Design and modeling of the offaxis parabolic deformable (OPD) mirror laboratory

Hari Subedi* Roser Juanola-Parramon^{*,1} Tyler Groff* *NASA GSFC ¹ UMBC

Coronagraph Optical Train (LUVOIR)

- Need 2 deformable mirrors (DMs) for wavefront sensing and control
- Long separation between DMs for amplitude and phase mixing
- High actuator count DMs

Issues: Packaging issues Higher risk of actuator failure

Low Actuator Count Parabolic DMs

Groff et al. 2016

Comparing Broadband Performance

Groff et al. 2016

Collimator

A First Conjugate Pair

B Second Conjugate Pair

C Conjugate Pupils

Controllable

Camera

Optic

Input Image Plane

Advantages of Parabolic DMs

- Simplifies the packaging issue for space missions
- Reduces both cost and risk of having the entire coronagraph instrument's performance depending on one or two high-actuator count DMs
- Increase in achievable bandwidth correction
 - Controllable surfaces are in conjugate planes to the sources of aberrations.

Lab layout NASA Goddard

Instrument Details

Coronagraph

Focal Plane/ Zernike Mask

Instrument Details

- Flat Pupil DM
- BMC 32 x 32 DM
- Parabolic DM
- Modified ALPAO 11 x11 DM

DM simulations

- Actuator resolution
 - Round up to nearest 10 pm or 100 pm
- Stability
 - Percent stability of the voltage/amplitude applied
 - 0.5%, 1%, and 2%
- Bandwidth 20%
- Assumptions:
 - Perfect Estimation
 - No amplitude aberrations

Error Maps Used for Simulation

Selected Design Requirements and Result

• Stability of 0.5% and actuator resolution of 0.1 nm

Other Experiments

- The lab is multipurpose and following experiments to be carried out
 - Non-linear dark hole digging
 - Adaptive estimation of line-of-sight jitter (LOS)
 - Machine learning for LOWFS

Linear vs Non-linear Control

Linear Estimation and Control

 x_k u_k Contrast Wavefront Wavefront Estimation Control leasuremen Optical System Figure from Groff et al. 2016 z = Hx + n $\hat{x} = (H^T H)^{-1} H^T z$ $W_k = (G_k u_k - \delta E_k)^T (G_k u_k - \delta E_k) + \alpha_k^2 u_k^T u_k$ $u_{w,k} = (G_k^T G_k + \alpha_k^2 \mathcal{I})^{-1} G_k^T \delta E_k.$

Non-linear control

minimize $W = \sum_{DH} I$, where $I = f(A_{abb}, \Phi_{abb}, V_{DM})$ $= |A_{im}e^{\Phi_{im}}|^2$ $W = \sum_{DH} |A_{im}e^{\Phi_{im}}|^2$ $= \sum_{DH} A_{im}^2$

Estimation : A_{abb} , Φ_{abb} Control : Just need a single DM?!

Non-linear Control

- DM voltage calculated by non-linear optimization
 - Python L-BFGS-B (quasi-Newton method)
 - Minimize cost function, provide the gradient
- Cost Function
 - Obtained by forward model of the system
- Gradient
 - Obtained by algorithmic differentiation* of each step of the forward model
- * Jurling et al.

Simulation Results

- Three different coronagraphs
- Different combination of phase and amplitude error

1) Ripple 3 SPC

2) Lab coronagraph with segments errors

3) LUVOIR B Coronagraph

15

Adaptive Estimation of LOS

In Simulation, we have shown that residual after correction 0.4 mas. Assumptions:

- Reaction wheel speed changing over time
- 2.4 telescope observing a star of magnitude 4.83

LOWFS - Machine Learning

Conclusion

- Making OAPs deformable is advantageous
 - Improvement control bandwidth
 - Better for packaging
 - Less risk and cost
- At NASA GSFC we are designing a multipurpose testbed
 - To test parabolic DM architecture
 - Different control algorithms

-Non-linear dark hole digging, line-of-sight and LOWFS estimation and control