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Abstract 

Monitoring the flow of radiative energy at top-of-atmosphere (TOA) is essential for 

understanding the Earth’s climate and how it is changing with time. The determination of 

TOA global net radiation budget using broadband nonscanner instruments has received 

renewed interest recently due to advances in both instrument technology and the 

availability of small satellite platforms. The use of such instruments for monitoring 

Earth’s radiation budget was attempted in the past from satellite missions such as the 

Nimbus 7 and the Earth Radiation Budget Experiment (ERBE). This paper discusses the 

important lessons learned from the operation of the ERBE nonscanner instrument and the 

production of the ERBE nonscanner TOA radiation budget data set that have direct 

relevance to current nonscanner instrument efforts.  
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I.  Introduction 

Earth’s top-of-atmosphere (TOA) global net radiation budget involves a balance between 

how much solar energy Earth absorbs and how much terrestrial thermal infrared radiation 

is emitted to space. In an equilibrium climate, there is a global balance between these two 

quantities, albeit with considerable short-term and/or regional variability owing to 

internal variations within the climate system (e.g., weather, seasons, atmosphere-ocean 

interactions, etc.). When the climate system is forced by natural or anthropogenic factors, 

an imbalance in the TOA energy budget occurs that can lead to significant climatological 

changes as the system warms or cools in response to the forcing. Quantifying and 

monitoring changes in the Earth’s energy imbalance (EEI) is thus critical to our 

understanding of the Earth’s climate and its variability with time.  

Hansen et al. [1] argue that assessment of EEI requires a target absolute measurement 

accuracy approaching 0.1 Wm-2. Currently, there are two well established scientific 

methods of obtaining EEI [2] using either (1) in-situ ocean measurement through the 

global distribution of Argo profiling floats or (2) broadband satellite observations of the 

TOA radiation budget through measurements of both the total solar irradiance (TSI) and 

the global Earth total (longwave plus shortwave) outgoing radiation (TOR). Other 

observational methods of calculating EEI are also available. For example, EEI can be 

calculated from (1) the changes in global ocean heat content deduced indirectly from the 

residual of global ocean mass budget [3] using satellite data products from both the 

altimeter missions [4] and the Earth gravity mission [5] or (2) the changes in observed 

surface sensible, latent and radiative energy budget. These alternative methods, however, 

may contain large uncertainty [6]. In-situ ocean measurements from Argo network, 
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averaged over at least one decade, are highly accurate with absolute accuracy 

approaching 0.1 Wm-2 and can provide EEI near the desired climate accuracy 

requirement [7]. They are, however, much less useful at shorter timescales due to large 

sampling uncertainties. While satellite observations of the TOA radiation budget provide 

far better sampling than in-situ ocean measurements and are radiometrically stable to a 

few tenths of a Wm-2 per decade, they have yet to reach the target EEI absolute 

measurement accuracy of 0.1 Wm-2 [8].  

Of the two components of the satellite-based TOA radiation budget observations, only 

the TSI satellite measurements currently have high enough absolute measurement-

accuracy level (~0.03%) to pass the desired climate accuracy requirement [9], [10], [11]. 

Those direct solar measurements, being of a nearly-constant, bright, and nearly-

collimated source with most of its energy in the visible and near-infrared, albeit being 

very difficult themselves, are much simpler than measuring the TOA TOR from the 

Earth. The latter requires measurements that cover (1) the entire broadband spectral range 

(i.e., full visible and near-, mid-, long-, and far-infrared radiation), (2) several-orders of 

magnitude dynamic range for spatially- and spectrally-varying scenes (i.e., dark oceans to 

bright clouds, day to night locations, bright continuum to dark spectral absorption lines, 

and the variations between bright visible and much lower near- and mid-infrared signals), 

and (3) the full angular sampling of the hemispherical Earth radiation field to account for 

non-isotropic scattering from various Earth scenes and their dependencies on solar and 

satellite viewing conditions. In addition to these measurement issues from a single TOA-

monitoring instrument, many other factors further increase uncertainties in estimating the 

total outgoing TOA radiation, including (1) the need to cross-calibrate measurements 
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from the multiple sensors in orbits for complete diurnal sampling of global radiation 

fields and (2) adjustments for atmospheric losses and non-isotropic scattering that enables 

correction to a defined “TOA altitude”. Thus, these satellite-based TOA TOR 

measurements include both intrinsic instrument uncertainties and other additional factors 

that currently limit the absolute accuracy of the global net radiation as needed for climate 

studies.  

New technological advances have recently been proposed that purport to be able to reach 

an absolute accuracy of 0.3 Wm-2 or better from satellites for global Earth TOR [12]. The 

new technology involves using a small non-scanning sensor based upon a vertically 

aligned carbon nanotube (VACNT) absorber and Gallium blackbody emitter. A prototype 

instrument is being tested on the Radiometer Assessment using Vertically Aligned 

Nanotubes (RAVAN) mission [12]. RAVAN is a precursor to a more extensive mission 

concept involving many nonscanner instruments on multiple satellites (e.g., CubeSats). 

The use of broadband nonscanner instruments for measuring the global net radiation 

budget is not new, with such instruments aboard the Nimbus 7 satellite [13], [14] between 

1978 and 1988 as well as on the Earth Radiation Budget Experiment (ERBE) mission 

[15] between 1985 and 2005. More recently, a European-lead PICARD satellite mission 

produced a limited 37-month data record of global net radiation from a nonscanner 

instrument [16]. Unfortunately, the on-orbit accuracies of these nonscanner instruments 

failed to meet their prelaunch accuracy goals owing to inherent challenges involved with 

calibrating these types of instruments both for and in the space environment. Importantly, 

the absolute accuracy goals for these early missions were of order 2 Wm-2, roughly an 

order-of-magnitude less stringent compared to those promised for future missions flying 
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RAVAN-class nonscanner instruments [12]. How these new missions will overcome the 

on-orbit challenges experienced during the earlier nonscanner missions and meet such 

stringent absolute accuracy requirements remains unclear, as the new VACNT 

technology and the multiple-satellite approach do not alleviate all the difficulties 

mentioned above. 

Given the current interest in nonscanner-type instrument missions for observing Earth’s 

Radiation Budget (ERB), this paper reviews past working experience with these 

instruments by revisiting the important lessons learned from those that flew as part of the 

ERBE mission. Section II describes the ERBE mission and the nonscanner instrument 

that was used during that mission. Section III highlights the ERBE nonscanner data 

processing system from instrument-level data ingest to final scientific data product. 

Sections IV and V provide a discussion of outstanding issues encountered during ERBE 

and how these issues affected the absolute accuracy and the stability uncertainties of the 

scientific data product. Section VI provides a brief summary. 

II.  ERBE Mission 

The ERBE mission was designed to capture the TOA ERB by flying broadband ERB 

instruments in a three-satellite configuration (ERBS, NOAA-9, and NOAA-10) in order 

to capture the full diurnal cycle of the Earth TOR fields [17]. The Earth Radiation Budget 

Satellite (ERBS) was placed in a precessing orbit with a 57° inclination and an altitude of 

611 km.  The ERBS orbit precessed through the entire 24-hour local time every 72 days. 

The National Oceanic and Atmospheric Administration - 9 (NOAA-9) and NOAA-10 

satellites were in sun-synchronous orbits with 99º inclinations and altitudes of 860 km. 

The equatorial crossing times for the NOAA-9 and NOAA-10 satellites were 1430 LT 
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and 730 LT, respectively. While the NOAA-9 and NOAA-10 satellites provided global 

coverage, ERBS only viewed latitudes between 60° N and 60° S. Each ERBE satellite 

carried one scanner instrument package and one nonscanner instrument package. 

A. ERBE Scanner Instrument 

The ERBE scanner instrument, described by Kopia [18] and Halyo et al. [19], included a 

shortwave, a longwave, and a total channel radiometer. The scanner instrument scanned 

the Earth in a cross-track pattern to obtain maximum geographic coverage. The scanner 

footprint size was on the order of 30 – 40 km at nadir.  This small scanner footprint 

allowed the determination of both clear-sky flux and all-sky flux, which can be used to 

define cloud radiative effects [20]. The scanner on ERBS operated from 11/1984 to 

2/1990. The NOAA-9 scanner operated for 2 years from 2/1985 to 1/1987 and the 

NOAA-10 scanner operated for about 2.5 years from 11/1986 to 5/1989.  The scanner 

data have been used extensively by the science community to understand the spatial and 

temporal distribution of the Earth radiation fields and the effect of clouds on the Earth 

radiation budget, and to provide a TOA radiative energy constraint to climate models 

[21], [22], [23]. 

B. ERBE Nonscanner Instrument 

The ERBE nonscanner package was designed to measure radiative fluxes at a large 

spatial scale. This instrument viewed the Earth at its nadir pointing position during 

normal operation. Because of its mechanical simplicity, the nonscanners lasted much 

longer than the scanner instrument. For example, the nonscanner package on ERBS 

operated for 20 years from 11/1984 to 8/2005. The NOAA-9 nonscanner package 
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operated for 7 years from 2/1985 to 12/1992. The NOAA-10 nonscanner package 

operated for 8 years from 10/1986 to 11/1994. The ERBE nonscanner instrument, 

described in detail by Luther et al. [24] and Halyo et al. [19], was built using lessons 

learned from the previous satellite missions and represented the state-of-the-art ERB 

nonscanner instrument of the 1980’s era. This instrument, shown in Fig. 1, was carefully 

designed and its components (mechanical, electronic, thermal, optical, and radiometric) 

were well characterized before launch [24], [19]. The nonscanner instrument package 

contained two wide-field-of-view (WFOV) and two medium-field-of-view (MFOV) 

channels for measuring both the total (0.2 to 50 µm) and the reflected shortwave radiation 

(0.2 to 5 µm). While the WFOV channels viewed the entire Earth disk from nadir to limb 

at the satellite’s altitude, the MFOV channels had a footprint size of approximately 5º of 

Earth-central angle at the satellite altitude. Because of the large footprint size, the 

nonscanner instrument can only produce all-sky radiation products; there were no clear-

sky data available from the nonscanner instrument.  

The total and shortwave sensor technology on the nonscanner was based on the same type 

of active cavity radiometer (ACR) using blackbodies with a special, high-emittance, 

temperature-controlled design (stability within +/- 0.02 C). This high level of instrument 

thermal control was critical to the absolute accuracy of the ERBE nonscanner 

measurements. A hemispherical infrared-blocking fused-silica dome filter was placed in 

front of one set of WFOV and MFOV ACRs to acquire the shortwave-only 

measurements. The remaining set of ACRs without dome filters was used to measure the 

total radiation. The nonscanner channels were covered with an instrument cover plate 

before, during, and for a short period after launch to reduce contamination of the sensors 
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and dome filters. After the cover plate was removed, the instrument routinely performed 

both internal and solar calibrations by rotating the sensors 180º to view an on-board 

blackbody and tungsten lamp and by rotating the sensors 78º to view the Sun through the 

solar port (see Fig. 2), respectively. These measurements were used to determine 

instrument gains and zero-level offsets for correcting on-orbit calibration changes in 

instrument response throughout its mission. In addition, special satellite maneuvers were 

used to view the Sun as well as deep space directly to determine instrument gains and 

zero-level offsets at the beginning of and the end of the mission.  These deep-space 

measurements also allowed corrections for background thermal effects from other 

components in the instrument package.  

III.  ERBE Nonscanner Data Processing System 

Figure 3 shows a simple flow diagram of the ERBE nonscanner data processing system. 

It contained three major processing subsystems: instrument count conversion, TOA flux 

inversion, and time-space averaging. The most basic instrument level data was the 

instantaneous satellite altitude nonscanner voltage count. This voltage count was 

converted into scientific data (i.e., instantaneous satellite altitude nonscanner flux) using 

the ERBE nonscanner instrument count conversion algorithm. Uncertainty in instrument 

performance can directly affect the absolute accuracy of the count conversion process. 

The instantaneous satellite altitude flux was then converted into instantaneous TOA 

radiative flux using the ERBE nonscanner TOA flux inversion algorithm. Uncertainty in 

the ERBE inversion model can directly influence the absolute accuracy of the nonscanner 

TOA flux. Finally, the instantaneous TOA radiative fluxes were converted to a time 

(daily and monthly) and space (10-degree) averaged scientific data product using the 
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ERBE nonscanner time-space averaging algorithm. Non-uniform time and space 

sampling can be a source of uncertainty in this step. Fortunately, the ERBE time-space 

averaging uncertainty usually added noise to the final data product with minimum effect 

on overall absolute accuracy. The next two sections will discuss lessons learn from both 

nonscanner instrument operations and TOA data production.  

IV.  Lessons from Nonscanner Instrument Operations 

While the radiometric performance of the WFOV nonscanner instrument was well 

documented and understood during pre-launch testing, the ERBE instrument team 

learned after launch that this type of instrument was inherently difficult to accurately 

calibrate on orbit due to issues encountered in the space environment. In the following, 

we highlight these calibration challenges using results from the ERBE WFOV instrument 

including: 

• Removing the instrument radiometric drift, which impacted the stability of the 

radiative fluxes 

• Accounting for changing instrument radiometric offsets, which affected the 

stability and absolute accuracy of the radiative fluxes 

• Intercalibrating measurements from multiple on-orbit nonscanner instruments 

needed to provide full global diurnal coverage 

A. On-orbit Instrument Gain Variations 

The ERBE WFOV nonscanner was designed with a relative on-orbit calibration 

capability in order to determine instrument drifts with time. The radiometer viewed the 
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Sun and an internal calibration source every two weeks to monitor changes in instrument 

gains. Using this method, the on-orbit performance of the ERBS’s total-channel ACR 

was determined to be stable to within 0.5 Wm-2 over 15-years [25]. The long-term 

performance of the shortwave channel was not quite as good. The root cause of the larger 

shortwave instrument degradation was determined to be decreasing optical transmission 

due to exposure of the WFOV shortwave dome to solar radiation during spacecraft 

sunrise, sunset, and bi-weekly solar calibration events. The magnitude of this degradation 

was time dependent and varied as a function of wavelength of shortwave radiation and 

the spatial pattern of the total cumulative solar dosage on the shortwave dome [26], [27]. 

Similar shortwave dome degradation issues also occurred with the Nimbus-7 nonscanner 

instrument [28]. These spectrally- and spatially-dependent effects were very difficult to 

account for once the instrument was in orbit.  Fig. 4 shows the time series of the ERBS 

nonscanner WFOV total and shortwave instrument gain as a function of time, determined 

by the ERBS bi-weekly on-orbit solar calibration data [25]. The gain, which is equivalent 

to transmission throughput, was defined as unity at the beginning of the mission. Without 

the silica dome, the total sensor gain showed no sign of degradation with time. This was 

in contrast to the large change in gain for the shortwave sensor, which decreased 8.8% 

over the mission lifetime due to exposure to direct sunlight. Because of the lack of 

spectral and spatial information on the shortwave dome at the time of data processing, the 

ERBE instrument team assumed the dome degradation to be spectrally and spatially 

uniform. A simple time dependent shortwave gain correction was then developed based 

on these solar calibration data. This correction was applied to the original WFOV 
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nonscanner shortwave data by increasing the satellite shortwave measurement by a 

spectrally-independent ~8.8% over time. 

While this simple solar-calibration correction was used successfully in fixing the majority 

of the shortwave dome problems, it did not completely eliminate all shortwave dome 

transmission related artifacts as seen in Fig. 5, which shows the time series of daytime 

and nighttime longwave flux over the tropics and the corresponding differences between 

them [29]. The nighttime longwave, deduced from the total channel alone, was stable 

over time. The daytime longwave, produced by subtracting the shortwave channel 

measurement from the total channel measurement, would normally be expected to show 

similar levels of stability, yet it showed an increase with time. The artificial growth of 

daytime longwave was consistent with a spectrally-dependent shortwave dome 

degradation effect in which the shorter wavelength signals (i.e., blue scene from clear 

ocean) degraded faster than their longer wavelength counterparts (i.e., cloudy scene). 

Such spectrally-dependent transmission degradation effects are typical of silica-based 

optics exposed to solar ultraviolet radiation. The spectrally flat ERBE nonscanner gain 

correction resulted in an artificially low shortwave signal and a correspondingly 

enhanced longwave signal, since the daytime longwave signal was calculated from the 

total minus the shortwave signals. The magnitude of this additional artifact on the 

shortwave flux was on the order of 1.5% over the 15-year period. This result suggested 

that solar calibration data alone cannot remove all shortwave instrument artifacts since 

the ERBE solar calibration correction assumed spectrally- and spatially- uniform dome 

degradation with time. In reality, the ERBE shortwave dome transmission loss was both 

spectrally and spatially dependent as noted earlier. It was nearly impossible to 
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discriminate and to completely remove these artifacts from the measurements after 

launch. The shortwave dome degradation, if left uncorrected, can alias into the long-term 

nonscanner data record. Wong et al. [29] developed a secondary correction for shortwave 

and longwave fluxes to remove these additional instrument artifacts using time series of 

tropical mean daytime minus nighttime longwave flux differences. This additional 

correction, while useful, did not completely remove spectral artifacts embedded in the 

regional data. The estimated uncertainty of this secondary correction was on the order of 

0.1 Wm-2 for both shortwave flux and longwave flux at the end of the 15-year period. As 

a side note, it should be pointed out that shortwave spectral degradation issues are a 

universal satellite instrument problem affecting even the newer and more advanced 

scanner instruments such as those from the Clouds and the Earth’s Radiant Energy 

System (CERES) mission [30] and the Geostationary Earth Radiation Budget (GERB) 

mission [31]. 

One solution to the shortwave dome degradation problem is to carry two sets of identical 

nonscanner shortwave instruments with the reference set completely shielded by a cover 

plate during Earth observations. This extra reference set is only opened for observations 

during solar calibration periods when the Earth-viewing instrument is also looking at the 

Sun at the same time. A shortwave gain correction can then be developed using 

measurements from both the Earth-viewing and reference sensors. This method can slow 

down the degradation artifact, but it does not completely remove it from the data since 

the reference shortwave instrument will also degrade during solar calibration periods. 

Another solution that may be possible in the future is to cross-calibrate the nonscanner 

shortwave measurement with other more  accurate and stable sensors such as those from 
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the proposed National Aeronautics and Space Administration (NASA) Climate Absolute 

Radiance and Refractivity Observatory (CLARREO) mission [32] or the proposed 

National Physical Laboratory (NPL) Traceable Radiometry Underpinning Terrestrial- and 

Helio- Studies (TRUTHS) mission [33]. However, with a nonscanner instrument, this 

method also has challenges. Detailed discussion of this method is given in section IV-C. 

B. On-orbit Instrument Offset Variations 

Another on-orbit instrument issue that limited the stability and absolute accuracy 

achievable from ERBE nonscanners was the large uncertainty in instrument offset during 

the mission. The nonscanner flux was estimated using an engineering equation that 

consists of slopes and offsets to convert instrument count to a physical unit [19].  Thus an 

uncertainty in instrument offset value can directly affect the absolute accuracy of both the 

instantaneous and time-space averaged nonscanner flux data. On ERBE, the on-orbit 

nonscanner total channel offset was determined every 14 days based on internal 

blackbody measurements or blackbody energy calculated from internal temperature 

sensor measurements. The shortwave offset was derived using shortwave data collected 

during the nighttime orbit or from other internal calibration data during the bi-weekly 

calibration events. The non-zero shortwave value at night was used as the shortwave 

offset.  Paden et al. [34] showed comparisons of offset values based on these different 

calibration methods.  While the total channel offsets determined using the two calibration 

methods were in excellent agreement, the shortwave channel offsets differed by a few 

Wm-2 depending upon the calibration method used. This uncertainty therefore directly 

affected the absolute accuracy of the final nonscanner shortwave fluxes. Furthermore, 

shortwave offset uncertainty also affected the final nonscanner daytime longwave fluxes 
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since they were determined by subtracting the shortwave channel measurements from the 

total channel measurements. 

In addition to the absolute uncertainty associated with the various calibration methods, 

there were also changes in zero-level offset on three different timescales during the 

ERBE mission: long-term drifts, short-term fluctuations, and instrument restart (power-

cycling) level changes. These offset changes introduced additional uncertainties to the 

nonscanner dataset. Fig. 6 shows the time series of the ERBS WFOV nonscanner total 

and shortwave channel offsets from November 1984 to September 1999 [35]. While the 

total channel offset slowly drifted upward by about 12 Wm-2 over this 15-year period, the 

corresponding shortwave channel offset changed by approximately 100 Wm-2 over the 

same period. Ninety percent of the shortwave offset change can be accounted for by the 

shortwave dome degradation effect, leaving about 10 Wm-2 as the actual shortwave 

channel offset drift. Imbedded in the long-term drift were level shifts in offsets that were 

related to satellite anomaly events (i.e., battery or power issues). These satellite anomaly 

events resulted in the shutdown and consequent restart of the ERBS nonscanner 

instrument during the 15-year period. Each time this happened, the nonscanner offsets 

experienced a level shift of ~ 3 to 4 Wm-2. These slow long-term offset drifts and 

instrument-restart offset level shifts, which affected the stability of the measurements, 

were caused by changes in electrical resistances of the wiring within the ERBE 

nonscanner [35], [36] and were corrected to ensure a high quality data product. 

In addition to the long-term offset drifts and the instrument-restart level shifts, the ERBE 

nonscanner also experienced large short-term fluctuations in offsets that were attributed 

to changing thermal-background effects. These offsets fluctuation directly affected the 
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absolute accuracy of the measurements. Green et al [37] gave a detailed discussion of this 

issue based on comparisons between scanner and nonscanner measurements. For the total 

channel, they found that the nonscanner offset changed rapidly with time; it even varied 

significantly during one orbit. They showed the root cause of this short-term offset 

fluctuation can be traced to changes in solar illumination on the spacecraft and the 

associated varying thermal loads on the instrument. For example, they reported that the 

longwave measurement could change by more than 3% during spacecraft sunrise and 

sunset (Fig. 7). Longwave changes were also observed over the month as the ERBS orbit 

precessed from a terminator to a noon orbit. Again, they concluded that this was due to 

changes in instrument offsets associated with changing solar illumination on the 

spacecraft. They estimated that the absolute accuracy uncertainty of the nonscanner 

caused by the rapidly changing offset was on the order of 1 to 3 Wm-2 since such offset 

issues did not vanish in the time-space averaged dataset. The analysis also indicated that 

the offset changed depending on both the spacecraft position within the orbit and the 

satellite beta angle, which is a measure of solar exposure of the orbit. A beta angle of 0º 

indicates that the orbit is completely in the dark while a beta angle of 90º indicates that it 

is completely illuminated by the Sun. While the orbit dependence caused spurious 

latitudinal signals, the beta angle dependence caused longer term month to seasonal 

biases. These results strongly suggested that the short-term offset changes could have 

been caused by changes in temperature gradients inside the instrument even though the 

nonscanner had a built-in heater to maintain steady state temperature with time. The 

temperature gradient depended on solar heating, hence on orbit parameters. While the 

design global net absolute accuracy goal of the ERBE nonscanner was 1.7 Wm-2 [15], the 
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actual ERBE nonscanner in-flight global net absolute accuracy uncertainty was closer to 

5 Wm-2 due to such instrument thermal-background uncertainties. This was, nevertheless, 

an improvement over the Nimbus 7 nonscanner, which had a global net absolute accuracy 

uncertainty of 10 Wm-2 [28], [38], [39]. 

This offset issue is not unique to satellite instruments. Offset issues caused by internal 

temperature gradients also exist for WFOV broadband flux instruments used for 

monitoring the surface radiation budget at ground level as part of the WMO Baseline 

Surface Radiation Network [40]. The magnitude of the offset fluctuation depends upon 

the instrument design as well as the environmental conditions in which the instrument is 

operated. The underlining physics causing the offset changes in ground and satellite 

sensors is similar. For example, the higher quality Kipp and Zonen shortwave (CP-22) 

and longwave (CGR-4) instruments have an uncertainty of 1 to 4 Wm-2 under much less 

extreme ground thermal environments than those of the deep-space viewing conditions 

ranging from 3 K to full solar heating on orbital timescales of ~90 minutes. Details of the 

Kipp and Zonen surface instrument accuracy specifications can be found at 

http://www.kippzonen.com/.  

One limitation of the nonscanner is that the requirement to constantly view Earth leaves 

insufficient time to verify offsets continuously in space, but instead relies on intermittent 

internal blackbody calibration measurements or observations of deep space from special 

spacecraft maneuvers. This is in contrast to scanner operations, which see the Earth and 

deep space at each side of every temporally-short scan. The inability to determine 

instrument offsets continuously degrades the scientific usefulness of the WFOV 
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nonscanner data, resulting in a large uncertainty of 5 Wm-2 in the global net radiation at 

TOA and energy imbalance of planet Earth.  

Thermal-background corrections affect all nonscanner instruments. The intrinsic 

instrument thermal background, even if stable, needs to be corrected for high-accuracy 

measurements. Improved thermal stability reduces the corrections and thus likely 

provides lower associated uncertainties. As a relatively large instrument, the ERBE 

benefitted from thermal mass; the smaller instruments desired for a CubeSat constellation 

to measure outgoing TOA radiation will likely not have this thermal-mass benefit. 

One possible solution to the offset problem is to design new nonscanner ACRs to include 

an oscillating shutter, similar to those used in the Total Irradiance Monitor (TIM) 

instrument [41] on the Solar Radiation and Climate Experiment (SORCE) mission and to 

similarly acquire dark measurements using dark space to characterize the instrument’s 

thermal background signals. 

C. On-orbit Inter-Satellite Calibrations 

In order to get accurate global net radiation, the diurnal cycle of radiation must also be 

captured. Since the outgoing TOA radiation is not isotropic, multiple look-angles of the 

same spatial regions are needed. The sampling requirement can be provided using a large 

fleet of WFOV nonscanner instruments in different orbits. However, intercalibrating 

nonscanner instruments on different satellites to a single radiometric standard is 

challenging. Since onboard solar and internal calibration sources have instrument 

intrinsic uncertainties due to the gain and offset drifts mentioned in the previous sub-

sections, such drifts are unique to each nonscanner instrument, depending on its specific 
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space environment with time. In order to tie the nonscanner measurements on different 

platforms to a single standard, the instruments must be cross-calibrated. One approach 

might be to use the best performing nonscanner instrument as a reference and calibrate 

the others using overlapping footprints on Earth. For sun-synchronous satellites, the 

different satellite orbits intercept one another over the polar region. However, this region 

usually does not provide enough diversity of global sampling conditions to allow for 

accurate cross-calibration between individual nonscanner instruments. Specifically, the 

surface and atmospheric conditions over the polar region are very different from other 

climatological regions on Earth, so a cross-satellite calibration coefficient developed over 

the polar region may not apply to other climate regimes on Earth. Therefore, new 

methods of inter-satellite calibration must be developed to improve the accuracy of the 

combined satellite product. 

One possible solution to improve future measurements is to inter-calibrate the WFOV 

nonscanner data with highly accurate and stable instruments from proposed satellite 

mission, such as the NASA CLARREO mission [32]. CLARREO is designed to be an 

absolute calibration observatory in space, and its measurement accuracy is directly 

traceable to international physical standards. The 2-sigma absolute-accuracy uncertainties 

of the CLARREO reflected solar and infrared instruments are less than 0.3% of Earth 

mean reflectance and 0.06 K, respectively. CLARREO will be placed in a 90º orbit at a 

satellite altitude of ~ 600 km for full diurnal sampling twice per year.  During operation, 

the CLARREO satellite will intermittently acquire simultaneous measurements with 

other operational weather and climate satellites as it under-flies them.  The observations 

from the highly accurate CLARREO instruments can be used to improve the accuracy of 



 20

these less accurate weather and climate instruments through such co-temporal and co-

spatial cross-calibrations. Currently, there is no plan for the full CLARREO mission; only 

the CLARREO Pathfinder mission for reflected shortwave measurements on the 

International Space Station (ISS) is planned, with a launch in the 2020 time-frame as a 

technology demonstration [42].  

While the CLARREO concept is very useful for many weather and climate instruments, it 

cannot be used directly to improve the accuracy of the WFOV nonscanner instrument due 

to the mismatch of the instrument footprint size and the length of the satellite swath.  The 

current design of the CLARREO infrared instrument is a nadir-viewing sensor with the 

footprint size of about 100 km. The reflected solar instrument has a footprint size of 0.5 

km and a satellite swath width of 100 km. These are in contrast to the WFOV nonscanner 

footprint size of 1000 km.  These spatial mismatches mean that the CLARREO 

measurements can never completely spatially fill the larger WFOV nonscanner footprint, 

which is required for accurate cross-calibration analysis relying on simultaneous 

measurements.  

Alternately, the nonscanner can be indirectly tied to CLARREO by flying in formation 

with other cross-track broadband scanner instruments such as CERES. These scanners 

can be used as the link between a nonscanner and CLARREO by first tying the scanner 

directly to the CLARREO measurements through overlap measurements, and then tying 

the nonscanner to the calibrated scanner measurements by integrating the scanner data 

over the nonscanner footprint using the technique of Green et al. [37]. It should be noted 

that angular distribution models (ADMs) are needed in order to correctly account for 

CERES viewing geometry within the larger nonscanner field-of-view. The uncertainty of 
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this procedure is on the order of 1% for shortwave flux and 0.5% for longwave flux [43]. 

Once this nonscanner instrument is indirectly tied to CLARREO, it can be used to cross-

calibrate other nonscanner satellites in a possible constellation. Each such inter-

calibration will, of course, successively increase uncertainties. Due to the large footprint 

of the WFOV nonscanner instrument, a multi-satellite mission must be carefully designed 

in order to provide maximum overlap between instruments over a large dynamic range of 

surface and atmospheric conditions all over the globe in a way to maximize inter-satellite 

calibration data collection. 

Uncertainties due to inter-calibrations affect both the relative accuracies of relating 

individual instruments to the mean of an entire constellation of which they may be a part 

and to on-orbit inter-calibration to another on-orbit standard, such as proposed 

CLARREO mission. While there were very few nonscanners in the three ERBE 

spacecrafts, these inter-calibration issues will need to be addressed for constellations 

having numerous separate instruments. 

V. Lessons from Nonscanner TOA Data Production 

In addition to instrument calibration concerns, the ERBE WFOV nonscanner data product 

also encountered other technical issues related to the construction of the TOA dataset 

from satellite measurements. These non-instrument related issues, which also affected the 

stability and absolute accuracy of the final WFOV nonscanner TOA dataset, include: 

• Converting the instrument radiometric measurements to radiative fluxes at a 

single, defined TOA “altitude”, which affected the absolute accuracy of the TOA 

radiative fluxes 
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• Removing time-dependent artifacts of changes in satellite altitude, which 

impacted the stability of the TOA radiative fluxes 

• Highlighting the effects from partial illumination of the sunlit and dark portions 

within a footprint when viewing the day-night terminator, which can potentially 

create a sampling bias to the TOA radiative fluxes 

A. TOA Flux Inversion 

Nonscanner measurements are taken from satellites that orbit Earth at an altitude of 

several hundred kilometers above sea level.  In order to use these data for climate studies, 

the satellite altitude measurement must be converted to flux at a TOA reference altitude, 

which is the altitude where the observed flux can be compared with the flux computed 

with a plane parallel assumption. For the ERBE mission, this altitude was defined to be 

30 km above sea level [44]. The CERES mission further refined this TOA reference 

altitude value to be 20 km [45]. Since this TOA altitude is usually much lower than the 

satellite altitude, where the actual measurements are made, a flux inversion method has 

been developed over the years to convert these satellite measurements into TOA fluxes. 

The conversion factor depends on the angular distribution of radiances. The flux 

inversion method, therefore, works best if the total (shortwave plus longwave) outgoing 

radiation is separated into its shortwave and longwave components because the angular 

distribution of the two differ; furthermore, spectrally-dependent differences on finer 

scales are also expected within each bandpass.  In addition, the longwave radiation is not 

sensitive to the position of the Sun and its inversion to TOA flux can be done using a 

simple formulation. The shortwave radiation, on the other hand, requires a more 

advanced method to convert the measurements into TOA fluxes due to its dependence on 
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solar viewing conditions. There are two common methods for inverting nonscanner 

satellite measurements to TOA fluxes: the shape factor method [46], [47], [48], [49] and 

the deconvolution method [50], [51]. While the shape factor method can convert any 

single nonscanner measurement into TOA flux without requiring neighboring nonscanner 

data, the deconvolution method requires contiguous and complete global nonscanner 

measurements to produce a single TOA flux [52]. Each of these two methods contains 

their own specific set of assumptions that can affect the accuracy of the inverted TOA 

fluxes [52]. The derivation of the shortwave shape factor, which was used to convert 

ERBE satellite measurements into TOA fluxes, contained assumptions about both the 

viewed radiation fields (i.e., mostly cloudy ocean) and the angular distribution of the 

radiance. Green and Smith [44] examined how these assumptions can affect the accuracy 

of the inverted instantaneous nonscanner MFOV and WFOV nonscanner TOA fluxes. 

Their results indicated that the TOA flux bias error for the shortwave shape factor 

inversion method were the worst for cases using the Lambertian radiation field 

assumption, with uncertainties ranging from 2% (~ -4 Wm-2) for WFOV to 11% (~ -22 

Wm-2) for MFOV. The inversion regional RMS (i.e., bias plus random) error for this case 

was very large for both WFOV (~10%) and MFOV (~15%) TOA flux. Under more 

realistic conditions using ERBE ADMs for anisotropy of shortwave radiation [53], [54], 

the inversion TOA flux bias errors became more reasonable with values less than 1    

Wm-2. The inversion regional RMS errors, however, remained quite large with values 

ranging from 7% for WFOV to 10% for MFOV TOA flux. These results indicate the 

current accuracy limits of the ERBE nonscanner TOA flux inversion process, and are 

largely independent of intrinsic instrument accuracy. 
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B. Effect of Satellite Altitude Changes 

Changes in satellite altitude can affect the long term quality of the nonscanner TOA flux 

value through the TOA flux inversion process because the WFOV shape factor inversion 

is proportional to the inverse-square of the distance between the satellite and the center of 

the Earth. Consequently, the inverted shortwave and longwave TOA fluxes from a 

descending satellite can slowly increase with time if the satellite altitude is not taken into 

account. This artifact, if not corrected for, can alias into the long term record of the 

nonscanner TOA radiation data set. Fig. 8 shows the changes in ERBS altitude over the 

15-year period between 1985 and 1999 and the effect of this change on the long term 

ERBS nonscanner WFOV TOA radiation record. As the ERBS altitude slowly decreased 

from 611 km to 585 km over the 15-year period, the computed nonscanner WFOV 

longwave and shortwave TOA flux increased by 0.7%. This translated into an increase of 

~1.5 Wm-2 for TOA outgoing longwave flux and an increase of ~0.7 Wm-2 for TOA 

reflected shortwave flux over the 15-year period. This satellite altitude effect was not 

corrected in the original ERBS WFOV nonscanner data set and had contributed to the 

reported large decadal changes in tropical mean TOA radiation budget between the 

1980’s and the 1990’s [55].  When this satellite altitude artifact was finally corrected in 

the updated version of the ERBS WFOV nonscanner data set [29], the revised data 

showed a smaller decadal change in the tropical mean TOA radiation budget. The final 

updated ERBS WFOV nonscanner radiation budget record, which also included the 

additional shortwave dome degradation correction, was thereafter also more consistent 

with two other satellite radiation budget data sets.  
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The effect of satellite altitude changes is a simple but demonstrably needed correction 

that must be applied. This is especially important for a CubeSat constellation which may 

have limited satellite altitude maneuver capability. The spacecraft altitude itself is very 

well known, so this correction, when applied, has negligibly small uncertainties. 

C. Partially-Illuminated Nonscanner Footprints 

As the satellite crosses the day-night terminator region, the satellite measurement record 

includes footprints partially illuminated by the Sun. While these footprints have 

negligible impact on the quality of the TOA flux record for instruments with small 

footprint sizes (i.e., scanner instruments), the impact is far greater for nonscanner 

instruments since the fraction of footprints affected by the terminator is large owing to 

the large nonscanner footprint size (~1000 km). The ERBS WFOV nonscanner contained 

partially-illuminated footprints at a solar zenith angle between 90° and 118°. The 

inversion of these satellite footprint measurements into TOA fluxes can be problematic. 

The ERBE shortwave data beyond a solar zenith angle of 90° were usually discarded 

during nonscanner data processing. It is not completely clear how these discarded data 

can affect the overall accuracy of the nonscanner radiation data record, but it is known 

that the reflected shortwave flux can be detected from space for local solar zenith angles 

up to 105° [56]. For the CERES mission, Kato and Loeb [56] estimated that the missing 

CERES scanner twilight flux, defined as shortwave flux beyond solar zenith angle of 90°, 

was on the order of 0.2 Wm-2 for global mean and up to 1 Wm-2 over the polar regions. 

Thus the discarded nonscanner data will certainly create a bias of at least 0.2 Wm-2 in the 

global mean nonscanner shortwave flux.  The actual bias value is probably much higher 

due to the larger nonscanner footprint size. Furthermore, this bias does not decrease even 
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for a multi-satellite mission since these partially-illuminated regions are usually locked 

into specific local time and they can only be observed by sun-synchronous satellite flying 

on a terminator orbit.  Multi-satellite mission data from other non-terminator sun-

synchronous satellites will not encounter these partially-illuminated regions. 

Measurements with better spatial resolution or more sophisticated modeling of scatter 

near the terminator may improve these uncertainties, but they will nevertheless affect all 

nonscanners due to those instruments’ large footprints. 

VI. Summary 

Continuous monitoring of the global net radiation budget at top-of-atmosphere (TOA) is 

critical to our understanding of the Earth’s climate and its variability with time. The 

determination of TOA global net radiation budget using broadband nonscanner 

instruments has received renewed interest lately.  This paper summarizes the important 

lessons learned from both the operation of the ERBE nonscanner instrument in space and 

the production of the ERBE nonscanner TOA flux data set. 

While the ERBE nonscanner instruments were well characterized before launch, the 

ERBE team encountered significant issues related to post-launch instrument calibration. 

While the full spectral range “total” channel performed well in space with a radiometric 

stability approaching 0.5 Wm-2 over a 15-year period, the radiometric stability of the 

shortwave channel, which contained a silica dome filter, was problematic with gain (or 

transmission throughput) decreasing by 8.8% over the same period. The root cause for 

the poor performance of the shortwave channel was due to the large optical degradation 

of the dome due to exposure to direct sunlight over time. Since the nature of this 
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degradation was both spectrally and spatially dependent, the correction of these data was 

challenging.  Using a simple spectrally and spatially uniform degradation assumption did 

not completely remove all shortwave instrument artifacts in the TOA dataset, as 

illustrated by the ERBE daytime minus nighttime longwave fluxes. 

In addition to gain stability concerns, achieving stability and absolute accuracy 

requirements with ERBE nonscanner instruments wers exceedingly challenging due to 

large variations in instrument offsets in space. Besides the offset uncertainty that 

occurred from the calibration methods, there were also changes in zero-level offsets on 

three different timescales during the ERBE mission: long-term drift, short-term 

fluctuation, and instrument-restart level changes. The long-term drift and instrument-

restart level changes, which affected the stability of the measurements, were likely caused 

by changes in electrical resistances of the wiring within the nonscanner. While the long-

term offset drifts and the instrument-restart level shift were correctable, the nonscanner 

also experienced large short-term fluctuations in offsets that were attributed to changing 

thermal-background effects. The root cause can be traced to changes in solar illumination 

conditions on the spacecraft and the associated varying thermal loads on the instrument, 

which caused time-dependent temperature gradients within the instrument. While the 

designed global net absolute accuracy of the ERBE nonscanner measured in the 

laboratory was on the order of 1.7 Wm-2, the actual in-flight ERBE nonscanner global net 

absolute accuracy uncertainty was closer to 5 Wm-2 due to instrument offset uncertainty.  

The intercalibration of the nonscanner instruments on sun-synchronous satellites was also 

problematic. This is a general problem for instruments in sun-synchronous orbits because 

overlapping footprints needed to generate cross-satellite corrections can only be found in 



 28

the polar region, which has very different radiative energy signatures than the rest of the 

globe. Even direct cross calibrations with highly accurate instruments such as those 

proposed for CLARREO-like mission are difficult due to mismatched footprint sizes. 

However, it may be possible to indirectly tie a nonscanner to CLARREO-like instrument 

through cross-calibration by using a close-formation satellite mission that pairs a CERES 

instrument with a cloud imager. Such an indirect calibration method still contains 

uncertainties (averages of 1% in shortwave and 0.5% in longwave) associated with the 

usage of ADMs, and additional studies would be required to validate this concept. 

Radiation budget measurements at satellite altitude must be converted to TOA flux before 

they can be used for climate studies. This inversion process generates large uncertainties 

for TOA flux, especially for shortwave data, due to the strong dependence on solar 

viewing conditions. While shortwave shape factor inversion using realistic ERBE ADMs 

for anisotropy of shortwave radiation can generate reasonable TOA flux, with inversion 

TOA bias errors of less than 1 Wm-2, the inversion RMS errors (i.e., bias plus random 

error) can range between 7% for WFOV and 10% for MFOV TOA flux. A new 

nonscanner shortwave shape factor constructed using new CERES data may help further 

reduce the inversion errors. In addition, because of their large footprint size, nonscanner 

twilight measurements from footprints partially illuminated by the Sun cannot be ignored 

and need to be converted from satellite altitude to TOA flux. The conversion of fluxes for 

such footprints adds extra challenges in producing TOA global flux data particularly from 

the shortwave WFOV instrument.  

Changes in satellite altitude can affect the TOA flux through the TOA flux inversion 

process, which can alias into the long-term record of the nonscanner data record. The 
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ERBS satellite altitude change affected the long term nonscanner record by increasing 

TOA outgoing longwave flux by 1.5 Wm-2 and TOA reflected shortwave flux by 0.7 

Wm-2 over the 15-year period before corrections were applied in 2006.  

Table I summarizes the global annual mean uncertainties of the ERBE nonscanner TOA 

fluxes after applying the specific corrections discussed in this paper. While the ERBE 

nonscanner data showed excellent long term stability after corrections, the absolute 

accuracy of this dataset remains problematic. The largest source of the absolute accuracy 

uncertainty for the nonscanner TOA data is from instrument offset determination (±2.5 

Wm-2 for longwave and ±2.5 Wm-2 for shortwave).  This is followed by intercalibration 

uncertainty between satellites and TOA flux inversion uncertainty, which range from 

±1.0 to ±1.2 Wm-2.  Even with improvements in instrument measurement accuracy (i.e., 

no intrinsic instrument errors), the global mean nonscanner TOA flux is still limited by 

the accuracy of the current TOA flux inversion method, which is only accurate to within 

±1 Wm-2. Given the challenges discussed in this paper and the remaining data 

uncertainties shown in Table I, a complete end-to-end (i.e., from instrument to final data 

product) rework of the nonscanner concept is needed to meet the stringent requirements 

of attaining an absolute accuracy goal of 0.1 Wm-2 TOA flux for climate science. 

Specifically, the basic design of the nonscanner ACR must be improved in order to meet 

the high accuracy goals needed to study and track the global net energy with time. The 

current nonscanner instrument offset problems due to varying thermal conditions in space 

must be corrected with new instrument design in order to improve the overall accuracy of 

the nonscanner measurement. An improved TOA inversion algorithm and a better inter-

satellite calibration method are also needed to improve the accuracy of the future 
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nonscanner data product. Finding solutions to these outstanding ERBE issues will greatly 

benefit future nonscanner missions. 
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Table I. Global annual mean ERBE Nonscanner TOA longwave (LW) and shortwave 

(SW) flux uncertainty (Wm-2) after applying corrections. 

List of Figures: 

Fig. 1. ERBE nonscanner instrument package including the solar monitor, two MFOV 

radiometers located on the bottom right side of the picture and two WFOV radiometers 

located on the bottom left. 

Fig. 2. ERBE nonscanner radiometer positions during bi-weekly on-orbit internal 

blackbody calibrations (stow position), bi-weekly on-orbit solar calibrations (solar view 

position), and normal nadir-pointing Earth-viewing observations. 

Fig. 3. ERBE nonscanner data processing system diagram. 

Fig. 4. Time history of the ERBS nonscanner instrument gain for the WFOV total 

radiometer (red) and the WFOV shortwave radiometer (blue) from 11/14/1984 to 

9/30/1999. Note that the ERBS nonscanner shortwave gain increased slightly during 

1988-89 period when atmospheric densities amplified at ERBS altitude associated with 

the maximum solar magnitude activity. The increased atomic oxygen concentrations 

from this event, acting as a bleaching agent, cleaned the shortwave filter dome surface 

slightly. Data Source [25]. 

Fig. 5. Time history of the ERBS WFOV nonscanner daytime longwave flux (blue line, 

top plot) as determined by subtracting the shortwave channel from the total channel, 

which shows approximately constant nightime flux (red line, top plot). Daytime 

longwave flux would be expected to be similarly trend-free, yet it shows an increase 
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with time. The dashed line (bottom plot) gives the best fit linear regression line to the 

daytime minus night-time longwave flux data (green line, bottom plot). Data Source 

[29]. 

Fig. 6. Time series of total channel offset (red squares, left axis) and shortwave channel 

offset (blue triangles, right axis) as determined from internal blackbody and night-side 

of the Earth, respectively, from 11/14/1984 to 9/30/1999. Note that the offsets 

themselves are much larger than the measured TOA signals, indicating the importance 

of accurate on-orbit internal calibrations and deep-space measurements. Data Source 

[35]. 

Fig. 7. The difference between ERBE nonscanner and ERBE scanner measurements for 

longwave (red) and shortwave (blue) flux for one ERBS satellite orbit. The x-axis is the 

satellite true anomaly in degree, which measures the satellite position relative to the 

Sun. Night time portion of the orbit is found approximately between 120º and 280º. 

Large changes in longwave flux differences occurred at the day-night boundary due to 

large changes in thermal loading conditions on the nonscanner instrument. Data Source 

[37]. 

Fig. 8. Changes in ERBS satellite altitude from 1985 to 1999 (top panel) and its effect 

(bottom panel) on the ERBS WFOV nonscanner longwave (red), shortwave (blue), and 

net (green) flux record over the 15-year period as seen in Edition2 (dash line with no 

altitude correction) and Edition3 data (solid line with altitude correction). ERBE/ERBS 

WFOV Edition3 data is a reprocess of the ERBE/ERBS WFOV Edition 2 data and 

incorporated satellite altitude correction to the data processing. Data Source [29]. 
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Figures: 

 

Fig. 1. ERBE nonscanner instrument package including the solar monitor, two MFOV 

radiometers located on the bottom right side of the picture and two WFOV 

radiometers located on the bottom left. 
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Fig. 2. ERBE nonscanner radiometer positions during bi-weekly on-orbit internal 

blackbody calibrations (stow position), bi-weekly on-orbit solar calibrations (solar 

view position), and normal nadir-pointing Earth-viewing observations. 
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Fig. 3. ERBE nonscanner data processing system diagram. 

 

 

 



 43

 

Fig. 4. Time history of the ERBS nonscanner instrument gain for the WFOV total 

radiometer (red) and the WFOV shortwave radiometer (blue) from 11/14/1984 to 

9/30/1999. Note that the ERBS nonscanner shortwave gain increased slightly during 

1988-89 period when atmospheric densities amplified at ERBS altitude associated 

with the maximum solar magnitude activity. The increased atomic oxygen 

concentrations from this event, acting as a bleaching agent, cleaned the shortwave 

filter dome surface slightly. Data Source [25]. 
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Fig. 5. Time history of the ERBS WFOV nonscanner daytime longwave flux (blue line, 

top plot) as determined by subtracting the shortwave channel from the total channel, 

which shows approximately constant nightime flux (red line, top plot). Daytime 

longwave flux would be expected to be similarly trend-free, yet it shows an increase 

with time. The dashed line (bottom plot) gives the best fit linear regression line to the 

daytime minus nightime longwave flux data (green line, bottom plot). Data Source 

[29]. 
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Fig. 6. Time series of total channel offset (red squares, left axis) and shortwave channel 

offset (blue triangles, right axis) as determined from internal blackbody and night-

side of the Earth, respectively, from 11/14/1984 to 9/30/1999. Note that the offsets 

themselves are much larger than the measured TOA signals, indicating the 

importance of accurate on-orbit internal calibrations and deep-space measurements. 

Data Source [35]. 
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Fig. 7. The difference between ERBE nonscanner and ERBE scanner measurements for 

longwave (red) and shortwave (blue) flux for one ERBS satellite orbit. The x-axis is 

the satellite true anomaly in degree, which measures the satellite position relative to 

the Sun. Night time portion of the orbit is found approximately between 120º and 

280º. Large changes in longwave flux differences occurred at the day-night boundary 

due to large changes in thermal loading conditions on the nonscanner instrument. 

Data Source [37]. 
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Fig. 8. Changes in ERBS satellite altitude from 1985 to 1999 (top panel) and its effect 

(bottom panel) on the ERBS WFOV nonscanner longwave (red), shortwave (blue), 

and net (green) flux record over the 15-year period as seen in Edition2 (dash line with 

no altitude correction) and Edition3 data (solid line with altitude correction). 

ERBE/ERBS WFOV Edition3 data is a reprocess of the ERBE/ERBS WFOV 

Edition2 data and incorporated satellite altitude correction to the data processing. 

Data Source [29]. 


