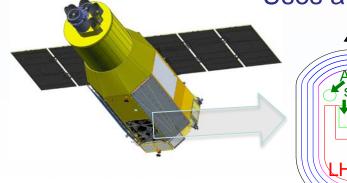
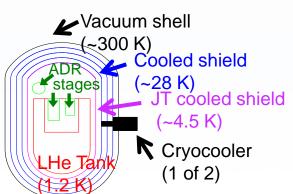


High Temperature Superconductor Lead Assemblies for XRISM

Edgar R. Canavan and Brian Comber

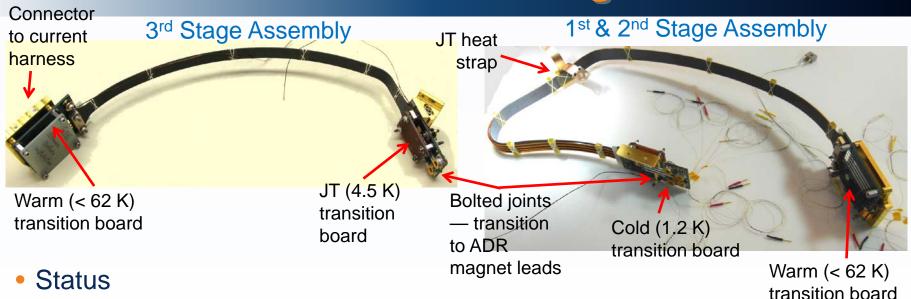

¹ NASA – Goddard Space Flight Center


Background: RESOLVE

RESOLVE: soft x-ray spectrometer on XRISM (X-Ray Imaging and Spectroscopy Mission)

Rebuild of SXS instrument on Astro-H — no changes except where necessary

Uses a microcalorimeter array operating at 50 mK


RESOLVE Thermal System:

- (2x) 2 stage Stirling coolers
- JT cooler (4.5 K)
- 40 I LHe tank (1.2 K)
- 3 stage ADR (50 mK)

Background: HTS Lead Assemblies

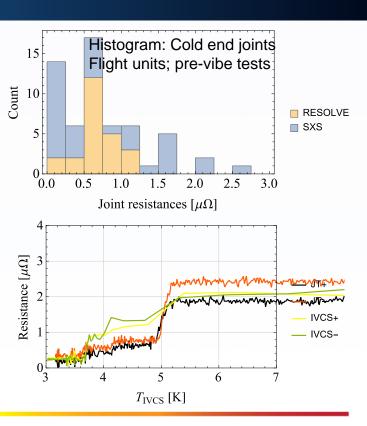
- High Temperature Superconductor Lead Assemblies necessary to carry high current to 3 ADR magnets
- Driving requirements:
 - 2 Amp maximum on each of 3 circuits @ up to 62 K warm end
 - < 12 μWatt total conducted heat leak to 1.3 K</p>
 - < 10 $\mu\Omega$ per circuit total resistance at cold end (bolted and solder joints)

HTS Lead Assemblies — Configuration

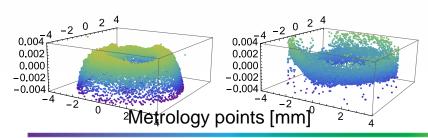
- Engineering Model complete
- Flight Model 1 fabricated and fully verified
- Flight Model 2 fabricated; pre-vibe testing complete

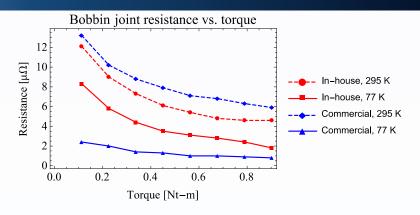
Solder Joints: Material Changes

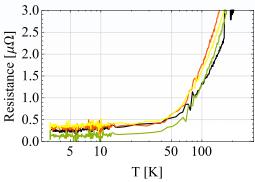
- HTS tape
 - SXS: AuAg alloy coated tape; slit to 1 mm after production (open sides)
 - RESOLVE:
 - Slit to 1 mm, then sputter coated with AuAg (all sides)
 - Individual sections cut and plated over solder region with > 20 µm Cu
 - Section I_c 's measured to 20 Amperes:
 - 37 of 48 long (590 mm), 21 of 24 short (335 mm) sections ≥ 20 A;
 - All I_c 's ≥ 16 A
- Solder
 - In3%Ag (SXS) → In48%Sn (RESOLVE)
 - Lower T_{melt} (144 C \rightarrow 118 C)


Solder Joints: Process Changes

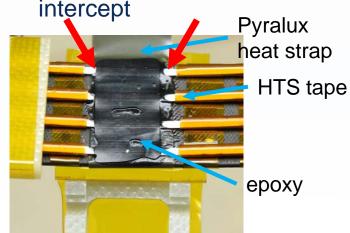
- Solder rig
 - Precise control over pressure, temperature, & time
 - Changes for flight boards:
 - Custom soldering tips match joint length
 - Wires & bobbins act act as cooling fins → added secondary heaters to cancel effect


Solder Joints: Results


- Improved Consistency:
 - Compared all pre-vibe qualification tests: I-V measurement to 5 Amps, cold end at 4.5 K
 - Cold end solder joint resistances much more uniform
 - No values > 1.1 $\mu\Omega$
 - Similar results for warm end (62 K)
- Very low resistance at low T
 - Bridge (low current) measurements show transitions at ~5.0, ~3.7 K
 - Below 3.7 K, R < 0.4 $\mu\Omega$

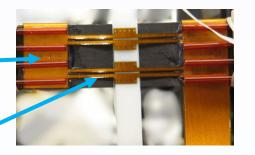

Bolted Joints: Changes and Results

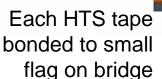
Bobbins:	In-house	Commercial
Cu material:	99.999%	CU101
Au Plating	Ni flash, Thick Au	No Ni flash, Standard thickness
Fabrication	EDM, polished	Lathe
Metrology:	rounded	Flat,+ ridge

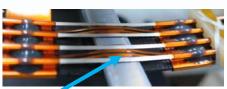

Result: Bolted joint resistance now typically < 0.5 $\mu\Omega$ at low T

1st & 2nd Stage Thermal Intercept: Changes

HTS tapes in 1st&2nd Stage unit must be well heat sunk to JT shield

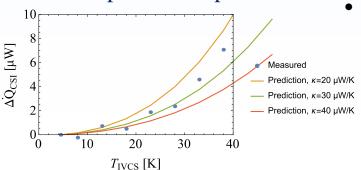

Concern over stress concentration at JT thermal

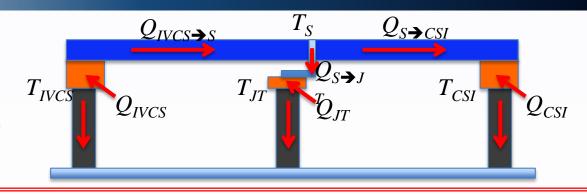



New strap design:

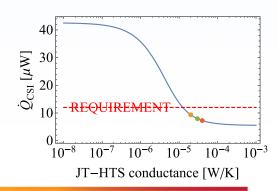
Multilayer Pyralux strap

Compliant bridge for each HTS tape




1st & 2nd Stage Thermal Intercept: Results

- Measurement:
 - Control T_{IVCS} , $T_{\text{JT}} = T_{\text{CSI}}$
 - Measure ΔQ_{CSI} vs T_{IVCS}
- If strap conductance, $\kappa \to \infty$


$$T_{s} = T_{JT} = T_{CSI} \rightarrow \Delta Q_{CSI} = Q_{s \rightarrow CSI} = 0$$

• With imperfect strap:

- 1-D Conduction-only model
- For flight condition $(T_{IVCS} = 28 \text{ K}, T_{JT} = 4.5 \text{ K}, T_{CSI} = 1.3 \text{ K})$, heat leak to CSI:

Conclusions

- HTS Lead Assemblies for RESOLVE instrument largely rebuild, except
- Solder joints:
 - New tape and solder
 - Tighter solder process control
 - Result: much more consistent solder joint resistances
- Bolted joints:
 - Initial testing lead to change to commercial bobbins
 - Pre-assembly screening
 - Result: much more consistent and lower bolted joint resistances
- JT heat intercept:
 - New design eliminates concern over stress concentration
 - Improved thermal test apparatus allows determination of 1st & 2nd Stage parasitic conductance
- Overall, RESOLVE HTS lead assemblies meet their requirements with significantly better margin than the Hitomi/SXS units