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ABSTRACT 

In this paper, we explore a time series approach to using the 
tau-omega (τ-ω) model to retrieve vegetation water content 
(kg/m2) with minimal use of ancillary data. Analytically, this 
approach calls for nonlinear optimization in two steps. First, 
multiple days of co-located brightness temperature 
observations are used to retrieve the effective vegetation 
opacity, which incorporates the combined radiometric and 
polarization effects of surface roughness and vegetation 
opacity. The resulting effective vegetation opacity is then 
used to retrieve vegetation water content to within a gain 
factor α and an offset factor β. By using a climatological 
vegetation water content ancillary database as the one 
adopted in the development of the SMAP standard and 
enhanced soil moisture products, α and β can be determined 
globally using the annual minimum and annual maximum of 
vegetation water content. The resulting values of α and β can 
then be used to reconstruct the retrieved vegetation water 
content. Formulation, assumptions, and limitations of this 
approach are presented alongside the preliminary global 
retrieval of vegetation water content using one year (2016) of 
SMAP brightness temperature observations. 

Index Terms — SMAP, radiative transfer, vegetation, 
biomass, optimization. 

1. INTRODUCTION

In passive remote sensing of soil moisture, vegetation is often 
a confounding factor to be corrected for in soil moisture 
estimation. This is especially true in soil moisture retrieval 
using a single polarized brightness temperature (TB) channel 
[1], where accurate soil moisture retrieval hinges on accurate 
correction for the radiometric effects of vegetation and other 
parameters. In applications where the horizontally and 
vertically polarized TB channels are used simultaneously in 
geophysical inversion, it is often possible to retrieve soil 
moisture as well as vegetation opacity (τ) [2]. While τ is 
directly proportional to vegetation water content (VWC), it is 
less relatable to practical field validation efforts because it is 
inherently a microwave attenuation property that depends on 
frequency and vegetation structure. Validation of τ would 
require elaborate and costly setup and maintenance of 

antennas and their calibration. At spatial scales in typical 
satellite retrieval applications, τ validation represents an 
insurmountable task. 

Compared with τ, validation of VWC (and hence the 
underlying retrieval approach presented here) represents a 
much more accessible effort. VWC is primarily a mass-per-
area quantity in kg/m2; therefore, it can be measured more 
simply and directly with gravimetric methods. Since VWC 
represents the wet biomass of above ground vegetation, it 
plays a significant role in furthering our understanding of the 
variability of the carbon cycle and its dynamic interaction 
with the water and energy cycles. 

In this paper, we propose a time series approach to using 
the tau-omega (τ-ω) model to retrieve vegetation water 
content (kg/m2) directly with minimal use of ancillary data. 
Results from Monte Carlo simulations will be presented to 
establish the feasibility and robustness of this approach, 
followed by its application to one year (2016) of SMAP TB 
observations. 

2. FORMULATION

In passive microwave remote sensing of soil moisture, the 
tau-omega (τ-ω) model has often been used for soil moisture 
estimation. A common formulation of the model for TB 
observed at an angle of θ can be found, for example, in [3]: 

𝑇"# = 𝑇%𝑒#exp*−𝜏# sec 𝜃0
+ 𝑇2*1 − 𝜔#051
− exp*−𝜏# sec 𝜃0651
+ 𝑟#exp*−𝜏# sec 𝜃06

(1) 

where 

𝑟# = 𝑟8# exp*−ℎ#cos;𝜃0 (2) 

In Eq. (1), the subscript p refers to either the horizontal or 
vertical polarization, Ts is the effective soil temperature, Tc is 
the vegetation canopy temperature (often assumed to be the 
same as Ts during the dawn hours for satellite morning 
overpasses), τp is the nadir vegetation opacity, ωp is the 
vegetation single scattering albedo, and rp = 1 - ep is the rough 
surface soil reflectivity, which is related to the smooth surface 
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soil reflectivity rop according to Eq. 2 through the roughness 
coefficient hp in an exponential term. In SMAP, Eqs. 1 and 2 
allow soil moisture estimates to be inverted from TBp (from 
observations), Ts and τp (from ancillary data), as well as hp 
and ωp (from lookup table) through a soil dielectric model. 

At L-band frequencies, ωp (or the vegetation scattering 
mechanism that it represents) is often assumed to be small. 
With ωp = 0, Eq. 1 can be simplified as: 

𝑇"# = 𝑇%[1 − 𝑟8#exp(−𝜏>??	#)] (3) 

where 

𝜏>??	# = 𝐻# + 2𝜏# sec 𝜃 (4) 

and 

𝐻# = ℎ#cos;𝜃 (5) 

Eq. 3 introduces the effective vegetation opacity (τeff p). As 
seen from Eqs. 4 and 5, τeff p incorporates the combined 
radiometric and polarization effects of surface roughness (hp) 
and vegetation opacity (τp). Despite its simpler form 
compared with Eq. 1, Eq. 3 is still primarily a function of soil 
moisture and effective vegetation opacity. As τeff p exhibits 
polarization dependence, there are N + 2 unknowns (N soil 
moisture estimates plus τeff h and τeff v) for every N pairs of co-
located TBh and TBv observations, assuming invariance of τeff h 
and τeff v during these TB observations. To solve for these 
unknowns, 2N ≥ N + 2, or N ≥ 2 pairs of TBh and TBv 
observations are required. Following this scheme, one year 
(2016) of SMAP TB observations were used to produce time 
series snapshots of τeff h and τeff v whose annual means are 
shown in Fig. 1. 

Substituting τp = bp VWC in Eq. 4, one obtains the 
following relationships that relate the effective vegetation 
opacity to a scaled-and-shifted transformation of VWC: 

𝜏>??	E = 𝐻E + 2	𝑏E	𝑉𝑊𝐶 / cos 𝜃 (6) 

𝜏>??	K = 𝐻K + 2	𝑏K	𝑉𝑊𝐶/ cos 𝜃 (7) 

In Eqs. 6–7, bh and bv are the polarization-dependent versions 
of the ‘b’ parameter commonly reported in the literature on 
passive microwave remote sensing of soil moisture [1–2]. In 
general, the ‘b’ parameter varies with microwave frequency, 
vegetation types, and polarization. As evident from Eqs. 6 
and 7, there are N + 4 unknowns (N VWC estimates plus Hh, 
Hv, bh, and bv) for every N pairs of co-located τeff h and τeff v 
retrievals, assuming invariance of Hh, Hv, bh, and bv during 
these retrievals. In this study, the invariance of these 
parameters extends over the entire annual cycle of 2016. 

In principle, it would take 2N ≥ N + 4, or N ≥ 4 pairs of 
τeff h and τeff v retrievals from Eqs. 6 and 7 to retrieve VWC and 
the four polarization-dependent parameters in [ Hh Hv bh bv ]. 

However, Eqs. 6 and 7 pose a unique challenge: certain 
unknowns (Hh and Hv) are additively combined with other 
unknowns (VWC, bh, and bv) to produce the retrieved τeff h and 
τeff v. These two groups of unknowns can offset each other in 
many different ways for any given values of τeff h and τeff v. 

Vertically Polarized Effective Vegetation Opacity 

(a) 

Horizontally Polarized Effective Vegetation Opacity 

(b) 

Fig. 1: Annual means of (a) vertically polarized effective vegetation opacity 
(τeff v) and (b) horizontally polarized effective vegetation opacity (τeff h) 
derived from one year (2016) of SMAP TB observations. 

The solution to Eqs. 6 and 7 is not unique, but it does not 
take on arbitrary values due to the temporal constraints of τeff 

h and τeff v on VWC. Using superscripts ‘T’ and ‘R’ to denote 
respectively the truth and retrieved parameters, it is evident 
that any VWCR as a linear transformation of VWCT in the 
form of VWCR = α VWCT + β is also a solution to Eqs. 6 and 
7. Substituting VWCR = α VWCT + β into Eqs. 6 and 7, and
equating the truth and retrieved parameters, one obtains the
following relationships for α ≠ 0:

𝑉𝑊𝐶L = (𝑉𝑊𝐶M − 𝛽)/𝛼 (8) 

𝑏KL = 𝛼 ∙ 𝑏KM (9) 

𝑏EL = 𝛼 ∙ 𝑏EM (10) 

𝐻EL = 𝐻EM + 2 ∙ 𝛽 ∙ 𝑏EM/ cos 𝜃 (11) 

𝐻KL = 𝐻KM + 2 ∙ 𝛽 ∙ 𝑏KM/ cos 𝜃 (12) 

3. SYNTHETIC DATA



To confirm the validity of these relationships between the 
truth and retrieved parameters, a Monte Carlo simulation 
experiment was set up, in which random vectors of [ VWC 
Hh Hv bh bv ] were generated as inputs to Eqs. 6 and 7 to 
populate the truth τeff h and τeff v time series for 20 sample 
realizations. Nonlinear optimization subroutines were then 
invoked in each realization to search for the corresponding 
solution in the absence of perturbation noise. Figure 2(a) 
shows that for all sample realizations, VWCR is indeed a 
linear transformation of VWCT (with the 1:1 line in magenta), 
with gain (α) and offset (β) determined primarily by the 
values of the initial search vector elements. When the values 
of α and β determined from Fig. 2(a) were applied to Eqs. 9–
12, the truth vector elements [ Hh Hv bh bv ] were all perfectly 
reconstructed, as shown in Figs. 2(b)–(e). 

(a) 

(b) (c) 

(d) (e) 

Fig. 2: (a) Eqs. 6–7 result in many solutions but each solution is a linear 
transformation of the truth, (b)–(e) confirm perfect reconstruction of Hh, Hv, 
bh, and bv according to Eqs. 9–12. 

The robustness of this approach in the presence of 
perturbation noise can be evaluated using the same Monte 
Carlo simulation setup. Figure 3 shows the impacts of 
multiplicative uncertainties of various magnitudes (5%, 10%, 
and 20%) independently introduced to τeff h and τeff v on the 
inversion of VWCT after the application of α and β. For 

uncertainties as high as 20% (red line), the worst-case RMSE 
peaks at ~1.50 kg/m2 up to a VWCT level ~10.0 kg/m2. As 
expected, retrieval error increases with increasing magnitude 
of uncertainty and VWC level. 

Fig. 3: Inversion of VWC out of 5,000 realizations from Eqs. 6–7 in the 
presence of uncertainties on τeff h and τeff v. As uncertainty (5% [black], 10% 
[blue], and 20% [red]) and VWC level go up, retrieval error also goes up. 

Despite the promising results of these Monte Carlo 
simulation results, it is important to observe what may not be 
applicable when dealing with real satellite data. First, random 
input vectors [ VWC Hh Hv bh bv ] and the associated output 
vectors [ τeff h τeff v ] were produced without any regard of their 
expected values at the frequency of interest (1.41 GHz in this 
study). In practice, this neglect would conceal any potential 
inconsistency between inputs and outputs that may still be 
present in the forward modeling of actual satellite TB 
observations in the form of errors in TB observations (e.g. 
NEΔT) and ancillary data (e.g. effective soil temperature, soil 
texture). Such inconsistency could lead to retrieval of non-
physical [ VWC Hh Hv bh bv ]. 

Second, the success of this approach depends to a large 
extent the accuracy of α and β that convert VWCR into VWCT 
according to Eq. 8. In typical satellite applications of this 
retrieval approach where VWCT is not available, α and β 
cannot be inferred as simply as illustrated in Fig. 2(a). 
Instead, they must be determined by external means. To this 
end, annual minimum and annual maximum from a 
climatological VWC database as used in SMAP [4] can be 
used as two reference points to estimate α (gain) and β 
(offset). To do so, one year of TB observations can be used to 
derive τeff h and τeff v according to Eqs. 3–5. The resulting τeff h 
and τeff v can then be used in Eqs. 6–7 to construct an annual 
time series of VWCR. Because VWCR = α VWCT + β, a 
maximum (or minimum) VWCR would correspond to a 
maximum (or minimum) of the climatological VWC (used as 
a surrogate of VWCT) for α > 0. This process can be repeated 
over all land pixels to map out α and β to reconstruct VWCT 
from VWCR. 

4. REAL DATA

Using the global estimation procedure for α and β proposed 
above, one year (2016) of SMAP dual-channel TB 
observations were used as inputs to the optimization 
processes in Eqs. 3–7. Figure 4 shows the corresponding 



annual mean of VWC retrieval. The result indicates the 
expected geographical distribution of vegetation [5]. 

Passive VWC Retrieval in kg/m2 Using SMAP TB Observations 

Fig. 4: Annual mean VWC retrieval using SMAP polarized TB observations. 

5. DISCUSSION

The tau-omega (τ-ω) model has been demonstrated in this 
paper to have a novel potential in VWC retrieval using 
polarized TB observations. Preliminary results indicate that it 
is possible to make use of the difference in temporal scales 
between vegetation and surface roughness to retrieve VWC 
to within a gain factor α and an offset factor β, whose values 
can be inferred from external ancillary data. This work 
addresses a common validation challenge encountered in 
previous studies [6] on retrieval of vegetation opacity in 
nepers/m instead of VWC in kg/m2 itself. Direct retrieval of 
VWC would improve our knowledge of the state of global 
forest biomass and its impacts on the carbon cycle. Following 
the confirmation from Monte Carlo simulations on the 
feasibility (Fig. 2) and robustness (Fig. 3) of this retrieval 
approach, real SMAP TB observations were then used as a 
proof-of-concept experiment to produce a global estimate of 
VWC of expected geographical distribution of vegetation 
(Fig. 4). 

6. CONCLUSION

A time series optimization approach was presented in this 
paper as a means to retrieve VWC in kg/m2 using passive 
microwave observations from SMAP. Preliminary results 
support the analytical feasibility of this approach and its 
applicability to real data. Further time series validation 
analyses are needed to better quantify the retrieval accuracy 
against available in situ VWC ground truth. Alternate means 
to determine α and β are also desirable steps towards reducing 
dependence on external ancillary data. Finally, the impacts 
when ωp is not negligible are also of interest for potential 
applications with TB observations of higher frequencies. 
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