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Project Objectives

# Develop a novel aerostructure concept
by combining the advanced composite
lattice-based cellular materials/
components and the multi-objective
optimal flight control systems to realize
mission adaptive and aerodynamically
efficient air vehicles

@ The goal is to utilize the “building block”
strategy for lattice-based components to s e Y | 7
enable high “stifiness-to-density” ratios; .. [[eunssmedus Bensio] mamey o
large Young’s modulus for an ultra-light _/pigital composites "™ =%

material, and provide great adaptability R

for varying flight scenarios

Young's modulus, E (GPa)

Aircraft industries are beginning to explore the
potential use of digital composite materials and
manufacturing in aircraft construction to reduce = : +
weight and construction/assembly costs. e e STLE 0T kenny@nasa.gov

—— Elastomers
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Innovation of Research

€ Aim to take advantage of an emerging
manufacturing method based on micro-
lattice structures to build a topologically
optimized aerostrcture with digital |
composite materials that enables
variable stiffness control surfaces

® The developed platform will be used to
assess the aerodynamic and
aeroelastic benefits of morphing wing
configurations compared to
conventional airframe designs

® The aerostructure needs to be
sufficiently robust to be evaluated in
wing tunnel tests to determine the
stability of such a reconfigurable
structure to maintain the necessary
shapes for optimal performance across -
flight envelop
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Technical Approach

@ Development of lattice-based  PEETEFERT S RES

\‘—" _‘..-- o ‘.— " ,".-— "--‘
:'7 ‘)" ' £ —_‘-—“

digital composite wing structures'™ U *" R o
)!l's !l& ‘ ia‘\

= Design and fabrication process

= Bench-testing NS m%_ 7R u- \- U \.,:
. . .. ’l ALY “T -] 'q u “b "“
= Preliminary wind tunnel tests at MIT of K <

“‘! )“‘l

€ Modeling and control of lattice
ll« ln(‘\

structures

= Physical finite element; lumped mass
= Discrete-time transfer matrix method
= Optimal decentralized controls

€ Wind tunnel testing of digital
wings

= 12-FT low speed tunnel at LaRC
= Assess aerodynamic characteristics
= Control authority via wing shaping
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Morphing Lattice Wings
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Reversibly Assembled Cellular Composite Materials
Kenneth C. Cheung and Neil Gershenfeld
Science 341, 1219 (2013);
DOI: 10.1126/science.1240889
8 = Saxial + Ovending < FI/Egt? + FI?/EJI o FI? /Egl
Assembled Cellular
Composite Materials

S
)
e
N
2
‘S
)
z

January 13-15, 2015 NASA Aeronautics Research Mission Directorate 2015 LEARN/Seedling Technical Seminar 7



Performance,

RN

s ’.,-\l Z
(3 ONK J

) /S
N "'," 0>

f

f

it s b by e ot

n

S

sam.calisch@cba.mit.edu 2014

Ultra-Light Materials Composite Cellular Material Morphing Wing
1000 Span Twist Test Section < "
i 5
Ouni-directional aligned CFRP solid NASA ARMD NARI Team Seedling % 4
# dircctional aligned CFRP cuboct digital composite > 7
100 +{Oquasi-isotropic CFRP solid *

® quasi-isotropic CFRP cuboct digital composite
Aacrylic solid

st - .\ 10 1 & acrylie cuboct lattice Exp!

e e = <4 \ 14.0 * NiP micro-lattice (Schaedler)
Time: 2.7 . > [ . | | * graphene cork (Qiu)
0REPM TN VBN A = silica acrogel composite (I.eventis)

0.20133Max \ wl -

0.178% £ 0.1

015659 -/ <

3422

0.L1185 4 y ": 0.01

0.089402 | l 3 N =

0067182 s/ 1 2 =

0.064741 72 A 3 ooy g

31 /"ﬁ*\i'x‘ s S~ = 2 0.001

OMin s

-
0.0001

0.00001

0.000001

“"g”’“ Reversibly Assembled Cellular Composite Materials
’ o, Kenneth C. Cheung and Neil Gershenfeld

Science 341, 1219 (2013);

DOI: 10.1126/science.1240889

0.0000001 T T ™ T
0.0001 0.001 0.01 0.1 1
density p (g/em?)

- '.- "kv‘ kv‘ \'A - . .‘\\\\‘ ‘e
-

. oo dly 8 N lll.\. 1/ N/ ¥ : \Y 11 | BN, .
=S LETININONES e o LS
-

L MVAVANVA A & 4 e

.’

2014 kenneth.c.cheung@nasa.gov



NACAO0012

* Patch sizing/geometry determination

Patch Pressure (psi)

Angle of Attack (deg)
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Physical Finite Elements

sam.calisch@cba.mit.edu, MS Thesis, Massachusetts Institute of Technology, 2014
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Natural Modes — Simulation

sam.calisch@cba.mit.edu 2014
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Manufacturing

Boeing 737 Boeing 787 Vickers Wellington, 1935
~2e6 parts, "‘1e6 types, "'24 hour assembly Goal ~144 hour assembly o 24 hour production

e '- ™~ Magnuium molal producad lrom Wellington Bomber assembly

(Boemg)

vital for wanlme producllon of Ilghl alloys
used in aircraft frames and for munitions

NON-GENERIC SPECIMENS
S3UNLY3IH TVENLONYLS

COUPONS

) 33333 EEEEEE EEEE
== == I o wm s

STt t (Spirit Aerosystems) Lego Plane Set # 773x
~200 bricks ~10 types ~100 different planes

aSva viva

GENERIC SPECIMENS

FIGURE 2.1.1 The pyramid of tests (Reference 2.1.1(a)).



Manufacturing
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Bench Testing
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Bench Seat Testing

: Composute Cellular Material
, ’{)hmg Wing

| Team Seedlmg

Skin Stiffness Testing

2014

bej@mit.edu
dwc238@cornell.edu
kenny@nasa.gov
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MIT Wright Brothers 8-ft Tunnel N“‘"
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LaRC 12-ft Tunnel
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LaRC 12-ft Tunnel
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LaRC 12-ft Tunnel

January 13-15, 2015 NASA Aeronautics Research Mission Directorate 2015 LEARN/Seedling Technical Seminar



Summary

 Demonstrated successfully the building-block based
composite cellular structure concept

 Component level Physical Finite Elements was formulated,
analyzed, and validated with test results

 Advanced fabrication and manufacturing process was tested
and successfully implemented in producing robust lattice wing
structures

* Aseries of rigorous bench tests and wind tunnel tests were
conducted which proved the proposed concept
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LaRC 12-ft Test Team — Thanks!
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Modeling and Control of Lattice 4§
Structures @

@ Technical challenges

= Very high dimensions!
= Conventional FEM approach is difficult
= Prone to numerical errors

€ Development of control-centric
model
= Low dimension

u(t)

= Easy to analyze and simulate W, Y, Y, W,

= Suit for control design Bending { WM, MW

# Discrete-time Transfer Matrix =~ ™" {| & Y. M. 8
Method (DT-TMM) i

= Suit for interconnected multi-flexible
body systems

= Integrating numerical analysis
technique with transfer matrix method

= Small matrix operation!
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Discrete-time Transfer Matrix 4§
Method (DT-TMM) A

@ Discrete-time lumped mass approximation for cellular structures
= Easy migration to flight computer
= Explicit control with maximum bandwidth
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Discrete-time Transfer Matrix

Method (DT-TMM)

€ Equation of motion for a single element; n"-element

n—H
eoe InN_ = m
HWﬂ

X,
— /.

where

T =T,

n
R
n

J\

L
X, =X,

[mn.ién (t,)= ‘L’f (t,)- 1:5 (t,){ f,(¢,)) Control input!

T, (6) =k, (8) | X (1) = 1,1, (8) |+ €, (1) %, (8) = 5,5, ()
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Discrete-time Transfer Matrix
Method (DT-TMM)
€ General Discretization; nt"-element

¥ (£)=A (t)x () +B.(t)
i (t)=D (t)x. (t)+E ()

Therefore, we obtain

[ mn(Anxn+Bn)=1:f—1:,f+fn }

and

ek [ xt Jee (D, + B (D, 5, B,

Note: The quantities A,, B,, D,, and E, depend on the type of
numerical integration scheme used in the analysis!
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Discrete-time Transfer Matrix
Method (DT-TMM)

& Matrix formulation: From LEFT to nth-element
ATl

B . 4
7)) 1 0 0 a:'\
L R L
© = |Mndn 1 muBn —fo| {7 :>[v =Pv}
= n n n
0 0 1 1
L . \ 7/ n
I S _kn‘l'anf_l 1 —Cn(ETILJ—ETI?_l)_ T R
g% 0 1 0 % n~ T n’ n-l
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Discrete-time Transfer Matrix
Method (DT-TMM)

& Matrix formulation: From RIGHT to n"-element

H n+1 J n+1 H n+2

'Y A

(X Y o m - . es
L - - R
® (1) 1 0 0 (1)
L R
\1) n L O O 1 - \11 n
1 S R —k:n+anqu_1 1 _Cn(EfLJ_Ef—Fl)_ L
oo | 2 DL 2 T T L
- o . n+Cn oy n+CnDn kn""ann R . L
g- %{T} — 0 1 0 T :>vn _ann+1
?» A 1 n | 0 0 1 A ! n—+1
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Discrete-time Transfer Matrix
Method (DT-TMM)

€ Propagation from BOTH sides to nth-element

Left to right propagation: Q, = HP,.F,.
i=0
Right to left propagation: T, = ﬁH,.Ji

Full system description

L — F Q vR
nooomEno in terms of LOCAL
Combinationof Qand 7': { v¥=Ty% degree of freedom; nth-

m(Ax +B)=1f -7t +f,  element
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Discrete-time Transfer Matrix
Method (DT-TMM)

@ Third order Houbolt numerical integration method was
chosen

@ Decentralized control problem formulation:

s Linear discrete-time
[xn (t,)=Ax (t_)+Ba+f,) } system!

where o denotes the coupling between nth-element and its neighbors.

€ A “weak” coupling can be ensured by making the time step
size small; diagonal dominance!

€ The control problem can be solved using standard LQR
approach:

N
min J = Y x;0x, +(f,); R(f,), ; @>0, R>0.
" k=0

**. Cramer et al. “Application of Transfer Matrix Approach to Modeling and Decentralized Control of
Lattice-based Structures,” appeared in 2015 SciTech Conf.
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Discrete-time Transfer Matrix
Method (DT-TMM)

€ Example: 3-Mass System Control

x10° x 10° x 10°
5 """"""""" a B erin e o in, 3 form iy rorm iy - 5 """""""""" bttt eyt B Tary asie i e b et = 5 """""""""" 3 [rrorintr ore ) { ff R rter iy rton -1
E E E
= 0 .................. e L s mee e . = 0 ................... Ve s ae L e e . = 0 .................. A o e b o _
“0 0005 001 0015 “0 0005 001 0015 0 0005 001 0015
t (sec) t (sec) t (sec)
£
x 10
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2_
1_
0
=
2
| | | | | | |
-0.5 0 05 1 15 2 25
x 107
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Discrete-time Transfer Matrix
Method (DT-TMM)

€ Example: 5-Mass System Control

o(t)

f; : Efi = i E_)

14210

—DT-LM-TMM LQR Pareto Optimal Curve
— Full State Continous LQR Pareto Optimal

Total System Energy over Time

| | | | |
0 0.2 0.4 0.6 0.8 1 1.2
llulf® x 10°
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Discrete-time Transfer Matrix
Method (DT-TMM)

9.-Example: 5-Mass System Control

—Mass 1 Postion
—Mass 2 Postion {
—Mass 3 Postion
——Mass 4 Postion |
—Mass 5 Postion

Full-state continuous LQR

E
3 _
IS _
)
[a)
g X 10° DT-TMM LQR
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Modeling and Control of Lattice

Structures
€ Example: 5-Mass System Control (Continuous-Time LQR)

x 10° x10° x10° x10° x 10°
6 6 6 6 6
1 A SRS M R . R SR S A . R S S AL . S S R A
E = E E E
- R R S—— - RRURRR R — - ISR S - EEERCEERRORNN SR B Y e et

——Mass 1 Postion
——Mass 2 Postion
——Mass 3 Postion
——Mass 4 Postion
—Mass 5 Postion

L | | ! L | | !
0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Time (s)

4 45
x 107
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Modeling and Control of Lattice

Structures
€ Example: 5-Mass System Control (DT-TMM LQR)

x10° x10° x 10° x10° x10°
| — S E— ME———— - M- - M—— -
At 0 1| ISR S A RS SR 1) S 8 1) s S 8
> - H > 4 9 > H . > H ' > ' '
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- t (sec) t (sec) t (sec) e ;;10, * ’-‘- ‘
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41 g2
"‘"" AR SORO0AEACAV
3 32
-4
2 N
-80 0. 605 0. 61 0 615 0. 62 TO 62(5) 0 63 0. 635 0. 54 0.045 0.05
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Summary

@ Utilized lumped-mass approximation to model the
lattice structures

@ Through recursive application of discrete-time
transfer matrix method, a localized reduced-order
model was attained

€ Houbolt numerical integration scheme was
proposed, which allows for tuning the level of
coupling from neighboring elements

€ LQR-based decentralized controller was
proposed, and it was used to effectively suppress
vibrational behavior
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Wind Tunnel Testing of Digital
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Wind Tunnel Tests: Overview

* One rigid and two flexible models of the
digital structural design were created to
explore the viability of the concept

 Two wind-tunnel investigations (MIT and LaRC
12-Ft Low Speed Tunnel) demonstrated the
suitability of the wing concept against a range
of environments:

— Flight-like distributed loads
— Aerodynamic performance
— Flight control effectiveness
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Wind Tunnel Tests: Key Findings

e Digital structure easily withstood aero loading across
typical UAV flight envelope
— dynamic pressures up to 7 psf (10 Pa)
— speeds up to 77 fps (23 m/s)
— thru post-stall angles of attack (>16°)
— moderate sideslip angles (generally only +4°, limited to 16°)

e Digital structure at neutral twist exhibited similar
aero properties as rigid variant in performance and
static stability and roll-damping

* Flex structure allows for improved control options to
enhance efficiency as compared to conventional
design

e Controls-active tests demonstrate viability of digital
structure active twist response dynamics against
realistic loads and states
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Models: Wing (+ Fuselage)

e Simplistic UAV platform component for this
proof-of-concept study

Flex and Rigid are geometrically identical

— except for flap - |
s
Flexible twist | Rigid flaps .
Cont. variable | Separate parts e
o o
-6° T.E. up to 0, £10°, £20°, 0
+10° T.E. down *30° both sides %
2 12.00
i i - @i
'T U ]‘ “ﬁ "|k F 963
Aft View

|
(I ; —
| | —————— |

|
. LT .
Dimensions in inches
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Rigid Model vs. Flex Model
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12-Foot Low Speed Tunnel

Specifications

* Type: Atmospheric, closed throat,
annular return

» Test section: 8 sided,

12 feet wide, 15 feet long €« air flow

* Operational: 1939 | Sosumentation
(as free-flight tunnel) N camera

 Motor: 280 hp
* Velocity: 0 - 77 ft/s

+ Static force and moment: -10 to 90
degrees alpha, +/- 90 degrees beta

- Surface pressures

» Arbitrary motion forced oscillation

* Free-to-roll
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Models Installed in 12-Ft LST

January 13-15, 2015

NASA Aeronautics Research Mission Directorate 2015 LEARN/Seedling Technical Seminar

46



Comparisons — Longitudinal Aero (¥h

* Flexible shows 004
similar levels of lift e
.« Cm
& drag as Rigid 0.04
-0.06
[ ]

Both exhibit similar P

pitch static stability 'g::
(Cm,) levels o7

* Flex has ability to

modulate the oo
forces while Do-;
maintaining trim

more so than Rigid <3 /7]
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Comparisons — Pitch Control

e Using twist as a pitch  .oo2——— ——————
001 |- [Freccppe--gh. .- P RRRE LRRET " RRRR
controller on the Flex o[- R
design ShOWS potentia' -001 f----- RUNA RUN B 'MQQeI. Contr'ols
. -002F---- - O 5042 5206 Rigid +10 Sym
for |mproved 003} -----[[0 5286 5277  Flex +6 Sym
efficiencies jpocd IR A S i s <o N AR
* Flex provides increased
lift with reduced drag ™
compared to the A
conventional flap in °
H 02
the pre-stall regime p
 Flexrequires minimal  5p-
balancing forces to ac 10
. . . .05
maintain trim .
— Influenced by design -05L

approach
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Lateral-Directional Static Stability

0

 Effective dihedral o%fp---oeeeipeoo B e SR R L S St
. c. -0.002L. ... A ey D o
angle is stable Yo c0s). ... [ RON SymTwst] ... R - - S
(ne atlve C ) as -0.004 . .- Sgggg 2 IPRTN PP G . g . R REEEE
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Comparisons — Lateral Control (ZtX

Twist is an effective
static lateral (roll)
controller

— “weighted per area”
effect is similar to
differential flaps

Post-stall: twist roll
control degrades and
brings on more
pronounced coupling
yawing moments

— Twist can be further
tailored to reduce yaw
onset at post stall using
non-zero average
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Comparisons: Roll Damping

* Flex and Rigid show nearly identical classic roll
forced oscillation rate derivative levels

— Across aoa, freq, amp variations tested

— Controls ﬁXEd 0.8 T T T T T T T T T T
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Damping Augmentation

 Wing twist commanded in
response to the sensed
model motion

— Drive controls in-phase and ¢_

out-of-phase, and
guadrature wrt sensed bank
angle

 Stabilizing and destabilizing

influences with rate and
angular position

e Classic roll damper (Rt = +p)
Experimentally demonstrate

efficacy against uncertainties
in the control flow

Lightweight wing structure is
advantageous from a testing
standpoint (dynamic tares)
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Dynamic Controls

* Analyses of force and moment time-histories
collected at a set condition (fixed AoA, gbar)
indicate twist oscillations hold potential for
performance improvements

Oscillation
around certain
twist can
improve
performance!

Twist Position (Degrees)
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Wind Tunnel Tests: Animations (#th

= Flutter suppression tests
- High AoA
- Stabilized via wing tip twist

= High frequency morphing
- Free roll
- Can vary wing twist
frequency
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Summary

e Digital structure approach provides classic stable and
controllable wing attributes across general low-speed small
UAV operating envelope of AoA, speed, sideslip and control

— Structurally and aerodynamically

— Statics and dynamics
 Modulating twist can improve efficiencies of overall vehicle
design
* Closed-loop tests demonstrate effectiveness of the realistic
actuator-to-fluid control “system”

e Continued studies

— Bring in additional total-vehicle components (horizontal and possibly
vertical surfaces/controls)

— Include on-surface flow measurements; additional controller
dynamics

— Exploit aerodynamics (vehicle structure, controls, and ensuing
motion) for enhanced performance/efficiencies
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EXECUTIVE SUMMARY
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Executive Summary

@ Design and fabrication of wing structures utilizing
lattice-based construction approach, with limited
number of distinct components

€ A novel transfer matrix approach to model and
control the dynamics of lumped-mass behaviors
of interconnected cellular components

@ Through rigorous best tests and wind tunnel tests,
the proposed lattice-based flexible wing structures
proved to behave as conventional wing design,
but with added versatilities that could enable new
mission objectives
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PLAN FORWARD



Plan Forward

€ Development of Physical Finite Element

Model (PFEM) analysis technique o B =
€ Lattice structural modal identification Q irfol (profie)

and validation
= System ID process

= Structural properties ___afiot—¥

€ Flexible PCB for onboard, real-time, flow
sensing

mounted onto airfoil skin

FLEXIBLE PCB SENSOR (

€ Mission adaptive wing shaping to
improve in-flight aerodynamic
performance Optimal

PHYSICAL FINITE ELEMENT MODEL \/

ACTIVE WING SHAPING

Baseline

\!/

sam.calisch@cba.mit.edu

- suw@eng.ua.edu
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Plan Forward

€ Wind tunnel tests with total-vehicle components
(horizontal and possibly vertical surfaces/controls)

@ Development of robotic assembly and repair
capability

€ Large scale shape morphing-based propulsion
that enables the flapping wing flight
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Thank you!

Question?



LaRC 12-ft Test Team — Thanks!
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