). 25

Therefore, points that have more data points surrounding
them received more weight, while more isolated points re-
ceived less weight. Weighted coefficients of correlation were
calculated by Eq. (4) where variables with aw subscript indi-
cate weighted means. Weighted regressions were performed 30

by simultaneously solving the modified normal equations of
regression as shown in Eqs. 5 and 6 with weighting factors
applied.

R=

N∑
i=1

wi · (xi− x̄w) · (yi− ȳw)√
N∑
i=1

wi · (xi− x̄w)2 ·
N∑
i=1

wi · (yi− ȳw)2

(4)

m=

N
N∑
i=1

wixiyi−
(

N∑
i=1

wixi

)(
N∑
i=1

wiyi

)
N

N∑
i=1

wix2i −
(

N∑
i=1

wixi

)2 (5) 35
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Figure 5. Correlation plots for data collected at the three sites under study. At all sites the data have been collected by both the Python script
and BLView, and subsequently processed in STRAT. The center-column plots show the data density to better understand the distribution
within the scatter plots. Data were averaged to five-minute resolution, without application of filtering criteria (left and center columns), and
averaged to one-hour resolution with application of filtering criteria (right column).
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Figure 6. Correlation plots for data collected at the three sites under study. At all sites the data were collected by, and processed in,
Python/STRAT and BLView/BLView. The right-hand plots show the data density to better understand the distribution within the scatter
plots. Data were averaged to five-minute resolution, without application of filtering criteria.
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R Line of best fit 〈FP −BL〉 (km) Rw LOBFw 〈FP −BL〉w (km)
CAPABLE 5-min 0.47 y = 0.499·x+0.70 −0.24 (26.8) 0.836 y = 0.986·x+0.70 −0.02 (3.8)
CAPABLE 1-Hr 0.48 y = 0.467·x+0.74 −0.23 (24.4) 0.799 y = 0.997·x+0.74 −0.08 (12.5)
BAO 5-min 0.43 y = 0.374·x+0.65 0.04 (3.4) 0.789 y = 0.905·x+0.65 −0.01 (0.9)
BAO 1-Hr 0.39 y = 0.305·x+0.72 0.17 (13.1) 0.740 y = 0.881·x+0.72 −0.01 (1.2)
Golden 5-min 0.24 y = 0.193·x+0.90 0.25 (17.7) 0.541 y = 0.629·x+0.90 0.09 (10.3)
Golden 1-Hr 0.12 y = 0.086·x+1.12 0.39 (23.6) 0.316 y = 0.361·x+1.12 0.20 (16.1)

Table 2. Summary of statistics for the Python-collected/STRAT-processed and the BLView-collected/BLView-processed MLH estimates.
Values in parentheses indicate percent of the difference value with respect to the BLView-derived MLH, and the w subscript indicates a
weighting function was applied. Filtering criteria were applied to all datasets.

R Line of best fit 〈FP −BL〉 (km) Rw LOBFw 〈FP −BL〉w (km)
CAPABLE 5-min 0.54 y = 0.553·x+0.61 −0.19 (21.2) 0.91 y = 0.975·x+0.61 −0.03 (4.2)
CAPABLE 1-Hr 0.54 y = 0.519·x+0.64 −0.18 (18.5) 0.87 y = 0.973·x+0.64 −0.06 (9.8)
BAO 5-min 0.41 y = 0.326·x+0.58 0.14 (13.1) 0.78 y = 0.843·x+0.58 −0.01 (1.4)
BAO 1-Hr 0.31 y = 0.232·x+0.65 0.32 (25.5) 0.58 y = 0.573·x+0.65 −0.09 (13.0)
Golden 5-min 0.25 y = 0.184·x+0.83 0.36 (24.5) 0.49 y = 0.484·x+0.83 0.16 (16.6)
Golden 1-Hr 0.14 y = 0.101·x+0.96 0.55 (32.8) 0.27 y = 0.229·x+0.96 0.37 (29.1)

Table 3. Summary of statistics for the BLView-collected/STRAT-processed and the BLView-collected/BLView-processed MLH estimates.
Values in parentheses indicate percent of the difference value with respect to the BLView-derived MLH, and the w subscript indicates
a weighting function was applied. Filtering criteria were applied to all datasets. Herein, the comparison is limited strictly to the MLH
algorithms.

b=

N∑
i=1

wiyi−m
N∑
i=1

wixi

N
(6)

These weighted statistics are not included to suggest that
the agreement has actually improved (R), nor do they sug-
gest improved predictability (LOBF). Rather, the improved
R values and slopes reflect the degree to which the data are5

predominantly centered about the 1:1 line to the exclusion
of other regions. As an example, despite weighting, the im-
provement in the Golden regressions are notably less than
the other two sites. This is likely due to more spread in the
data, thus mitigating the influence of the points along the 1:110

line on the regression analyses. Therefore, we can conclude
that the preponderance of data collected at CAPABLE and
BAO-Tower fall nearer the 1:1 line when processed through
the different algorithms as compared to the data collected at
the Golden site. Further, despite the majority of data falling15

nearer the 1:1 line for these two sites, there remain influ-
ences that neither the STRAT configuration nor the current
filter methodology can account for, which is likely driving
the poor correlation as compared to Table 1. This is likely the
product of how the differing algorithms handle atmospheric20

interferential events (e.g. precipitation, fog, etc.). Applica-
tion of a filtering methodology to account and remove these
events will be the subject of future study.

Finally, the analysis was repeated by using STRAT to
process backscatter data that was collected by BLView for25

comparison against the BLView-collected/processed prod-
uct. It was concluded in Sec. 5.1.2 that the data collec-
tion method had little influence on the MLH estimation
when both datasets were processed on a common algo-
rithm (here, STRAT). Based on that conclusion, it would 30

be expected that the current comparison would be simi-
lar to the previous comparison as summarized in Table 2.
This is, in fact, what was observed. The aggregate statistics
for the BLView-collected, STRAT-processed vs. BLView-
collected/processed intercomparison are presented in Table 35

3, wherein we see similarity with Table 2. This further sup-
ports the conclusion that data collection methods (including
application of calibration factors) play relatively less role in
identifying a qualitative gradient within the profile as com-
pared to the choice of MLH algorithm. Indeed, it can be con- 40

cluded that choice and configuration of the algorithm is criti-
cal and that, for network intercomparisons, all networked LI-
DAR systems should have their data processed on a common
algorithm.

5.2 Sonde Intercomparison 45

Meteorological soundings have been a staple for profiling the
atmosphere and deriving ABL heights for decades. These
ABL heights are typically derived using potential temper-
ature (e.g. using the Heffter criteria) or through analyz-
ing skew-t-log-p plots that implement potential temperature, 50

both of which are different from the gradient-based MLH
algorithms implemented herein. As ABL data are typically
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used in chemical transport models, it is necessary to deter-
mine how these MLH data compare to the sonde-derived
ABL data collected at the three measurement locations.

Since the sondes capture an ephemeral snapshot of the at-
mosphere’s current conditions, and traverse several kilome-5

ters in the horizontal direction due to winds, the ceilometer
data were averaged over thirty minutes for comparison. Ad-
ditionally, each measurement can be impacted by different
atmospheric phenomena which can affect the measurements
in different ways, which in turn can affect the comparison of10

the measurements. A radio sonde can be impacted by local
updrafts or down-drafts, and result in ABL estimates higher
or lower than the true MLH. The CL51 MLH is sensitive
to the backscatter gradient, so if there are additional aerosol
layers just above the MLH, the contrast between the aerosol15

layers may not be strong enough for the CL51 to identify
each layer or the correct altitude of the MLH.

Correlation plots for the CL51 MLH compared to sonde
ABL are shown in Fig 7. For all coincidence times, the CA-
PABLE site showed the best correlations between the CL5120

and radio sondes. The correlation for the CL51 versus all the
radio sondes (N=25) at the CAPABLE site was R=0.82, with
a similar correlation R=0.83 (N=22) when the filtering crite-
ria were implemented. For daytime data, the CAPABLE site
contained 2 early morning radio sondes (before 10:00 local25

time), with all other radio sondes launched between 10:00
and 16:00 local time. By the late morning,≈10:00 local time,
the vertical dispersion of aerosols due to turbulent mixing has
likely resulted in a well-mixed boundary layer, so the ABL
and MLH coincide in elevation, which is evident in 7 A, with30

many of the data points falling close to the 1:1 line.
Radio sonde data collected at the BAO-Tower site showed

lower correlations than the CAPABLE site (unfiltered
R=0.63; N=16 and filtered R=0.58; N=14), while the Golden
site correlations (unfiltered R=-0.28; N=12) appear to be35

strongly impacted by 2 morning radio sonde launches, which
is a transition period when the boundary layer is experienc-
ing rapid growth. Upon applying the filtering criteria, the 2
early morning data points were removed, resulting in a much
improved correlation (filtered R=0.74; N=10) for the Golden40

site. This appears to indicate the CL51 may have difficultly
capturing an accurate MLH during rapidly changing condi-
tions, such as early morning and late evening transition peri-
ods in a clean atmosphere.

It is somewhat surprising that filtered correlation for the45

Golden site is better than the filtered result for the BAO-
Tower site, given the BAO-Tower site is situated further to
the east of the mountain range, at the start of the High Plains,
which is less influenced by very local geographic perturba-
tions, and that a similar relationship is not observed in the50

CL51 intercomparisons (e.g. Tables 1, 2, and 3). As a check
on the radio sonde potential temperate profiles, we plotted
the potential temperature data from the NASA P-3B aircraft
spirals conducted over the Golden and Erie sites, Figs. 8 and
9. These spirals are coincident with the launch of the radio55

sondes from the sites. Also plotted in Figs. 8 and 9 is the
coincident CL51 backscatter profile. The agreement between
the radio sonde and P-3B aircraft profiles is good, indicating
that the potential temperature within the aircraft spiral radius
is consistent with that of the radio sonde. These figures show 60

agreement between the potential temperature ABL and CL51
MLH by identifying the same first major gradient in the MLH
data on certain days.

Overall, all 3 sites show a good correlation between the
CL51 and radio sonde data, with MLH/ABL estimates from 65

the radio sondes being, on average, higher than the CL51
MLH (200 m (13%), 390 m (15%), -240 m (9%) for CA-
PABLE, BAO-Tower, and Golden respectively) as indicated
in the linear regression lines plotted in Fig. 7, with the excep-
tion being the unfiltered results for Golden. 70

5.3 MPL Intercomparison

The MPL instrument was collocated with the CL51 stationed
at the NREL site in Golden, CO. Being a LIDAR instrument,
it profiles the atmosphere similar to the CL51 with the major
differences being hardware. The MPL emits on the 532 nm 75

line (6 – 10 µJ pulsed at 2.5 kHz, with 150 m overlap and
30 m vertical resolution), while the CL51 emits on the 910
line (2.5 nJ pulsed at 6.5 kHz, with 10 m overlap and 10 m
vertical resolution). The primary difference between the two
instruments is the emission wavelength, causing the instru- 80

ments to differ in sensitivity with respect to particle size and
geometry. Therefore, it is feasible that the two instruments
observed “different” atmospheres in a quantitative manner
(e.g. aerosol optical thickness). However, if the ML is well
mixed, then the general particle distribution and gradient will 85

be the same, making the two inter-comparable.
It is seen in Fig. 10 that the agreement between the two in-

struments and algorithms (BLView processing CL51, UMBC
algorithm processing MPL profiles) is promising, with most
data points falling along the 1:1 line. The low correlation is 90

partly driven by the invariability in one instrument as com-
pared to the other at lower MLH values (i.e. ≤ 500 m). Re-
moval of data below 500 m improves the coefficient of corre-
lation to 0.368, 0.512, and 0.390 respectively. Similar to the
algorithm comparison, much of the variability between the 95

two instruments and algorithms occurs during events which
inhibit a reliable MLH estimate being made (as seen in Fig.
11). This is somewhat surprising considering the low coeffi-
cients of correlation initially observed.

The most commonly used statistical techniques used for 100

comparing two datasets depend on two key assumptions: data
being normally distributed and homoscedastic. The CL51
and MPL MLH 5-minute averaged datasets were confirmed
to be non-normal via the Kolmogorov-Smirnov test and
passed Levene’s test for homoscedasticity (p-value 0.39). 105

Therefore, determination of similarity between the two cor-
responding probability distributions was performed using the
two-sample Kolmogorov-Smirnov test. It was determined
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Figure 7. Correlation plots for CL51 MLH and sonde-derived ABL estimates. Statistics data in black text are for the entire data set, while
the red text represents the filtered dataset. MLH values were calculated in BLView.

that the 5-minute averaged MPL and CL51 datasets are sta-
tistically different (p� 0.01), regardless of filtering and av-
eraging. However, when considering 1-hour averaged data
that were filtered to remove data with large relative standard
deviations (i.e. ≥ 0.20) and MLH ≤ 0.5 km, the two datasets5

were statistically indistinguishable (p 0.8). While we can-
not account for the variability induced by these low-altitude
MLH values it is quite clear that they are significantly in-
fluencing the intercomparison. Given that this is the first in-
tercomparison of these two instruments and algorithms it is10

not surprising that a significant difference in this regime was
identified.

6 Conclusions

A CL51-focused intercomparison of different ABL/MLH
methodologies was performed at three different sites, which15

experience different meteorological, aerosol, and emission
conditions. The CL51 MLH results were compared with
ABL from radio sondes at all three locations; as well as an
MPL at the Golden, CO site.

Two collection methods and processing algorithms were20

tested for the CL51 MLH calculation. It was determined
that the data-collection method plays an insignificant role in
MLH estimation when the datasets are processed on a com-
mon algorithm. Further, it was shown that the choice of pro-
cessing algorithm plays a significant role in MLH estima-25

tion. We recommend that, for ceilometer and lidar networks,
a common MLH processing algorithm be employed.

A total of 53 potential temperature profiles from radio
sondes were used to evaluate the CL51. While the 53 radio
sondes were spread across 3 sites, this represents a robust30

data set of soundings. Overall, the radio-sonde-derived ABL
was higher than the CL51 MLH (e.g. Figure 7). Compari-
son of MLH from the CL51 versus radio sondes show the
CL51 performed best at the CAPABLE research site (non-

filtered R=0.82, filtered R=0.83), a coastal site primarily in- 35

fluenced by a combination of sulfate and marine aerosols.
Both the Golden and BAO-Tower site show a good corre-
lation between the CL51 and radio sondes (Golden filtered
R=0.74, BOA non-filtered R=0.63, filtered R=0.58) with 2
early morning radio sondes at the Golden site strongly influ- 40

encing the non-filtered correlation (R=-0.28). These 2 radio
sondes measured a very shallow boundary layer, < 500 m,
while the CL51-identified the MLH above 2 km, which was
likely due to residual aerosol layers aloft. The lower corre-
lations at the Colorado sites (Golden and BAO) were likely 45

due to the sites proximity to the Rocky Mountains. Complex
atmospheric flow patterns, which are driven by the Rocky
Mountains to the west of the Front Range area, can induce
the formation of distinctive dynamic features such as up and
downslope flows Bossert et al. (1989); Bossert and Cotton 50

(1994); Tripoli and Cotton (1989). With the Golden site be-
ing along the slope of the mountains and on a mesa, the
Golden site would likely experience up and downslope flows
versus BOA. Such local orographic influences can impact
or challenge the well-mixed assumption required to com- 55

pare thermodynamic ABL measured via potential tempera-
ture and MLH measured via aerosol backscatter.

The results of the CL51 versus the UMBC MPL showed
low correlation (R=0.3).However the majority of coincident
MLH observations from both instruments were clustered 60

around the 1:1 line in the regression plots. When data fil-
tering criteria are applied the two data sets were statistically
indistinguishable (p> 0.8). Additional analysis is planned to
further explore the cause of the low correlation. However as
can be seen in Figure 15, the MLH from the CL51 and MPL 65

agree well when there is a well-defined MLH.
Finally, the analysis indicates the STRAT software can

serve as a viable alternative to BLView and offers an advan-
tage of use of a consistent MLH method with EARLINET.
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