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Background and Motivation
 NASA operates ≈ 300 aging layered pressure vessels (LPVs) that were fabricated prior 

to ASME B&PV code requirements
 Performing traditional fitness for service is challenging and may be overly conservative 

due to many unknowns in these LPVs:
– Use of proprietary materials in fabrication

– Missing construction records

– Geometric discontinuities

– Weld residual stress (WRS) uncertainty

– Complex service stress in and around welds

 Developed probabilistic framework that can capture variability and 
uncertainty in LPV fleet and assess risk of fracture in regions of interest
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Framework Development
 The probabilistic framework is comprised of multiple models:

– Vessel geometry

– Service stress

– Weld residual stress

– Stress intensity factor

 Model development was performed using verification and 
validation (V&V) approach:

– Identify important phenomena

– Quantify uncertainties and approximations

– Establish evidence about predictive accuracy of the models

 NESSUS® probabilistic software makes model inputs random 
variables, exercises the models, and links model outputs
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Demonstration Cases and Probabilistic Analysis

 Predict stress intensity factor (SIF) for two flaws in head-to-shell (H-S) circumferential 
welds for 4-layer (small) and 14-layer (large) LPV to demonstrate framework
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– H-S welds have unique geometry and stress  interlayer gaps 

introduce bending stress + complex WRS from fabrication

– H-S weld non-destructive evaluation (NDE) is challenging 

use models in probabilistic framework to guide NDE 

 Perform probabilistic studies: (1) full cumulative 
distribution function and (2) global sensitivity analysis

 Compute probability of failure based on limit-state 
function: 𝑔𝑔 = 𝐾𝐾𝐽𝐽𝐽𝐽 − 𝐾𝐾𝐼𝐼 = 0

– 𝒑𝒑𝒇𝒇 = 𝑃𝑃 𝑔𝑔 < 0 = 𝑃𝑃 𝐾𝐾𝐽𝐽𝐽𝐽 − 𝐾𝐾𝐼𝐼 < 0 = 𝑷𝑷[𝑲𝑲𝑱𝑱𝑱𝑱 < 𝑲𝑲𝑰𝑰]

– Integrate joint PDF (𝑓𝑓𝑋𝑋) of all random variables (𝑋𝑋) over 
failure region:  𝒑𝒑𝒇𝒇 = ∫𝒈𝒈<𝟎𝟎…∫𝒇𝒇𝑿𝑿(𝒙𝒙)𝒅𝒅𝒅𝒅



Vessel Materials and Geometry
 4-layer (1 inner + 3 shell layers) and 14-layer (1 inner + 13 shell layers) vessel:

– Manufactured in 1963 by Chicago Bridge and Iron Company

– Inner layer rolled from 1143 Mod. steel

– Shell layers rolled from 1146 steel

– Head fabricated from A-225 Grade B FBX steel
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 Uncertainty in inner shell and head thickness 
estimated based on construction records

 Variation in vessel efficiency estimated from pi 
tape measurements of other vessels in fleet

 Fracture toughness determined experimentally
– ASTM E-1921  cleavage toughness model

–– Uncertainty in cleavage transition to upper shelf 

 use lower of cleavage or upper shelf toughness

cleavage fracture toughness model

upper shelf fracture 
toughness model

Cleavage and upper shelf fracture toughness 
models with 5% and 95% tolerance bounds

*Note: tables listing geometry and loading/boundary conditions for the 4- and 14-layer vessel are provided in backup slides 

random samples from 
probabilistic model



Probabilistic Framework
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Gap Closure Tool
 Excel-based tool developed at NASA’s 

Marshall Space Flight Center
– Inputs: basic vessel geometry, linear 

elastic material properties, vessel 

efficiency, internal pressure, and 

through-thickness distribution of gaps

– Outputs: through-thickness size of 

interlayer gaps and closure pressure

– Uses thin walled vessel theory and 

Excel’s Goal Seek function

 Uniform through-thickness 
distribution of gaps used in this study 
 conservative assumption
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Input basic vessel 
parameters

Adjustable presumed 
gap distribution

Given a target efficiency, 
computes equivalent layer 

gapping

Calculates pressure-consistent 
stress history for all layers



Parametric Axisymmetric LPV Model
 Linear elastic finite element model in Abaqus

– Parametric  capable of simulating all LPVs in fleet

– Axisymmetric  takes advantage of axisymmetric 

nature of circumferential welds to reduce order of 

simulation and computational cost

– Inputs: vessel geometry, material properties, service 

pressure, gap sizes from Gap Closure Tool

– Outputs: linear elastic stress field during service 

(univariate stress gradient extracted along path)

 Limitations of the model:

– Does not consider effect of longitudinal welds

– Does not include weld backing plate in geometry
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Temp-dependent stress-strain curves for A-225 Gr. B

Thermo-mechanical Weld Simulations
 Multi-pass weld simulations of 4- and 14-layer H-S welds performed by Engineering Mechanics 

Corporation of Columbus using VFTTM (Virtual Fabrication Technology) code1

– Sequentially coupled thermo-mechanical FEA  elastic-plastic WRS field prediction

– Include hydro test at 1.5 times max pressure in simulation  univariate stress gradient extraction after hydro

 Temp-dependent stress-strain curves determined experimentally for materials in vessels
 Temp-dependent CTE and stress-strain curves (yield stress) are random variables

10

 Generated 25 WRS 
gradients to train 
surrogate model

– PCA-based model

– Predicts WRS variability

– Reduces computational 

cost vs. FEA
variation in material properties 
 large variation in hoop stress

1User Manual for VFT – Virtual Fabrication and Weld Modeling Software by Engineering Mechanics Corporation of Columbus (EMC2), Battelle Memorial Institute and Caterpillar Inc., April 2016.



Fracture Mechanics Model
 Used NASGRO® fracture mechanics software2 to perform LEFM
 Model reference flaws as semi-elliptical surface crack in flat plate (SC30 weight function 

solution)
 In this study: 

– Width of plate (𝑊𝑊) = ½ vessel circumference

– Thickness of plate (𝑡𝑡) = thickness of vessel

– Cracks centered in the plate (𝐵𝐵 = 𝑊𝑊
2

)
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 Univariate service stress and WRS 
superimposed to create stress field for 
computing SIF

 NASGRO® capabilities include fatigue crack 
growth, FAD, and CCS

2NASGRO® Fracture Mechanics and Fatigue Crack Growth Analysis Software, Version 9.0, NASA Johnson Space Center and Southwest Research Institute, May 2018.
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Preliminary Results
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Reference Flaw Sizes

a = 0.25 in, a/c = 1

a = 0.2 in, a/c = 2/3



Nominal Stress Plots
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Axial Stress Hoop Stress
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*Weld geometry differences have minimal effect on stress gradient predictions
*Stress predictions are more sensitive to gap size and through-thickness distribution



Sensitivity Studies

 Axially oriented, hoop loaded flaw:
– Variability in SIF is primarily the result of variation in WRS

 Circumferentially oriented, axially loaded flaw:
– Variability in SIF is primarily the result of variation in WRS and 

vessel efficiency  interlayer gaps

 Flaw size did not have a significant effect on sensitivity analysis
 Sensitivity analysis more dependent on flaw location

– Flaw on shell-side is more sensitive to efficiency (interlayer gaps)

– Relative influence of weld material properties is dependent on 

flaw location

 Thickness and weld width variation have minimal contribution 
to SIF variability
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Hoop 
Loaded Flaw

Axially 
Loaded Flaw



Stress Intensity Factor vs. Toughness
 NESSUS® used to generate CDF of KI  converted to 

PDF to compare to KJC in heat-affected zone
 Monte Carlo sampling used to perform integration:   
𝒑𝒑𝒇𝒇 = ∫𝒈𝒈<𝟎𝟎 …∫𝒇𝒇𝑿𝑿(𝒙𝒙)𝒅𝒅𝒅𝒅

 4-layer vessel
– “a” crack tip probability of KI > KJC = 0.027

– “c” crack tip probability of KI > KJC = 0.0002

 14-layer vessel
– Separation of KI and KJC PDFs:  probability of KI > KJC ≈ 0

 Predictions largely driven by uncertainty in WRS 
models/data and assumptions of fracture toughness 
variation
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4-Layer 
Vessel

14-Layer 
Vessel



Conclusions
 Developed probabilistic framework to predict fracture risk in regions of interest

– Includes models for WRS, service stress, SIF, and fracture toughness

– Model development using V&V approach

– Framework can utilize fatigue crack growth and failure assessment diagram capabilities in NASGRO®

 Probabilistic studies performed to predict variability in SIF and global sensitivities
– Results are preliminary  used to demonstrate framework and guide resource allocation

– WRS and vessel efficiency variation and uncertainty are largest drivers of SIF variability

– Considerable variation and uncertainty in fracture toughness as well

 Further development and evaluation of this probabilistic framework are underway as one 
part of NASA’s strategy to evaluate safety of LPV fleet
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Design Distribution Parameters
Geometry

Head 
Thickness 1.056c in uniformd a=1.056

b=1.1088
Diameter 24 in deterministic
Lengtha 118 in deterministic

Inner Layer 
Thickness 0.50c in uniform a=0.50

b=0.54
Shell Layer 
Thickness 0.25c in uniform a=0.25

b=0.29

Efficiency ≥ 50% beta
α=7.8207
β=3.0674
L=50 U=100

H-S Weld 
Width 0.875 in uniforme a=0.7437

b=1.0063
Loads/BCs

Pressureb 3500 psi deterministic
Coefficient of 

Friction 0.7 deterministic
atangent-to-tangent vessel length
bmaximum allowable working pressure (MAWP)
cminimum
dvariable range: -0, +5% from design
evariable range: ±15% from design

Design Distribution Parameters
Geometry

Head 
Thickness 3.699c in uniformd a=3.699

b=3.8840
Diameter 60.25 in deterministic
Lengtha 720 in deterministic

Inner Layer 
Thickness

0.46875c

in uniform a=0.46875
b=0.50875

Shell Layer 
Thickness

0.28125c

in uniform a=0.28125
b=0.32125

Efficiency ≥ 50% beta
α=7.8207
β=3.0674
L=50 U=100

H-S Weld 
Width 1.0625 in uniforme a=0.9031

b=1.2219
Loads/BCs

Pressureb 5000 psi deterministic
Coefficient of 

Friction 0.7 deterministic
atangent-to-tangent vessel length
bmaximum allowable working pressure (MAWP)
cminimum
dvariable range: -0, +5% from design
evariable range: ±15% from design

4-layer Vessel Geometry and 
Loading/Boundary Condition (BC) Information

14-layer Vessel Geometry and 
Loading/Boundary Condition (BC) Information

𝐸𝐸 = 2.95 × 107 𝑝𝑝𝑝𝑝𝑝𝑝
ν = 0.3



Surrogate Modeling Approach
 Principal component analysis (PCA) technique used to create 

surrogate model for service & WRS stress gradient

– Predicts stress at multiple points (gradient) vs. single location

– PCA reduces dimensionality of model output3

– Greatly reduces computational time vs. FEA
 Surrogate Model Development Procedure:

1. Run FE model based design of experiments to generate training data

2. PCA used to express variation in gradients as linear combination of 

shape vectors  retaining only most important shape vectors 

reduces dimensionality

3. Response surface to predict individual principal component score 

(eigenvalue) based on inputs  then reconstruct stress gradient as 

linear combination of most important shape vectors
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3Higdon, D., Gattiker, J., Williams, B., and Rightley, M., “Computer model calibration using high-dimensional output”, Journal of the American Statistical Association, Vol. 103, No. 482, pp. 570-583, 2008.



Nominal Contour Plots (with mesh shown)
 Axial stress:

– Largest stress at inner surface

– Gaps result in bending stress

 Hoop stress:

– Largest stress at outer surface

– Gaps result in stress 

concentrations

 Weld geometry differences have 
minimal effect on stress gradient 
predictions

 Stress predictions are more 
sensitive to interlayer gap size 
and through-thick distribution
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Mesh Convergence
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*Solution uses element line density of 200 elements/in

45 elements/in was 
selected because the 

solution error ≤ 1.5% and 
simulation time < 5 minutes

6-Layer Vessel Convergence Study



Axisymmetric Model Verification
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