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Abstract—This study presents the application of machine 
learning (ML) to a space-to-ground communication link, showing 
how ML can be used to detect the presence of detrimental channel 
fading. Using this channel state information, the communication 
link can be used more efficiently by reducing the amount of lost data 
during fading. The motivation for this work is based on channel 
fading observed during on-orbit operations with NASA’s Space 
Communication and Navigation (SCaN) testbed on the International 
Space Station (ISS). This paper presents the process to extract a 
target concept (fading and not-fading) from the raw data. The pre-
processing and data exploration effort is explained in detail, with a 
list of assumptions made for parsing and labelling the dataset. The 
model selection process is explained, specifically emphasizing the 
benefits of using an ensemble of algorithms with majority voting for 
binary classification of the channel state. Experimental results are 
shown, highlighting how an end-to-end communication system can 
utilize knowledge of the channel fading status to identity fading and 
take appropriate action. With a laboratory testbed to emulate 
channel fading, the overall performance is compared to standard 
adaptive methods without fading knowledge, such as adaptive coding 
and modulation.   

Keywords—fading, machine learning, mitigation, kernel 
methods, supervised learning 

I. INTRODUCTION 

 Channel fading is a phenomenon that occurs when radio 
waves are blocked or reflected by physical objects that are 
reflective to radio frequency (RF) waves in the frequency of 
transmission. Fading is characterized by rapid movement of the 
power per unit time, which can cause data loss in the receiver. 
Methods such as adaptive coding and modulation (ACM) allow 
some channel fading to be mitigated by dynamically adjusting 
the link parameters.  However, during deep fades or shadowing 
effects from physical obstructions, data loss can still occur even 
with adaptive methods.   

 The motivation for this work was based on testing with an 
experimental communications payload onboard the 
International Space Station (ISS), denoted the Space 
Communications and Navigation (SCaN) Testbed. This 
payload is used to conduct communication experiments using 
re-programmable software defined radios (SDRs). Due to the 
configuration of the antenna onboard the SCaN Testbed, its 
position relative to ISS and pointing angle to the GRC ground 
station, it has been observed that this link experiences channel 
fading. The severity of the fading varied significantly, 
depending on the geometry of the event. On the ISS, there are 
several sources of fading, including physical blockages from 

neighboring payloads and multipath from the complex structure 
[1]. 

 Currently, there are no channel fade mitigation methods 
implemented on SCaN Testbed to address this problem. The 
operational procedure is for the transmitter to continue sending 
data throughout the fade in the hopes that some data can be 
decoded. In [2], a threshold-based ACM controller was applied 
and shown to be effective in tracking most of the channel fades. 
However, depending on the channel latency, severe multipath 
and shadow fading conditions still disrupted the link, even with 
the adaptive feedback loop. If the system had knowledge of its 
expected channel state it could modify link parameters 
accordingly, to reduce margin in clear sky conditions or 
increase system margin during fading conditions or transmit 
idle data until a momentary obstruction passes.  

Current approaches for handling detrimental channel fading 
from obstructions are based on creating models over time based 
on human experience [3]. A complex structure like the ISS is 
continually evolving and changing as modules and experiments 
are added or removed. This provides additional motivation for 
developing an automated approach for detecting the presence 
of fading or obstructions. By classifying the difference in states 
and predicting whether a signal will be in fading (high fading) 
or not, a link could transfer data more efficiently without loss 
of data or re-transmission.  

 This paper presents the State Predictor of Classification 
(SPoC) Cognitive Engine (CE) as an alternative method for 
managing space links that have high fading profiles by 
detecting the presence of these fading characteristics and 
performing appropriate actions to mitigate their effects on 
mission objectives. Such an algorithm can be used alongside 
standard adaptive methods like ACM to provide robust 
communications in dynamic environments. 

 The paper is organized as follows.  Section II presents the 
methods for developing the SPoC CE algorithm and the 
verification steps taken to evaluate the model. In Section III, a 
laboratory testbench, used to validate SPoC is presented and 
results from that study are shown comparing performance with 
respect to other adaptive algorithms. A discussion of the results 
follows in Section IV. Finally, conclusions and next steps are 
contained in Section V.  
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II. METHODS 

A. Data Pre-Processing 

A number of events have been recorded from direct-to-Earth 
communication events between the SCaN Testbed on ISS and 
the GRC ground station. Link metrics are routinely captured at 
the ground station including the modem’s estimated Es/No 
(energy per symbol to power spectral density) versus time, at a 
rate of 100 Hz. These measurements are a way of representing 
the energy profile as seen by the receiver of the communication 
events between the ground station and the SDR on ISS.  

A number of these profiles were collected and concatenated 
to form a database of profiles. Then the periods of high fading 
and low fading were labeled by visual inspection and prior 
knowledge of where the signal was lost and where the system 
was able to capture data. Often this detrimental fading 
corresponds to physical blockage from neighboring payloads on 
the ISS external structure or solar panel obstructions [1][2]. A 
total of 11 profiles were used originally but this number was 
reduced to 8 because of duplication in the effect seen by the link. 
The extra data was not presenting new information that would 
help the model select a specific state.  

 This process yielded a total number of 117935 Es /No values 
labelled as “Fading” or “NoFading”. This data is plotted in Fig 
1. Note that the physical phenomenon of RF fading has a small 
component in the signal represented in the dataset with label 
“NoFading”. This nomenclature was chosen to distinguish 
between classes, not to describe the actual presence of such 
phenomena, in all its magnitudes, inside the signal. The target is 
to detect high fading regions with the following characteristics:  

 Rapid fluctuation of the amplitudes or high oscillation,  

 Signal that has been received but is otherwise unable 

to be decoded due to high noise floor or other issues.  

B. Data Exploration 

After the initial data pre-processing was completed, data 
exploration was performed to determine the best approach for 

creating a model capable of defining the target class in situ. A 
distribution plot of the two subsets was created to understand 
their characteristic similarities or differences, and additional 
descriptive statistics were run to see these characteristics 
visually. Fig 2 shows the distributions of the two subsets. This 
process revealed that the “Fading” data has an f-distribution of 
high variance while the “NoFading” data has a normal 
distribution with a large peak. Therefore, constructing a model 
that can detect high variance or long tails in a distribution would 
be preferable for the purposes of this research.  

From this data exploration process it was concluded that 
binary classification would be possible as an initial method for 
determining the presence of fading on a link with similar 
characteristics to the presented dataset. It was concluded that 
features which characterize distribution peak, distribution 
spread, and the presence of long tails would be preferable to 
make a proper classification. Although mean and standard 
deviation would be a good starting point, these two features 
alone may not be able to describe the presence of the random 
fluctuations observed in the fading state. Additionally, the 
fading distribution shows multiple peaks close to what could be 
considered the mean with large number of outliers. Therefore, 
it is expected that this data would be better described using 
features more sensitive to these characteristics, so the median 
and the kurtosis were selected. The final features selected from 
this process were: mean, median, variance and kurtosis.  

Now it was necessary to determine the appropriate number 
of samples required for calculating those features in a 
meaningful way. For this system, the Es/No is sampled at 100Hz 
and the effective channel latency through the channel and 
receiver equipment was about 40ms, depending on the relative 
positions of the ground station and SCaN Testbed. It was 
decided that, at a minimum 4 samples should be used to 
calculate the features. However, because of the high variance 
that is experienced during fading, it would be difficult to detect 
sudden changes over time with such a narrow window. 
Therefore, it was decided that a window of 1 second (100 
samples) would be used to parse the data. This coupled with a 

Fig. 1. Link fading data after concatenation of selected events and labeling Fig. 2. Distribution plots with power density functions of the labeled data 



FIFO (first in first out) memory buffer would be sufficient to 
initialize the model with the first 100 samples and keep enough 
historical data on the buffer to make an intelligent prediction of 
the state the link would be experiencing. Finally, this process 
yielded the following schema for data formatting and feature 
extraction 

1). Raster the data with a window of 100 samples   

2). Calculate mean, median, variance and kurtosis for each 
window.  

3). Label each rastered segment based on its class label 
within the database 

The data was processed as described and a database was 
created with the windowed sections, their features and their 
corresponding labels. Then, one of the data profiles that 
contained both Fading and NoFading was removed from the 
database. This profile can be observed in Fig 3. This profile is 
used as an independent test case with data the model has never 
seen, to further evaluate generalization. Then, an 80/20 
train/test split was done on the remaining samples and the 
process moved on to model selection and grid search for 
hyperparameter optimization. 

 

Fig. 3. Data profile used for independent testing for validating generalization.  

C. Model Selection 

Given the data and the formatting that was followed for data 
exploration and feature selection, it was determined that 
utilizing kernel methods would be the most appropriate route. 
Signal processing procedures can benefit from a kernel 
perspective, making them more powerful and applicable to 
nonlinear processing in a simple manner [4].  

Standard methods, such as correlation to each of the sub-

classes and simple thresholds were considered but they yielded 

poor results when compared to kernel methods. Therefore, a 

selection of 12 models, including the most common models for 

kernel methods was taken and applied to the database. Table I, 

shows the results of this trade study. The models were trained 

using the 80/20 split (train/test) indicated in the previous 

section with a further 80/20 on the training set for cross-

validation. Then hyperparameter tuning was performed for the 

Support Vector Machine, Decision Tree Classifier, and the 

Logistic Regression models.  

TABLE I.  EXPLORED METHODS 

Method Name Precision Recall F1-Score 

Naïve Bayes 0.73 0.77 0.75 

Linear Discriminant Analysis 0.79 0.76 0.76 

Logistic Regression 0.91 0.91 0.91 

K nearest neighbor (k=2) 0.68 0.62 0.65 

K nearest neighbor (k=10) 0.88 0.88 0.88 

K nearest neighbor (k=4) 0.92 0.94 0.93 

Support Vector Machine (SVM) 0.94 0.98 0.96 

Decision Tree 0.92 0.91 0.91 

Learned Vector Quantization (LVQ) 0.78 0.77 0.77 

Kernel Regression (Weighted)  0.65 0.69 0.67 

Ensemble 1 (SPoC) version 1 0.96 0.94 0.95 

Ensemble 2 (SPoC) version 2 0.99 0.99 0.99 

 

SPoC Algorithm Block Diagram 

 

Fig. 4. State Predictor of Classification Cognitive Engine (center) presented 

within its testing wrapper.  

From Table I, it can be observed that the methods which 
performed the best were: Logistic Regression, K Nearest 
Neighbor (KNN) with K=4, Support Vector Machine (SVM) 
and the Decision Tree classifier. However, no single method 
was able to yield precision and recall metrics above 0.95. Thus, 
a majority vote classifier method was implemented in an 
attempt to improve the system. Ensemble 1 is a majority vote 
between the three top performing models. That is the SVM, the 
Decision Tree and the KNN with K=4. This yielded results 
above 0.95 but taking a step further and including every method 
with metrics above 0.90 yielded the best model, Ensemble 2. 
Therefore, Ensemble 2 was the chosen method for final 
assessment with the excluded test data. A diagram of Ensemble 
2 or what is denoted as the SPoC Cognitive Engine CE is shown 
in Fig 5. Note that the Ensemble model is the large green, center 
box, while the other items are supporting functions for testing.  

 

 



TABLE II.  SPOC CONFUSION MATRIX FOR TEST SET 

Confusion Matrix  Counts 

True Positives 11279 

False Positives 214 

True Negatives 13514 

False Negatives  73 

 

Fig. 5. Running SPoC on an independent test profile for validation using the 

link emulation testbed.  

D. Algorithm Verification 

SPoC was run using the test data set and the independent 
profile shown in Fig 4. The results from the test dataset is shown 
in Table II. As observed, the algorithm was able to correctly 
classify the test data 99% of the time. The profile in Fig 4 was 
played back using a link emulator, created to mimic the nuances 
of the space link for real time testing. It was found that SPoC 
was able to classify its state correctly and predict the desired 
action on that state as shown in Fig 5. 

III. RESULTS 

A. Testbed Set Up 

    Performance of the SPoC CE was evaluated using a 
laboratory testbed to measure the impact to the overall end-to-
end communication system. This process was performed to 
validate the algorithm within its expected operational 
environment. The testbed emulates a satellite telemetry DVB-
S2 link similar to the SCaN Testbed scenario, and features 
programmable RF interference, noise, and channel fading. The 
main hardware components are shown in Fig 6 along with the 
software components that make use of them.  

A channel simulator task applies link impairments based on 
measurement SNR profiles with SCaN Testbed. A link 
controller interacts with a DVB-S2 transmitter through a 
simulated BPSK uplink channel. This transmitter is a SDR 
chassis running a DVB-S2 waveform that supports on-the-fly 
configuration of ModCod (modulation-encoding schema), 
symbol rate, and other parameters. It currently outputs a stream 
of Pseudorandom Binary Sequence (PRBS) data over the Radio 
Frequency (RF) link, with optional CCSDS Advanced Orbiting 

Systems (AOS) framing [5].  This link then passes through a 
variable attenuator and is split between a commercial DVB-S2 
modem and a spectrum analyzer. The variable attenuator is 
controlled by the channel simulator task and simulates a fading 
profile on the channel.   

    In addition, a white noise generator is passed through a 
variable attenuator, which allows adjustment of the channel 
noise floor. The receiving modem streams decoded DVB-S2 
frames out the “transport bypass” port to the statistics collection 
task. This task synchronizes to the Attached Sync Marker 
(ASM) sequence and uses the decoded CCSDS AOS frame 
counter to infer throughput and drop rates. In addition, this 
modem streams Received Signal Strength Indicator (RSSI) 
information, which includes a synchronization lock indicator 
and estimated Es/No, to the link controller. The SPoC-CE is 
provided this Es/No estimate and decides of the channel state 
(fading / no fading).  

B. System Evaluation, Algorithm Validation 

 An ACM algorithm was used in conjunction with SPoC to 
decide which modulation-encoding schema to use based on the 
Es/No level seen on the channel. When “Fading” is detected by 
SPoC the system was instructed to pause data transmission, 
rather than continue to communication and attempt to track the 
fading. Otherwise, the system uses the recommended 
MODCOD by the ACM algorithm.  Alternatively, the system 
could be instructed to use MODCOD-1, the most robust 
modulation and coding pair. In contract to [2], the ACM 
controller was modified to pause data transmission when the 
received Es/No was below the lowest threshold.  

 Three algorithms were chosen for comparison, the baseline 
ACM algorithm, SPoC with ACM, and ACM-XM.  ACM-XM 
is ACM with an additional 2 dB of extra margin (XM). The 
margin was selected to match the overall reduction in data 
throughput by SPoC. 

Block Diagram of Laboratory Testbed  

 
Fig. 6. Laboratory testbed block diagram used to validate SPoC   



TABLE III.  SPOC VALIDATION & MODEL COMPARISON  

Algorithm 
Total Valid Frames Total Dropped Frames 

12ms 40ms 500ms 12ms 40ms 500ms 

ACM 16.9e6 16.9e6 16.6e6 7.7e2 3.1e3 3.5e6 

ACM-XM 13.3e6 13.3e6 13.2e6 0 0 0.5e6 

SPoC 13.2e6 13.2e6 13.1e6 0 23 1.5e6 

 

 Table III provides a summary of the results.  A total of 29 
direct-to-Earth communication events were run, which are 
representative of operations with SCaN Testbed over a ~2-week 
period of time. The table shows the total received frame counts 
and dropped frame counts as a function of channel latency for 
each algorithm, summed over all events. Compared to the 
baseline ACM algorithm, there is approximately a 20% 
reduction in total throughput by using SPoC. Some reduction in 
throughput is expected, since the system does not attempt to 
send any data during fading.  Some data loss also occurs during 
false positives, which are rare, but do result in lost potential data 
throughput.  

 All algorithms exhibit an increase in dropped frames as the 
channel latency increases. Although the SPoC and ACM-XM 
algorithms experienced reduced throughput, both have a 
substantial improvement in the number of dropped frames.  Both 
the algorithms have negligible dropped frames until the 500ms 
channel latency test case. At the 500ms channel latency, both 
SPoC and ACM-XM had substantially less dropped frames.     
This show that that approach was effective in reducing dropped 
frames and improving the overall data transfer efficiency. 

IV. DISCUSSION 

The procedure followed in this study is a blueprint for the 
use of ML in data processing and creating applications that work 
with space communication links. The proposed method carries 
certain benefits for a link controller experiencing this type of 
channel fading. Currently, there is no method implemented on 
SCaN Testbed to deal with this fading phenomenon. Therefore, 
it is best to have a system that detects whether a channel is 
experiencing high fading and relay that information back to the 
controller. This way, data transmission can be paused to avoid 
loss of data.  

 Developing SPoC as an ensemble of supervised learning 
models provides the ability to retrain the system and perform 
hyperparameter tuning in a straight forward manner. 
Additionally, the different models can be evaluated individually, 
which makes the system adaptable to different data types and 
able to generalize very well because of the cancelling variances 
and biases that each model will have against the other. The data 
processing and hyperparameter tuning is fully automatic after 
the initial data pre-processing. These tasks are based on the 
model’s performance against the validation set.   

There are some drawbacks to the use of the presented 
process and SPoC. The most significant drawback is the feature 
engineering necessary for data processing and labelling. This 
can affect generalization because the system is dependent on 
these features to create its predictions, so if those features are 
biased to begin with, the system will not generalize well outside 

of the training domain.  Another drawback for this approach is 
the need to have a database with labeled classes ahead of time. 
There might be applications where such data is not available or 
not labelled properly for the system to train on.  

A system can be envisioned to have “self-labels” based on 
real time modem statistics, to automate this process of labelling 
without a human in the loop. Initial efforts in this topic has been 
done as presented by the Meta Brain for Embedded Cognition 
Cognitive Engine [6], where features are discovered and then 
used for classification. The combination of that approach with 
SPoC can yield a system where dropped frames and other 
channel statistics with windowing, can be used to block out 
periods of fading or obstruction. 

Overall, the use case of SPoC would allow for links coming 
from ISS to be shut off if high fading is present. Currently there 
is no implemented method for detecting this issue on SCaN 
testbed, so SPoC presents another node for controlling the link. 
However, elsewhere in the ISS there exists a coverage map that 
accounts for structure blockage outages. This map is dependent 
on modelling the motions and structure of ISS. SPoC presents 
a way of detecting these unfavorable communication periods by 
analyzing the channel itself, which allows for scaling, 
independent of structure and motion models of the spacecraft.   

The ability to detect channel states has additional advantages 
for links such as those from ISS to the ground. Such as system 
can be used to automatically determine appropriate times to 
transmit data, without requiring manual human intervention to 
determine the schedule.  

This is very useful to avoid clipped frames and other errors 
derived from high fading. For the purposes of its creation, SPoC 
would add a good way to manage these SDRs and it presents a 
relatively simple way of improving the link by not using energy 
and resources to transmit when the data cannot be decoded on 
the receiver side. Follow-on testing could involve networking 
traffic (TCP/IP or CCSDS), which can present a more favorable 
way to evaluate the network and data transfer efficiency, 
acknowledgements, retransmissions, and other metrics while 
using the cognitive engine, to further study it’s impact on the 
end-to-end communications environment.  

This paper presents an alternative to standard methods for 
detecting high fading and it shows how a machine learning 
model can be used to perform analysis on a communication link 
from ISS to the ground. There are some benefits and drawbacks 
to the approach, which should be considered before 
implementation on a production system.  

V. CONCLUSIONS 

This study presented the application of machine learning to 
a space to ground communication link. It was shown that ML 
can be used to detect the presence of fading in that link, given 
certain conditions. A detailed description of how the system is 
able to detect changes in link characteristics was provided and 
the study presented a process for extracting a target concept from 
the raw data both a-posteriori and in-situ.  

The pre-processing, data exploration and model selection 
effort were explained in detail. After this, preliminary results 
were shown, comparing the use of this particular ML method 



alongside adaptive methods. It was observed that both methods 
(with and without ML) perform well. Yet, using the ML method, 
the system was able to reduce the number of dropped frames 
over the adaptive method (without ML) since SPoC was able to 
detect fading and change modulation encoding accordingly. It is 
important to note that the robustness in lack of dropped frames 
reduces data throughput. Therefore, applications that would 
implement this method should take that into account.  

This study is a proof of concept for using ML in space 
communications. This study highlights how ML methods can be 
implemented at the link level of the SCaN infrastructure, 
presenting both benefits and drawbacks. Ultimately, this work 
advances NASA’s knowledge and understanding of how to use 
ML technology towards the future of space communications.  
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