

National Aeronautics and Space Administration

DVB-S2 Demonstration Testing for Enhancing Data Rates for CubeSat/SmallSat Missions August, 2019

Transforming space communications from the ground up.

	Organization	Name	Contribution	
		Yen Wong	Primary Author	
	Goddard Space Flight Center	Scott Schaire	Presenter	W.
		Steven Bundick Obadiah Kegege Serhat Altunc Peter Feterer	Contributors	
	Ames Research Center	Marcus Murbach Cedric Prescott	Contributors	
	Booz Allen & Hamilton	Trish Perrotto Peter Celeste	Contributors	n-1

Exploration & SPACE Communications

Near Earth Network (NEN) Overview

The NASA NEN, which provides communications support within 2 million km from Earth, is investigating and demonstrating DVB-S2 for the SmallSat community

NEN DVB-S2 Demonstration Test for Enhancing Data Rates

- ➤ NASA NEN conducted a DVB-S2 demonstration test at the Wallops Flight Facility in March 2019 for CubeSat/SmallSat missions for enhancing data rate performance
- ➤ The primary objective was to determine the BER performance and maximum achievable data rate for DVB-S2 over the NEN S-band 5 MHz channel
- DVB-S2 uses power and bandwidth efficient modulation and coding techniques to deliver performance approaching Radio Frequency (RF) channel theoretical limits
- ➤ The demonstration test was conducted using a Cortex high rate receiver (HRD) with Zodiac DVB-S2 demonstration license

DEMONSTRATION TEST RESULTS Future Missions & DVB-S2

- Results of the DVB-S2 demonstration test were very positive
- ➤ The achievable data rates for QPSK, 8PSK and 16 APSK, 32 PSK modulation schemes with various code rates are well above the current data rates for the S-band 5 MHz channel with BPSK/QPSK and CCSDS convolutional and Reed Solomon (RS) coding
- Collaboration between NEN and University of Alaska Fairbanks CubeSat Communications Platform (CCP) is being planned to demonstrate 15 Mbps and Variable coded modulation (VCM) over S-band 5 MHz channel with a NEN ground station in 2022
- ➤ DVB-S2 will increase science data return, enable greater numbers of NASA CubeSat missions and is a potential candidate signal scheme for lunar and Lagrange point missions

LDPC Coding Rate/ Modulation/Loss	1/2	3/5	2/3	3/4	4/5	5/6	8/9	9/10
QPSK	4.38	5.23	5.95	6.25	6.98	7.12	7.42	7.5
Implementation Loss (dB)	0.8	1.4	0.5	1.0	1.12	0.62	0.7	0.5
8 PSK		7.48	8.12	9.58	10.0	10.4	11.0	11.3
Implementation Loss (dB)		2.5	1.45	0.5	0.6	0.6	0.9	0.8
16 APSK			10.8	12.3	12.5	13.9	14.8	15
Implementation Loss (dB)			2.3	1.8	1.2	0.8	0.8	1.0

BER Performance

Link Margin Performance Analysis

- ➤ A NEN down link data rate analysis was performed for a SmallSat/CubeSat using DVB-S2 signal schemes with a typical communication system of a 2W PA and a patch antenna of 0 dBi gain.

 Overall, there is plenty of link margin
- ➤ With a 5W PA and 6 dBi antenna gain, the link margin for 16 APSK 8/9 rate is 14.09 dB and for 16 APSK 9/10 rate is 13.55 dB (TechEdSat)

Mod/Rate and Link Margin	1/2	3/5	2/3	3/4	4/5	5/6	8/9	9/10
QPSK (Mbps)	4.38	5.23	5.95	6.25	6.98	7.12	7.42	7.51
Link Margin (dB)	14.45	13.25	11.77	12.44	10.79	10.40	9.48	9.16
8PSK (Mbps)		7.48	8.12	9.58	10.0	10.4	10.98	11.25
Link Margin (dB)		10.17	9.16	7.66	6.41	6.0	5.09	4.7
16APSK (Mbps)			10.81	12.3	12.46	13.86	14.8	15.0
Link Margin (dB)			6.81	5,52	4.92	4.23	3.11	2.57

COMPARISON OF DVB-S2 RADIO BASED ON DEMONSTRATION TEST RESULTS WITH EVOLVED SMALLSAT RADIOS TESTED WITH THE NEN FOR DATA RATES AND PERFORMANCE

➤ DVB-S2 is capable of increasing data rates for S-band 5 Mhz channel, relative to conventional modulation and coding schemes with the same spacecraft EIRP and same bandwidth

Radio	Band	Power (W)	Data Rate from Low Earth Orbit (Mbps)	Bandwidth (MHz)	Test History
S-band Radio #1	S-band	2.0	1.0	2.0	Successfully compatibility tested in 2015
S-band Radio #2	S-band	2.0	2.0	4.5	Risk mitigation testing done in February and July, 2016
S-band Radio # 3	S-band	1.0	1.0	2.0	Radio tested in 2016
X-band Radio # 1	X-band	3.0	100.0	200.0	The SOCON spacecraft with the flight X- band communication system was successfully downlinked 100 Mbps to the Wallops 11m in 2019.
S-band Radio #4	S-Band	1.0	1.0	1.0	Radio successfully tested with Morehead State University Ground station in 2017
S-band Radio # 5 without DVB-S2	S-band	2.0	5,0	5.0	Compatibility test was conducted successfully in 2018 at 120 Kbps and at 5 Mbps after a Software upgrade
S-band Radio # 5 with DVB-S2	S-band	2.0	15.0	5.0	To be tested in 2020