

Implementation of a Body Force Model into OVERFLOW for Propulsor Simulations

H. Doğuş Akaydın

Senior Research Scientist/Engineer Science and Technology Corporation at NASA Ames Research Center

Shishir A. Pandya

Aerospace Engineer NASA Ames Research Center

35th Applied Aerodynamic Conference, AIAA Aviation Forum 6th June, 2017. Denver, CO.

The application: Boundary Layer Ingestion on D8 aircraft

The application: Boundary Layer Ingestion on D8 aircraft

Literature

Variants of actuator disk or blade element models

Helicopter rotors & wind turbine applications

Fejtek and Roberts [1992] Zori and Rajagopalan [1995] Chaffin and Berry [1997] --> Two versions are already in Overflow O'Brien and Smith [2005] ... many others.

Literature

Variants of actuator disk or blade element models

Helicopter rotors & wind turbine applications

Fejtek and Roberts [1992] Zori and Rajagopalan [1995] Chaffin and Berry [1997] --> Two versions are already in Overflow O'Brien and Smith [2005] ... many others.

Turbomachine applications

Joo and Hynes [1997] Kim et al. [1999]

•••

Literature

Variants of actuator disk or blade element models

Helicopter rotors & wind turbine applications

Fejtek and Roberts [1992] Zori and Rajagopalan [1995] Chaffin and Berry [1997] --> Two versions are already in Overflow O'Brien and Smith [2005] ... many others.

Turbomachine applications

```
Joo and Hynes [1997]
Kim et al. [1999]
...
```

A particular series of "body-force" approaches for turbomachines

```
Marble [1964]
```

Gong et al. [1998] Defoe and Spakovszky [2013] Peters et al. [2014] Hall et al. [2017] The implemented body force model by Hall et al.

$$\begin{aligned} \nabla \cdot (\rho \mathbf{V}) &= 0 & f = \frac{2\pi \delta(\frac{1}{2} |\mathbf{W}|^2)}{\frac{2\pi r}{B} |n_{\theta}|} \\ \mathbf{V} \cdot \nabla \mathbf{V} + \frac{\nabla p}{\rho} &= \mathbf{f} & \dot{e} = T \cdot \mathbf{V} \nabla s = -\mathbf{W} \cdot \mathbf{f} \end{aligned}$$

Hall et al. "Analysis of Fan Stage Conceptual Design Attributes for Boundary Layer Ingestion", 2017, ASME J. Turbomach.

The implemented body force model by Hall et al.

$$\nabla \cdot (\rho \mathbf{V}) = 0 \qquad \qquad f = \frac{2\pi\delta(\frac{1}{2}|\mathbf{W}|^2)}{\frac{2\pi r}{B}|n_{\theta}|}$$
$$\mathbf{V} \cdot \nabla \mathbf{V} + \frac{\nabla p}{\rho} = \mathbf{f} \qquad \qquad \dot{e} = T \cdot \mathbf{V}\nabla s = -\mathbf{W} \cdot \mathbf{f}$$

 $\mathbf{W} \cdot \mathbf{f} = \mathbf{0}$ (Isentropic flow turning)

Hall et al. "Analysis of Fan Stage Conceptual Design Attributes for Boundary Layer Ingestion", 2017, ASME J. Turbomach.

Implementation of the body force model

1. Define:

Implementation of the body force model

1. Define: 2. Extract:

$$\mathbf{W} = \mathbf{V} - \mathbf{U} = \mathbf{V} - \Omega r \Theta$$
$$\delta = \arcsin\left(\frac{\mathbf{W} \cdot \mathbf{n}}{|\mathbf{W}| \cdot |\mathbf{n}|}\right)$$

Implementation of the body force model

$$\mathbf{W} = \mathbf{V} - \mathbf{U} = \mathbf{V} - \Omega r \mathbf{\Theta}$$
$$\delta = \arcsin\left(\frac{\mathbf{W} \cdot \mathbf{n}}{|\mathbf{W}| \cdot |\mathbf{n}|}\right)$$

11/60

1. Define: 2. Extract: 3. Flatten: 4. Extend: 5. Revolve: ζ_{z}^{Y} Y K=2 *n*_{XY} K=3 \boldsymbol{n}_c \overline{P}_{XY} **"***Θ*_c $\Delta \theta$ P_{c} $\theta_{\rm c}$ $\Delta \theta$ $\Delta \theta$ $r_{\rm c}$ Ζ

Implementation of the body force model

Implementation of the body force model 1. Define: 2. Extract: 3. Flatten: 4. Extend: 5. Revolve: Implementation Implementation Implementation Implementation Implementation Implementation 2. Extract: 3. Flatten: 4. Extend: 5. Revolve: Implementation Implementation

6. Rotate:

6. Rotate:

7. Save:

Implementation of the body force model1. Define:2. Extract:3. Flatten:4. Extend:5. Revolve: \bigvee </t

6. Rotate:

8. Read in Overflow, compute the source terms each in iteration

 $f = \frac{2\pi\delta(\frac{1}{2}|\mathbf{W}|^2)}{\frac{2\pi r}{B}|n_{\theta}|}$ $\nabla \cdot (\rho \mathbf{V}) = \mathbf{0}$ $\mathbf{V} \cdot \nabla \mathbf{V} + \frac{\nabla p}{\rho} = \mathbf{f}$ $\mathbf{V} \cdot \nabla h_t = \mathbf{V} \cdot \mathbf{f} + \dot{e}$

Flow solution methods

Grid Generation: Chimera Grid Tools (CGT)

Steps 1 to 7 are automated by routines added to CGT codebase

Solver: *Overflow 2.21*

An implicit RANS solver for body-fitted structured overset grid systems.

Simulations here used

- Diagonalized approximate factorization scheme [Pulliam and Chaussee 1981]
- Central difference in Euler terms
- Steady-state simulations with constant CFL number
- Matrix dissipation
- Spalart Allmaras (SA) turbulence model
- Body force method grids and metric files are automatically split
- No multigrid when the body force model is used
- Jacobians of source terms are not added to left hand side (Hence no low Mach preconditioning when the body force model is used)

Test Cases

A stand-alone Source Diagnostics Test (SDT) fan with R4 rotor blades

Test Cases

A stand-alone Source Diagnostics Test (SDT) fan with R4 rotor blades

A stand-alone TF8000 propulsor

Test Cases

A stand-alone Source Diagnostics Test (SDT) fan with R4 rotor blades

A stand-alone TF8000 propulsor

The D8 aircraft model in a wind tunnel

Source Diagnostics Test (SDT) fan with R4 Rotors

Envia, E., "Fan Noise Source Diagnostic Test Completed and Documented," NASA Tech. Memo. TM-2003-211990

Source Diagnostics Test (SDT) fan with R4 Rotors

Envia, E., "Fan Noise Source Diagnostic Test Completed and Documented," NASA Tech. Memo. TM-2003-211990

35 million vertices, y⁺≈14 to 8 hours on 128 Haswell cores

Full convergence with body force model Partial convergence with pressure jump

Streamlines

M: 0.0 0.1 0.2 0.3 0.4 0.5 0.6

7,808 rpm 12,657 rpm

Experiment (phase-avg.)

SDT campaign at NASA Glenn Research Center POC: Dr. Ed Envia

- --- Experiment (mean of phase-avg.)
 - Simulation (body force model)

7,808 rpm	12,657	rpm
-----------	--------	-----

- Experiment (phase-avg.)
- --- Experiment (mean of phase-avg.)
 - Simulation (body force model)

The D8 aircraft in wind tunnel

Experiment: NASA Langley 14x22ft Wind Tunnel

Uranga et al., Preliminary Experimental Assessment of the Boundary Layer Ingestion Benefit for the D8 Aircraft, AIAA-2014-0906

CFD: Simulation of the model in the wind tunnel including the contraction and diffuser sections

TF8000 propulsor on D8

Static Pressure

Method	C_x	C_{Z}	C_{PK}	$C_{\dot{m}}$
Experiment	0.0000 ± 0.0006	0.644 ± 0.001	0.045 ± 0.001	0.0267 ± 0.0006
Uniform Pressure Jump	0.0002	0.651	0.045	0.0282

Method	C_x	C_{z}	C _{PK}	$C_{\dot{m}}$
Experiment	0.0000 ± 0.0006	0.644 ± 0.001	0.045 ± 0.001	0.0267 ± 0.0006
Uniform Pressure Jump	0.0002	0.651	0.045	0.0282
Body Force, 11,450 rpm	0.0005	0.678	0.043	0.0281

Experimental data inferred from Uranga et al., 2014

Summary & Discussion

- The body force model by Hall et al. predicted integrated quantities within a few percent on SDT with R4 rotor blades.
- In TF8000 propulsor cases the predictions were a bit more off, possibly due to certain uncharacterized sources of error across CFD and experiments
- The body force model provided detailed insights on the buildup of mechanical power throughout the propulsor
- Further work will include adding compressibility, blade blockage and endwall corrections into the model
- Further work will also include implementing propulsor models of various fidelities to assess the modeling fidelity sufficient for a given modeling goal

Acknowledgements

- Dr. David K. Hall of the MIT Gas Turbine Laboratory provided a description of the source term computation algorithm.
- Dr. Edmane Envia of NASA Glenn Research Center provided the SDT aerodynamic data and geometry definition files.
- NASA Advanced Air Transport Technology (AATT) project provided the funding for this work.
- NASA Advanced Supercomputing (NAS) Division at NASA Ames Research Center provided computing resources.

Backup Slides

Method	\cup_x	\mathbf{U}_Z	U PK	\mathcal{O}_{m}
Experiment	0.0000 ± 0.0006	0.644 ± 0.001	0.045 ± 0.001	0.0267 ± 0.0006
Uniform Pressure Jump	0.0002	0.651	0.045	0.0282
Body Force, 11,450 rpm	0.0005	0.678	0.043	0.0281
Body Force, 11,100 rpm	0.0028	0.672	0.039	0.0275
	ALCO DE LA COLLEGA DE LA			

Experimental data inferred from Uranga et al., 2014

body force modelpressure jump model

 $x_1 = 2.79$ m:

(fan face)

TF8000 propulsor, standalone

TF8000 propulsor, standalone

D8, podded variant (non-BLI)

TF8000 propulsor, standalone

Standalone TF8000 propulsor