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Coronagraph Optical Train (LUVOIR)

• Need 2 deformable mirrors (DMs) for wavefront sensing and control
• Long separation between DMs for amplitude and phase mixing
• High actuator count DMs

Issues:
Packaging issues
Higher risk of actuator failure 2



Low Actuator Count Parabolic DMs

Groff et al. 2016 3



Comparing Broadband Performance
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Advantages of Parabolic DMs
• Simplifies the packaging issue for space missions
• Reduces both cost and risk of having the entire coronagraph 

instrument’s performance depending on one or two high-actuator count 
DMs

• Increase in achievable bandwidth correction
- Controllable surfaces are in conjugate planes to the sources

of aberrations.
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Lab layout NASA Goddard
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Instrument Details
• Coronagraph PSF Focal Plane/ Zernike Mask

To Science 
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Dimple
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Instrument Details
• Flat Pupil DM
- BMC 32 x 32 DM
• Parabolic DM
- Modified ALPAO 11 x11 DM
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DM simulations
• Actuator resolution

- Round up to nearest 10 pm or 100 pm
• Stability

- Percent stability of the voltage/amplitude applied
- 0.5%, 1%, and 2%

• Bandwidth 20%
• Assumptions:

- Perfect Estimation
- No amplitude aberrations
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Error Maps Used for Simulation

a) Pupil Error Map (nm) b) Parabolic DM Surface Errors (nm) b) Flat DM Surface Errors (nm)
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Selected Design Requirements and Result
• Stability of 0.5% and actuator resolution of 0.1 nm
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Other Experiments 
• The lab is multipurpose and following experiments to be carried out

- Non-linear dark hole digging
- Adaptive estimation of line-of-sight jitter (LOS)
- Machine learning for LOWFS
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Linear vs Non-linear Control
Linear Estimation and Control Non-linear control
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Control : Just need a single DM?!
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Non-linear Control
• DM voltage calculated by non-linear optimization

- Python  L-BFGS-B (quasi-Newton method)
- Minimize cost function, provide the gradient

• Cost Function
- Obtained by forward model of the system

• Gradient
- Obtained by algorithmic differentiation* of each step of the 

forward  model
* Jurling et al.
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Simulation Results

• Three different coronagraphs 
• Different combination of phase and amplitude error

1) Ripple 3 SPC 2) Lab coronagraph with segments errors 3) LUVOIR B Coronagraph 
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Adaptive Estimation of LOS

Parameter 
Estimator

Kalman Filter

In Simulation, we have 
shown that residual after 
correction 0.4 mas.
Assumptions:
• Reaction wheel speed 

changing over time​
• 2.4 telescope 

observing a star of 
magnitude 4.83
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LOWFS - Machine Learning
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Conclusion
• Making OAPs deformable is advantageous

• Improvement control bandwidth
• Better for packaging
• Less risk and cost

• At NASA GSFC we are designing a multipurpose testbed
• To test parabolic DM architecture
• Different control algorithms 

-Non-linear dark hole digging, line-of-sight and LOWFS estimation and control
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