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Systems Health Monitoring
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What?

A set of capabilities, information and decision-making products – integrating technologies from 

systems engineering, reliability, data analytics, for diagnosis, prognosis and health management 

of complex systems

Why?

• Turning Data and Health State into Information then Knowledge then having the Wisdom

to do something constructive with it

• Need to impact Availability and Overall Enterprise Costs

• “Do something that improves safety, increases autonomy, and reduces costs”   

Fault 
Diagnosis

Fault 
Detection

Fault 
Isolation

Fault 
Identification



Fault Tree Analysis (FTA)

• Deductive, top-down, graphical analysis that shows failure path/failure chain

• Widely used in operations research and systems reliability

• Developed by Bell Telephone Labs for the USAF in 1962

• One of multiple techniques used for analysis
• Reliability Block Diagrams (RBDs) – success oriented analysis

• Fault trees – Failure oriented

• Fault trees: Logic block diagrams that display the state of a system (top 
event) in terms of the state of its components (basic events)
• Built using gates (AND and OR gates) and events

• If occurrence of either event causes system to fail  OR gate

• If occurrence of both events cause system failure  AND gate

4
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Fault Tree Analysis (FTA)

Fault tree below indicates 
that failure of A or B 
(occurrence of event A or B) 
causes system to fail
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Fault tree below indicates that any of the 
following failures causes system to fail

Failure of component 1&2 OR 3&4 or 1,5,&4 or 2,5, &3 

http://www.weibull.com/basics/fault-tree/index.htm
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What is Diagnostics?

• Diagnosis = determining the nature and cause of something
• In a health management context, this “something” is a fault

– Fault = an unexpected change in the dynamics of a system
– Fault ≠ Failure!
– Failure = a condition of the system in which it does not meet functional specifications
– Faults can grow and lead to failure, or a fault may be significant enough in magnitude, 

or a severe enough change in configuration, such that the system will have failed 
(due to the occurrence of the fault)



Why Diagnostics?

Home 

Base

Planetary 

Rover

Example: Rover Mission

Visit waypoints to accomplish science objectives. If serious fault occurs, need to diagnose on 

the planet and head back to home-base. Communication delay with Earth prevents Earth-

based diagnosis!
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Communication 
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Why Diagnostics?

• Diagnostics informs decision-making

• Which components to repair/replace

• Inform fault mitigation

• Inform fault recovery

• Inform functional reallocation

• Diagnostics informs prognostics
– What is (are) the dominant aging/degradation mode(s)

– Can we complete operation(s)/mission in presence of fault?



The Basic Idea
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Nominal vs Faulty Behavior

• What is “nominal” behavior?

– Nominal is defined w/r/t some knowledge about the system, a 
reference behavior

– Comes from expert knowledge, known operating limits, physics 
model, machine learning approaches, etc.

• In model-based diagnostics, the reference comes from a 
model that explicitly describes the nominal behavior
– Models can be static or dynamic

– Models can be used for simulation



Why Model-based Diagnostics?

Instances of 
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Learn 
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Learn 
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Machine Learning Approach:

Detection: Classify between nominal and non-nominal behavior

Isolation: Classify between different classes of faulty behavior

Problems:

• Lack of faulty data 

instances

• No explanatory power 

from models

• High dimensionality

• No identification

We want models that 

we can use to reason

over…



Why Model-based Diagnostics?

• Models have explanatory 
power
– Causal reasoning

– Explicit representation of 
faults

• Develop general model-
based algorithms

– Models used for diagnosis 
are inputs

– Algorithms do not change for 
a new system, only the model 
changes

Diagnostics

System 

Inputs

System 

Outputs

System 

Models

Diagnoses



Constituent Problems

• Fault detection = determination of whether the system is not 
operating nominally

• Fault isolation = determination of the root cause(s) of the 
unexpected system behavior

• Fault identification = determination of the magnitude of the 
fault (if applicable)

System Detection Isolation Identification

Inputs
Inputs,

Outputs Fault?

Which 

Fault(s)?

How 

Big?



Characterizing Faults

• Abrupt: Change in parameter value 
faster than the sampling frequency

• Incipient: Change in parameter value 
slower than the sampling frequency
– Can be linear, exponential, or arbitrary 

degradation
– Prognostics usually pertains to incipient 

faults

• Abrupt faults can be easier/faster to 
detect compared to incipient faults

• Dynamics of fault is different from 
dynamics of 
measurements/observations
– E.g., abrupt fault can present incipient 

change in measurements

Incipient

Abrupt



Characterizing Faults

• Persistent vs Intermittent
– Persistent: Once manifested, 

the fault persists 
– Intermittent: Fault manifests 

intermittently

• Discrete vs Parametric
– Discrete faults involve 

undesired change in system or 
model structure, e.g., valve on 
Pipe 12 stuck closed

– Parametric faults involve 
undesired change in system or 
model parameter, e.g., Pipe 2 is 
clogged

IntermittentPersistent

Parametric

Discrete



Diagnosis

• Some events are observable, and some are not

• We need to estimate what the possible state is, as that 
determines whether an unobservable fault event may or may not 
have occurred

• Valve example:
– We have a sensor that reports the position of a valve at a regular 

interval, 0 for open and 1 for closed

– Say that we observe the event sequence: Open, 0, 0, 0, Close, 1, 1
• Is this nominal? Maybe

– Say that we observe: Open, 0, 0, Close, 0, 0
• Is this nominal? No
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A reasoning algorithm would map events to diagnoses. This is basically “hard-

coding” the reasoning algorithm.



Summary of Approach
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Model-based approaches will differ in how they capture 

they model, and how they abstract the system data into 

symbols we can reason with.

Reasoning algorithm is, at its most fundamental level, 

always the same.



Practical Considerations

• Such an approach doesn’t work well for dynamic systems, and 
hides many issues
– What about sensor noise?
– How to represent dynamic behavior in this framework?
– How to reason over time?
– Computational complexity?

• However, the algorithmic approach is sound and forms the basis 
for most model-based diagnostic reasoning algorithms
– Describe nominal and faulty behavior
– Reason over discrepancies between nominal and observed behavior
– Determine which faults would be consistent with the observations
– This is always the approach in model-based diagnosis!
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Continuous System Diagnosis: One Approach

• Tackles fault detection, isolation, and identification problems
• Assumes single, persistent parametric faults 

– Can be either abrupt or incipient

• Changes in parameter produces changes in system outputs w/r/t no parameter 
change

– Eventually all (causally related) sensors effected

• Need to reason over those changes
– Have a model of how measurements should deviate given different possible faults 
– Noting the order in which different measurement deviations are observed can also give us 

clues about the fault

– Compare observed deviations to expected deviations for each fault candidate to diagnose true 
fault

20



Residual Generation and Fault Detection

• Residual Generation
– Observer (eg, Kalman filter, unscented Kalman filter, particle filter) based on nominal 

local submodel computes nominal behavior as a reference
– Residual computed as measured value minus reference value

• Fault Detection
– Nominally residual is approximately zero
– Fault detected when residual deviation from zero is statistically significant
– Usually there is a delay between fault occurrence and fault detection – cannot be 

avoided

21
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Fault Isolation

• Faults are isolated by comparing the qualitative deviation in measurements with the 

predicted fault signatures

– Example: Consider fault set F = {C1
-,R2

+,C2
-} and measurement set M = {p1, p3} all faults can be 

uniquely isolated

• Therefore, a system with faults F = {f1, … ,fl}, and measurements M = {m1, … ,mn}, is 

diagnosable if all single faults in F can be uniquely isolated using M

– I.e., there is at least one distinguishing fault signature between fi and all other faults in the 

system. 
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Fault p1 p3

C1
- +- 0+

R2
+ 0+ 0+

C2
- 0+ +-

Pressure p1 Pressure p3Fault Signature Matrix



Fault Identification

• Parameter estimation problem
– Identify new (fault) parameter value, given observed faulty behavior

– Several algorithms solve this problem

• One approach:
– Determine an estimation window

• Use data from before td (detection time) to t (current time)

– Run an observer through that window, with the state vector augmented 
with the fault parameter (joint state-parameter estimation)

• Alternate approach
– Derive submodel expressing unknown parameter as function of 

known/measured variables
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Challenges

• Modeling!
– At what level of abstraction should one model?

– How to combine results from different levels of abstractions?

• Online simulation
– Problems with dynamic systems: initial conditions

• What is the source of complexity?
– Complex systems or large systems (# components)

– Exponential number of multiple fault candidates

24

Adapted from Anibal Bregon’s talk on “Consistency-Based Diagnosis” at PHME14, Nantes, France.
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Additional Information Sources

• Conferences 
– PHM: http://www.phmsociety.org/ 
– DX: http://dx-2014.ist.tugraz.at/ 
– IJCAI: http://ijcai.org/ 
– Safeprocess (part of IFAC organization): http://safeprocess15.sciencesconf.org/
– IFAC world conference: http://www.ifac2014.org/

• Journals 
– Artificial Intelligence Journal 
– International Journal of the PHM Society (IJPHM) 
– Journal of AI Research 
– IEEE Transactions On Systems, Man and Cybernetics 
– AI Communications 
– Control Engineering Practice 
– Engineering Application on Artificial Intelligence

– …
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Diagnostics Summary 
• Diagnostics answers the following questions

– Is anything broken? – Fault Detection
– What is broken? – Fault Isolation
– How bad is the fault? – Fault Identification
– What can we do about it? – Fault Mitigation, Recovery, & Decision-making

• Benefits include
– Enhanced system safety: faults are mitigated before catastrophic events
– Enhanced system performance: supports maintaining system goals in the presence of faults
– Reduces costs: supports smart troubleshooting and maintenance

• Core focus areas include
– Algorithm development: hybrid systems diagnosis, multiple fault diagnosis, distributed diagnosis, integrated 

diagnosis and prognosis, uncertainty management
– Tool maturation: Livingstone, Hybrid Diagnostic Engine (HyDE), Qualitative Event-based Diagnosis (QED)
– Verification and validation: metric development, diagnostic algorithm evaluation framework (DXF), diagnostic 

competitions (DXC)
– Application to real systems: electrical power distribution systems, planetary rovers, propellant loading systems, 

environmental control and life support systems, autonomous drilling, electromechanical actuators



PROGNOSTICS
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Definitions

• Prognostics = the problem of predicting the future state of a 
system
– In the context of this lecture, interested in states that represent failure

• Model-based prognostics = an approach to prognostics in which 
a model of the system is used for prediction
– First principles
– Physics-based
– Neural network
– Etc.

• For the purposes of this lecture, we are interested in predicting 
failure states
– EOL = end of life (time of failure)
– RUL = remaining useful life (time until failure)

31



The Basic Idea
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Why Prognostics?
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Why Prognostics?

• Prognostics can enable 
• Adopting condition-based maintenance strategies, instead of time-

based maintenance

• Optimally scheduling maintenance

• Optimally planning for spare components

• Reconfiguring the system to avoid using the component before it 
fails

• Prolonging component life by modifying how the component is used 
(e.g., load shedding)

• Optimally plan or re-plan a mission

• System operations can be optimized in a variety of ways
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The Basic Idea Revisited
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… This schematic is oversimplified!



Why Model-Based Prognostics?

• With model-based algorithms, models 
are inputs

– This means that, given a new problem, 
we use the same general algorithms

– Only the models should change

• Model-based prognostics approaches 
are applicable to a large class of 
systems, given a model

• Approach can be formulated 
mathematically, clearly and precisely
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System Model

•
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Concept
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Prognostics Model Library

•
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Prognostics Algorithm Library

• Available at https://github.com/nasa/PrognosticsAlgorithmLibrary

• Provides an Observers package
– Includes KalmanFilter, ExtendedKalmanFilter, UnscentedKalmanFilter, 

and ParticleFilter classes

• Provides a Prognosis package
– Includes a Predictor class

– Includes a Prognoser class
• Encapsulates an Observer and a Predictor

– Relies on PrognosticsModel class

• Includes examples for using the different filters, predictor, and 
prognoser
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https://github.com/nasa/PrognosticsAlgorithmLibrary


Data sets available for download

Available at https://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-
data-repository/
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Fielded Applications
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Edge 540T subscale electric aircraft: EOD, 

reaming flight time prediction, SOH

Rover testbed: EOD, SOH  and 

remaining driving distance 

prediction

Cryogenic valve 

testbed: EOD 

prediction

Orion EFT-1 mission: SOC estimation, EOD 

prediction, mission success probability 

computation



Edge 540-T

• Subscale electric 
aircraft operated at 
NASA Langley 
Research Center

• Powered by four sets 
of Li-polymer batteries

• Estimate SOC online 
and provide EOD and 
remaining flight time 
predictions for 
ground-based pilots
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Edge UAV Use Case

• Piloted and autonomous missions, visiting 
waypoints

• Require 2-minute warning for EOD so 
pilot/autopilot has sufficient time to land 
safely
• This answer depends on battery age

• Need to track both current level of charge 
and current battery age

• Based on current battery state, current 
battery age, and expected future usage, can 
predict EOD and correctly issue 2-minute 
warning Runway

Objective #1

Objective #2

Objective #3

Objective #4

Electric Aircraft



Rover

• Planetary rover testbed at NASA Ames 
Research Center
• 24 lithium ion batteries, two parallel sets 

of 12 in series
• Batteries power 4 motors, one for each 

wheel (skid steering)

• Rover operated in two driving modes
• Unstructured driving

• Rover is driven freely by an operator, without 
prior knowledge of actions

• Structured driving
• Rover has a given mission, to visit a set of 

waypoints
• Rover moves along, visiting waypoints
• End-of-discharge prediction is required in 

order to ensure the given set of waypoints 
can be visited, and if not, to replan the route 
to optimize mission value

Ref : A. Sweet et al “Demonstration of Prognostics-Enabled Decision Making Algorithms on a 

Hardware Mobile Robot Test Platform”, PHM 2013



National Airspace Safety
• In the National Airspace System 

(NAS), can assign labels 
representing loss of separation 
(conflicts) between aircraft
– Predict time of conflict
– Predict probability of conflict

• Can assign labels for other 
unsafe events
– Convective weather encounter
– Wake vortex encounter
– Low fuel
– Etc.

– Provide real time assessment of 
safety & risk
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76% probability of conflict, 13.3-15.7 
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2% probability of conflict,

11 minutes



Safety Modeling
• What categories of events can occur?

• Loss of separation, wake vortex encounter, convective weather encounter, sector 

demand violation, etc.

• What conditions define the occurrence of the event?
• Defined as some function of the NAS state

• Example 1: Loss of separation between A1 and A2 occurs when the horizontal 

separation is less than 5 nautical miles and the vertical separation is less than 1000 ft

• Example 2: Sector demand is too high when the number of aircraft in a sector meets 

or exceeds the capacity limit

• How do we compute the safety margin w/r/t an event?
• Margin = {“distance” to event threshold}/threshold and expressed as a percentage

• Therefore, Margin is 0% when event is present

• How do we compute aggregate safety margins?
• Example: Average safety margins over all potential events
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Computational Architecture

NAS Monitoring Prediction
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Distributed Computational Architecture 
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Prognostics Summary

• Presented prognostics framework, algorithms, and 
applications

• Key takeaways:

– Modeling is key – both dynamics of the system and representation 
of uncertain inputs to the prediction problem

– Uncertainty is inherent to the problem and cannot be ignored

– Future input uncertainty is often most significant and its 
representation should include as much knowledge about future 
operation of the system as is known

• Framework and models implemented and available in open-
source packages
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Systems Health Monitoring –
Satellite Applications
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State of the Art
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• Livingstone L1 (Ames/JPL): FDR system on the Deep Space 1 Satellite

• Onboard planner, multi-threaded executive, & model based FDR system

• Advanced FDIR Study: ESA project to improve on-board satellite failure diagnostics

• Probabilistic reasoning using Bayesian networks and model-based based diagnostics

• Livingstone L2 (Ames)

• Longer durations in comparison to predecessor and installed on the Earth Observing One (EO-1) 
remote sensing satellite. Uses CASPER & SCL for execution of commands

• Smart FDIR (ESA, Alenia Spazio, & Politecnico di Milano)

• Detects anomalies and identifies faults. Testbeds for evaluation are electrical power subsystem & 
attitude control subsystem.

• ARPHA Study (ESA Thales/Alenia Italy): Anomaly Resolution & Prognostics Health 
Management Study for Autonomy. 



Satellite Mission Breakdown
Break-down of thirty-nine multi-satellite missions based on their mission type, formation 
type and number of satellites

1. Bandyopadhyay, S., Foust, R., Subramanian, G. P., Chung, S.-J., & Hadaegh, F. Y. (2016). Review of formation flying and constellation missions using nanosatellites. Journal of spacecraft and rockets. 

2. Bandyopadhyay, S., Subramanian, G. P., Foust, R., Morgan, D., Chung, S.-J., & Hadaegh, F. (2015). A review of impending small satellite formation flying missions. Paper presented at the 53rd AIAA 

Aerospace Sciences Meeting.



continued

Break-down of thirty-nine multi-satellite missions based on their mission type, formation type and number of 
satellites

1. Bandyopadhyay, S., Foust, R., Subramanian, G. P., Chung, S.-J., & Hadaegh, F. Y. (2016). Review of formation flying and constellation missions using nanosatellites. Journal of spacecraft and rockets. 

2. Bandyopadhyay, S., Subramanian, G. P., Foust, R., Morgan, D., Chung, S.-J., & Hadaegh, F. (2015). A review of impending small satellite formation flying missions. Paper presented at the 53rd AIAA 

Aerospace Sciences Meeting.



Autonomy Goals for Satellite Missions

• Self-requirements 
• self-trajectory 
• self-protection 
• self-scheduling 
• self-reparation 

• Knowledge

• Awareness

• Monitoring

• Adaptability

• Dynamicity

• Robustness

• Resilience

• Mobility

1. Vassev, E., & Hinchey, M. (2014). Autonomy Requirements Engineering for Space Missions: Springer.
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Satellite Subsystems

• On-board Data Handling System (OBDH)

• Power System (EPS)

• Communication System - Inter-Satellite Link & Data Downlink and/or 
Uplink (COM)

• Thermal Control System (TCS)

• Structure (MECH)

• Attitude and Orbit Control System (AOCS)

• Payload (PL)



Satellite Subsystems Anomalies and Failures

1. Tafazoli, M. (2009). A study of on-orbit spacecraft failures. Acta Astronautica, 64(2), 195-205. .



continued

1. Wayer, J. K., Castet, J. F., & Saleh, J. H. (2013). Spacecraft attitude control subsystem: Reliability, multi-state 

analyses, and comparative failure behavior in LEO and GEO. Acta Astronautica, 85, 83-92.



continued

1. Robertson, B., & Stoneking, E. (2003). Satellite GN & C anomaly trends. Advances in the Astronautical Sciences, 113, 531-542. 



Attitude and Orbit Control System 
• Attitude and Orbit Control System, Attitude Determination System (ADS),

or Attitude Determination and Control Subsystem (ADCS).

• Used to stabilize and orient spacecraft in desired directions during 
operation.



continued

1. Tafazoli, M. (2009). A study of on-orbit spacecraft failures. Acta Astronautica, 64(2), 195-205.

2. Robertson, B., & Stoneking, E. (2003). Satellite GN & C anomaly trends. Advances in the Astronautical Sciences, 113, 

531-542. 



Basic SHM Idea for AOCS Components

• Data transmission for deep space missions is limited

• Algorithms to diagnose faults and possibly predict the remaining useful life of 
AOCS components. 

• For a single satellite, SHM is useful/important for mission success

• For a satellite formation, proper identification of faults coupled with an 
estimate of RUL can enable 
• Mission success

• Mission reconfiguration/re-planning within RUL window

• AOCS contributes to about 32% of all on-board failures

• 84% of all AOCS anomalies and failures are related to design & operations

• SHM will enable robust and resilient design





Implementation

Determine component 

for study

Obtain modeling sources

Model nominal 

and faulty operation

66



Component Determination

• Magnetorquers

• Reaction Wheels

• Momentum Wheels

• Control Momentum Gyros (CMGs)

• Thrusters

Actuators

6

7

• Relevance: is it suitable for future 
satellite missions?

• History: does the component have 
records of failure?

• Benefits: what are the pros of using this 
actuator?

Pointing accuracy

Low energy consumption

Known cause of mission

decay and failure



Reaction Wheels

• The Reaction Wheel Assembly (RWA) is an 
actuator that consists of a flywheel 
attached to a brushless DC motor.

• They produce a torque that is applied to 
the spacecraft to correct its position.

• A minimum of three reaction wheels, one 
per body axis, is required to maintain 
attitude

• Reaction wheels are used for zero-
momentum control or momentum-bias 
control on ADCS, the two forms of three-
axis control Source: Blue Canyon Technologies
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Modeling Sources

• What needs to be determined?
• Parameters

• Models

• Faults

69
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Equations

• Mechanical:

Tm - Tf + Td  = Jω

• Electrical:

VR = VS – Vemf

VR = k∫(ic-im) - kemfω

.Motor torque

Disturbance 

torque

Friction torque

Resistance 

Voltage

Commanded

Voltage

Back EMF

Voltage
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Parameter Notation Value

Torque constant km 5.88 mNm/A

Back EMF constant kemf 5.89 mNm/A

Inertia of rotor J 1.12x10^-6 kg-m2 

Resistance R 6.67 Ω

Number of poles N 8

Viscous friction coefficient b 5.1965x10-7 Nms

Static Imbalance s 1.2 g-mm

Dynamic Imbalance d 20 g-mm2

Gain k 220 V/A*s

Source: Maxon Motor

Specifications (Maxon Motor)



Motor disturbances
• Torque Ripple: result of the drive torque being a 

superposition of rectified sine waves. The torque ripple 
of a motor with a greater number of poles is at a higher 
frequency, where it is less problematic.

(f2): where B is the amplitude of the cogging torque, N is the number of poles, and ω
is the angular speed 

• Cogging torque: result of the magnets in the rotor 
moving past a ferromagnetic stator. Present regardless 
of whether a torque is applied. Absent from RWA that 
have no ferromagnetic materials in the stator. 

(f1): where C is the amplitude of the cogging torque, N is the number of poles, and ω
is the angular speed Markley, F. L. & Crassidis, J.L. (2014). Fundamentals of Spacecraft Attitude Determination and Control, 195-205. Springer. 72

Khorasani, K, & Sobhani-Tehrani, E. (2009). Fault Diagnosis of Nonlinear Systems Using a Hybrid Approach. Springer.



• Static imbalance: condition that the wheel’s center of 
mass is not on the axis of rotation.

• Dynamic imbalance: condition that the axis of rotation of 
the wheel is not on the principal axis.

Markley, F. L. & Crassidis, J.L. (2014). Fundamentals of Spacecraft Attitude Determination and Control, 195-205. Springer.

Shields, J et. al (2017). Characterization of CubeSat Reaction Wheel Assemblies. Journal of Small Satellites, 6(1), 565-580. 
73

Flywheel Imbalances



Simulation Model & Scenarios

Motor Dynamics

Flywheel 

Imbalances

Motor disturbances
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Using different inputs, simulate

1. Nominal operation

2. Loss of effectiveness of motor torque: 
km

f1=0.7km
n

3. Change in friction: including Coulomb 
friction, c=0.00103 

4. Ripple and cogging

1. Voltage disturbance: V_f = 1.5*sin(30*t)

2. Increase in current and friction: increase in 
friction and km

f4=3km
n



Nominal Operation
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Nominal Operation
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Nominal Operation



Fault 2:

Voltage 

Disturbance

Fault 1:

Efficiency 

loss

Fault 3:

Increase in 

friction

Fault 4:

Increase in 

current with 

increase in 

friction
78

Faulty Operation



Fault 1: km=0.7km
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Fault 1: km=0.7km
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Fault 1: km=0.7km



Fault 2: V_f =1.5*sin(30*t)
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Fault 3: Friction Increase
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Fault 4: Increased current due to friction
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Ripple and Cogging
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Future Work on Satellite SHM 

• Validate with experimental data (testbed design)

• Include spacecraft dynamics and momentum 
dumping devices to observe further faults

• Augmenting model with motor drive electronics

• Develop diagnostics and prognostics approach (i.e. 
wheel speed condition, energy consumption, etc.)
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SHM Questions for Integration with Mission Design

❏ What is the asset? What is the system of interest within the asset. 

❏ The satellite formation? The satellite? The AOCS? 

❏ What are the failure modes? FMECA (Failure Modes Effects & Criticality) analysis.

❏ May give overview of subcomponents. Drill down to what and how the AOCS can fail in multiple ways (e.g. friction 
build-up, sensor failure, communication faults etc). Extensive literature review and past failure trend. E.g. Kepler
mission had issues with AOCS (reactor wheels) in the past.

❏ Is anomaly detection, diagnosis, or remaining useful life the goal? Is anomaly detection enough? Is diagnosis enough? 
Why and why not?

❏ Do you really need remaining useful life (RUL)?

❏ If so, why? Justify. E.g there are multiple missions and RUL can provide feasibility assessment of completion of 
current or alternate mission.

❏ What is the business model for this project? Are you selling Prognostics & Health Management (PHM) as an add-on 
service to current science mission satellites for their projects? Can you use it to incentivize sales of a particular satellite 
which will have this PHM capability or will you add it on to current satellites as a service?

❏ Are you using PHM for satellite swarms internally? Who is the customer/stakeholder? 

❏ What may you need to do to convince them that this is critical to mission success?

❏ Will the asset owners have to use the system? Will it be running in the background? If they don’t use the PHM system, 
what could happen to their mission(s)? 87



SHM Questions for Integration with Mission Design
❏ What is mission success? How is it quantified? How successful is abandoning one mission for another? Is there a mission 

hierarchy? Can current mission still be completed if one satellite is down? How about two? What kind of missions are 
needed/common now with satellite formations?

❏ How far in advance does the PHM system need to work to be of practical value? How late is too late? How early is too 
early? Consider RUL vs reconfiguration time, current mission time remaining, future mission length of time? 

❏ What is the value of a true detection? What is the cost of a missed detection? What is the cost of a false alarm?

❏ List three issues and gaps you see.

❏ Data-driven model? Physics-based model? Hybrid approach?

❏ Is there data available? What kind? Is there environmental (rad hit and other environmental conditions), control 
system, operational (typical science missions for example), and maintenance data? Who owns the data? Will they 
give it to you? 

❏ How much of the data is missing or incomplete? Is the data “real time” (usually there is a delay) or does it come as a 
batch after a run? Is the data readily available or will you have to work hard to assemble and organize it? Is the data all 
in the same database, or spread across several databases? How difficult will it be to merge the data?

❏ How many actual failed cases are there for each fault type?

❏ Is there a lot of variation between assets? Homogenous vs heterogenous component/system types? Is the performance 
of the asset strongly affected by the operating environment? Does variation in operational and maintenance programs 
between users strongly affect the lifetime of the asset (satellite or satellite component) or the manifestation of faults?
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SHM Questions for Integration with Mission Design
❏ What is the sampling rate of the data? Is the volume of data prohibitive? Do you have data from all of the combinations 

of environmental and operational conditions you want to model?

❏ Can a healthy asset (no fault) be simulated? Can a faulty asset be simulated (degradation mechanism etc)? Are all of the 
fault degradation mechanisms well understood? If you ask three engineers in the satellite/AOCS area, will they all agree 
on how to model the faults and normal wear? If not, how will you resolve the discrepancy?

❏ Is there already a model? Does it run quickly? Where will you do the simulations? Does the model account for 
environmental effects, wear, and variation between assets? Are there a ton of parameters to set in the model?

❏ Do experiments need to be run to model failure in the system or can the equations depict what failure looks like? Who 
will perform the experiments if so and how much will this cost?

❏ Are you willing to sacrifice some assets to validate models? Is there a good proxy for the failure mechanism that can be 
modeled in isolation? E.g. modeling reaction wheels failure independently of the satellite or satellite swarm.

❏ If you build a model and then switch vendors for a component, will the model still work?

❏ If you build a PHM system, how will it be used? Who will staff its use? Will there be a human in the loop? Frequency?

❏ How will decisions be made based on information from the PHM system? Reconfiguration strategy? Dependent on the 
mission(s)? Who will monitor the performance of the PHM system and keep it up to date over time?

❏ If you make the PHM system part of the asset, does it become another point of failure (i.e., if the PHM system breaks, 
can you operate the asset anyway)?

❏ Are there any potential regulatory issues? Are there any potential liability issues?

❏ List potential issues and gaps. E.g. validation data access etc 89
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Questions?

Source: NASA/JPL-Caltech 92



Back up slides
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Initial Problem Formulation

•
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Concept: ComputeEOL
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Computational Algorithm
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Concept: Uncertainty

97



Handling Uncertainty
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Updated Problem Formulation
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Concept: Probability of Failure
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Probability of Failure

•
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Online Prognostics

•
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