

## Spot and Runway Departure Advisor (SARDA) Technical Overview

Yoon Jung NASA Ames Research Center

NASA-KAIA/KARI/IIAC Collaboration Kickoff Meeting NASA Ames Research Center Moffett Field, CA April 28-29, 2015

### Contents



- Research Background
- Technical Approach
- Concept
- Research Results
- Current Research
- Summary and Next Step

# Topography of Airport and Surface Managemer



### **Consequences:**

- Excessive taxi time and taxi delay
- Excessive fuel consumption and emissions
- Missed opportunities in merging departures into overhead stream
- Increased block time due to poor predictability

### **Today's Airport Surface Operations:**

Demand-Capacity imbalance

4/28

- Huge uncertainties in surface events
- Lack of common situational awareness and coordination

# Intelligent Scheduling is the Key to Efficient Surface Management

### SARDA is NASA's approach for solving this problem.

- Optimizes at a system level by minimizing overall delay
- Plans for aircraft movement at various flow control points (gates, spots, and runways)
- Accounts for departures and arrivals
- Incorporates constraints at individual aircraft level
- Provides connectivity with airport tower, airlines, and en route facility
- Adaptable to other airports with different configurations and operating procedures

### **SARDA Concept**



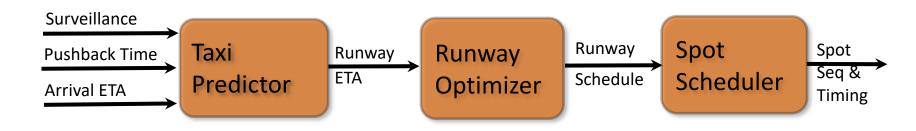
- Builds an optimal runway schedule
- Generates spot release sequence and timing
- Determines when to push back from gates

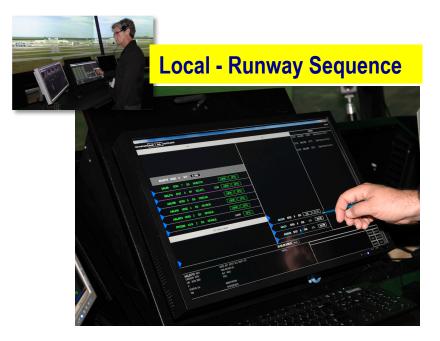


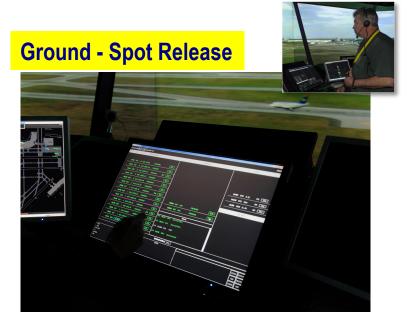
### **Anticipated Benefits**



### Increased Efficiency


- Reduced taxi time and taxi delay
- Reduced runway queue length
- Reduced fuel burn


### Improved Predictability


- Reduced variation in efficiency metrics
- Accurate OFF time prediction
- Maintain Throughput
  - Number of runway operations

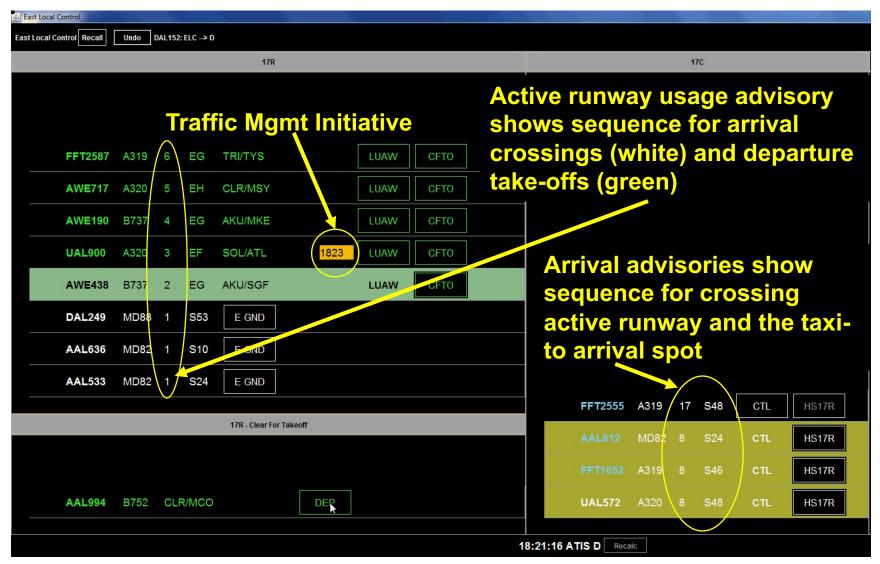
# SARDA as ATC Tower Tool

# SARDA takes inputs from multiple sources and computes advisories for runway usage and spot release








### **SARDA Ground Controller Advisories**



| 1:21:54 und Control                                           |                                      |                           |  |  |
|---------------------------------------------------------------|--------------------------------------|---------------------------|--|--|
| East Ground Control Recall FFT1873 E Local Undo FFT1873: TX-D |                                      | 18:21:53                  |  |  |
| East Ramps - Departure                                        | Taxi - Departure                     | Arrival                   |  |  |
| FFT1384 A319 15 11:15 S47/KEF 17R/SOL/ATL 1843 TX-D           |                                      |                           |  |  |
| AAL1502 MD83 14 10:15 S7/JYEH 17R/CLR/MSY TX-D                |                                      | Arrivals going            |  |  |
| AWE558 A320 13 08:01 S42/ELEH 17R/CLR/BTR TX-D                | Handoff sequence to                  |                           |  |  |
| UAL121 A320 12 06:38 S45/KEF 17R/SOL/ATL 1838 TX-D            | Local controller at                  | to ramp                   |  |  |
| AAL2282 MD83 11 06:12 S15/K6EG 17R/AKU/XNA TX-D               |                                      | DAL249 MD88 M7.B S53 TX-A |  |  |
| DAL415 B737 10 06:06 S47/K.EG 17R/GRA/BLE TX-D                | departure queue                      | AAL636 MD82 M4K5 S10 TX-A |  |  |
| AAL575 B752 9 05:29 S7/JYEH 17R/ARD/MSY TX-D                  | FFT1873 A319 K.EG 17R/NOB/EWR E.Loc  | AAL533 MD82 M3EK S24 TX-A |  |  |
| DAL974 B737 8 04:52 S42/ELEG 17R/AKU/MSN TX-D                 | FFT2137 A319 KEG 17R/TR/SJT E Loc    | Taxi - Arrival            |  |  |
| AAL1286 MD83 7 04:41 S9/K.EG 17R/AKU/PIA TX-D                 | AAL332 MD82 K.EG 17R/TRI/BWI E.Loc   |                           |  |  |
| FFT2078 A319 6 04:39 S47/KEH 17R/CLR/BTR TX-D                 | UAL891 B772 K.EG 17R/AKU/MSN E.Loc   |                           |  |  |
| FFT1264 A319 5 03:50 S45/KEH 17R/ARD/MSY TX-D                 | Drop List                            |                           |  |  |
| AWE439 A320 4 03:26 S33/KEF 17R/SOL/ATL 1833 TX-D             |                                      |                           |  |  |
| AWE954 A320 3 02:20 S31/KEH 17R/CLR/MCO TX-D                  |                                      |                           |  |  |
| AAL943 MD82 2 81.39 S254EK EH 17R/CLR/BTR TX-D                |                                      |                           |  |  |
| AAL1374 MD81 00:58 S7/JYEF 17R/SOL/ATL 1828                   | Traffic Mgmt Initiative              | AAL56 B763 S10 RAMP       |  |  |
| Spot rologo odvicery chowe                                    | 18:21:53 ATIS D Recalc               |                           |  |  |
| Spot release advisory shows s                                 | SARDA: 2 00:55<br>1821@SPOT 0803@RWY |                           |  |  |
| release sequence & time, taxi                                 |                                      | ENTER DETECT              |  |  |
| route, departure runway queue                                 |                                      | ADD DELETE                |  |  |
| Toute, departure runway queue                                 |                                      | CODED MAP                 |  |  |

### **SARDA Local Controller Advisories**



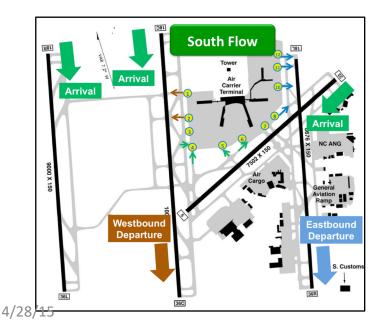


# SARDA Benefits – DFW ATC Tower Tool



- Reductions in departure taxiing delay (45% - 60%) and variability
- Reductions in fuel consumption (23 - 33%) and variability
- Consistent and accurate prediction of takeoff time
- Decreased controllers workload, less sensitive to the traffic load




Human-in-theloop Simulation for Dallas-Ft. Worth Airport (2012)



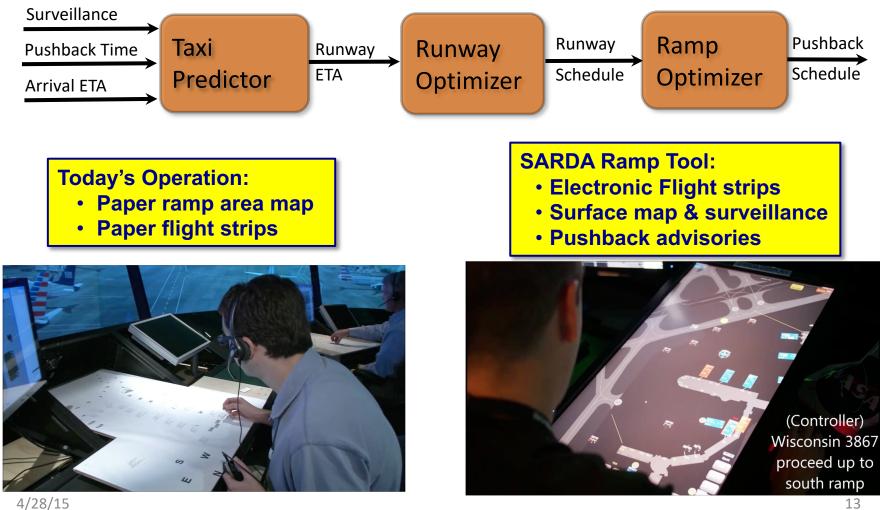
### **Ramp Management Tool**



- NASA-US Airways Collaboration (Space Act Agreement, 2013)
- Goal: Develop and test a prototype decision support tool for Charlotte International Airport (CLT) ramp operators
- Conduct a series of human-in-the-loop (HITL) simulations in 2014 & 2015
- Conduct field evaluations in 2016








- Over 20% of time departure demand exceeds airport capacity
- Over 80% of passengers are connecting flight passengers
- Multiple banks of arrivals and departures with overlaps
- Over 35% of departures are destined to airports in north east
- Complexity in ramp area geometry (gates, taxiways)

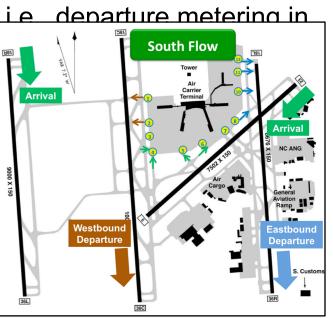
### SARDA as Ramp Tool



#### SARDA takes input from multiple sources and computes advisories for gate pushback

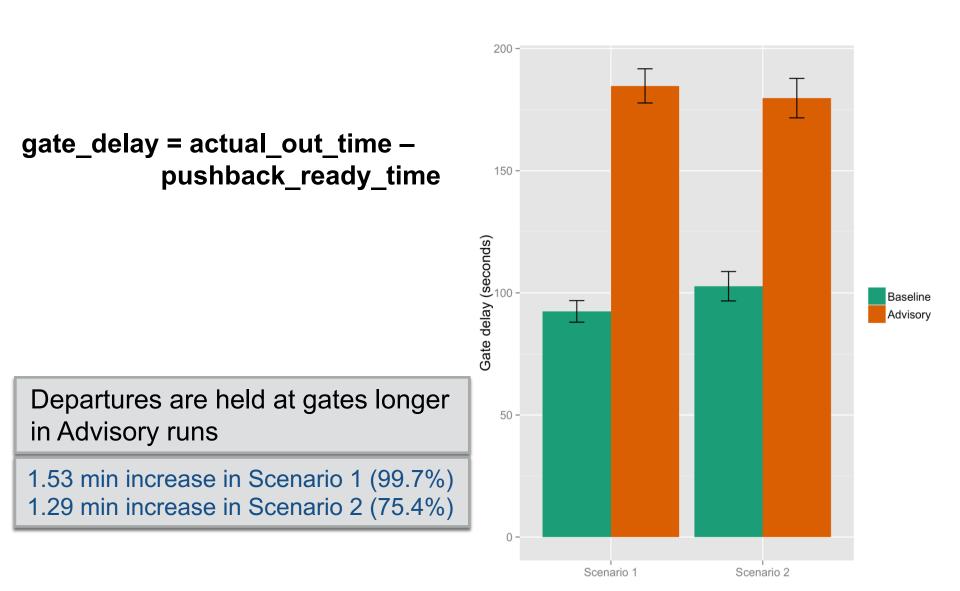


# **SARDA Ramp Controller Advisories**




#### Ramp Traffic Console (RTC) displays SARDA advisories on ramp surface map



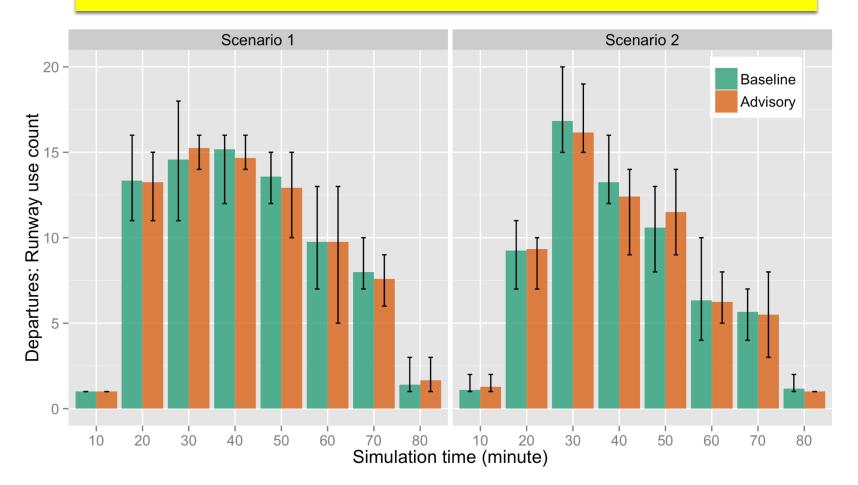

### HITL Simulation Details (Oct 2014)

- Advisory runs Ramp controllers were asked to follow pushback advisory as much as possible
- Baseline runs Current day operations, i.e. departure metering in place (queue size < 15)</li>
- 2 scenarios created based on actual tra compressed in time
  - Departure push with the first part of the
  - Each scenario is about 1 hour long
- Clear weather VFR
- TMIs (MIT @ MERIL 20 nm, EDCT) in e
- Four-sector configuration for ramp area
- South-flow configuration (Departing: 18L, 18C; arriving: 23, 18R) with the Arrival-Departure Window (ADW) rule enforced



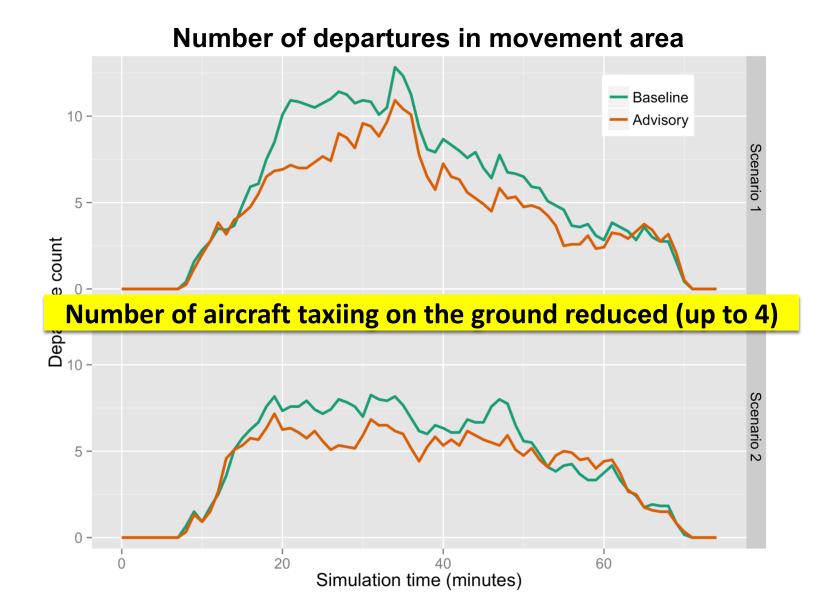


### **Gate Hold**




NASA

### **Runway Usage**

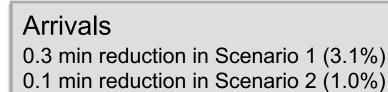



#### No observable reduction in runway usage with advisory



### **Surface Congestion**






### **Taxi Times**



#### taxi-out\_time = actual\_off\_time - actual\_out\_time

taxi-in\_time = actual\_in\_time - actual\_on\_time



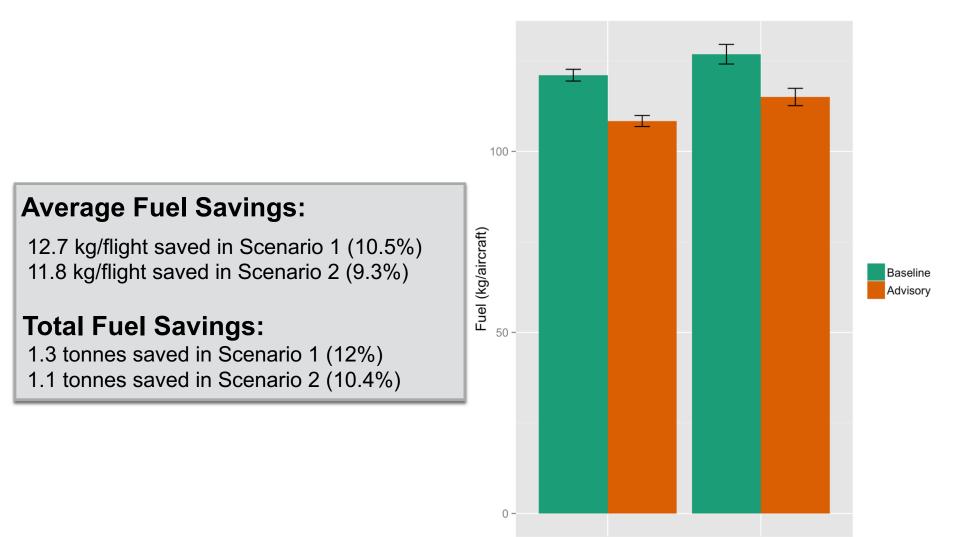
Arrival Departure 600 -400 -Scenario 200 -Taxi time (seconds) 400 -Scenario 2 200 -0 Baseline Advisory Baseline Advisory

#### Departures

1.1 min reduction in Scenario 1 (10.5%)0.8 min reduction in Scenario 2 (8.3%)

### **Fuel & Emissions Calculation**



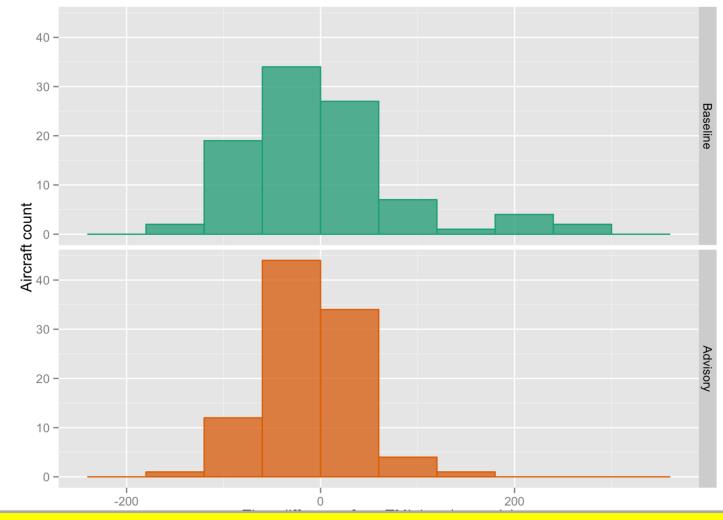

### **Assumptions:**

- Engines are off if aircraft is held at the gate
- Engine thrust level: 7% during the entire taxi phase
- Both engines are running while taxiing

| АС Туре | Assumed<br>AC Model | Assumed<br>Engine Type | EI HC<br>(g/kg) | EI CO<br>(g/kg) | El NOx<br>(g/kg) | Fuel Flow<br>(kg/sec) |
|---------|---------------------|------------------------|-----------------|-----------------|------------------|-----------------------|
| Heavy   | B772                | Trent 892              | 1.59            | 29.62           | 8.88             | 0.57                  |
| B757    | B752                | RB211-535E4            | 0.56            | 19.40           | 7.33             | 0.34                  |
| Large   | A319                | CFM56-5A5              | 3.47            | 41.92           | 7.15             | 0.19                  |

### **Fuel Savings**






Scenario 1

Scenario 2

### **TMI Conformance**





Advisory runs resulted in smaller variances in the TMI deviations than Baseline runs

## Summary – Ramp Tool HITL Performance



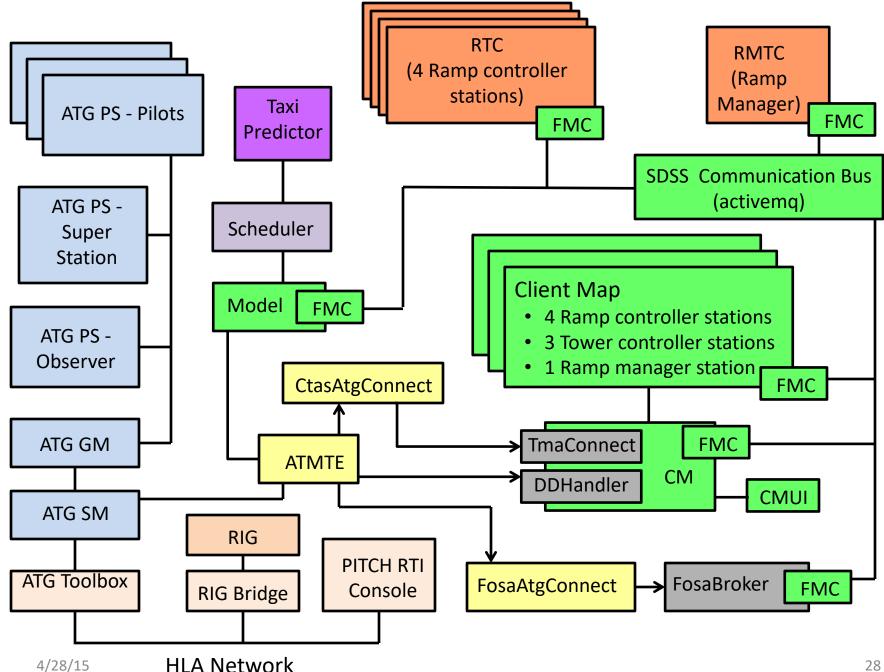
- Aircraft were held at the gate longer with advisories.
- No significant differences in runway usage.
- Number of aircraft taxiing on the ground was reduced (up to 4).
- Taxi-out times were reduced (8-10%).
- Fuel savings for departures:
  - -1.3 tonnes in Scenario 1,
  - 1.1 tonnes in Scenario 2
- Better TMI conformance with advisories.



- SARDA provides an optimal schedule of departure aircraft for efficient surface operations.
- A prototype tower controller tool evaluated via HITL simulations showed promising results in taxi delay reduction and fuel saving for DFW.
- SARDA was applied to airline ramp operations to provide pushback advisories.
- HITL results of CLT ramp tower tool showed reduction in taxi time, queue size, and fuel savings.
- Currently, collaborating with American Airlines for field testing.






# For more information go to: www.aiviationsystems.arc.nasa.gov



### **Backup Slides**



### **SARDA Ramp Tool System Architecture**

