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Background and Motivation

* NASA operates = 300 aging layered pressure vessels (LPVs) that were fabricated prior
to ASME B&PV code requirements

* Performing traditional fitness for service is challenging and may be overly conservative

due to many unknowns in these LPVs:

Use of proprietary materials in fabrication

Missing construction records

Inner

Geometric discontinuities o

Weld residual stress (WRS) uncertainty
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Complex service stress in and around welds &-ﬁ-- =

Weld Vent hole

* Developed probabilistic framework that can capture variability and
uncertainty in LPV fleet and assess risk of fracture in regions of interest
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Framework Development

* The probabilistic framework is comprised of multiple models:

— Vessel geometry
— Service stress
— Weld residual stress

— Stress intensity factor

* Model development was performed using verification and

validation (V&V) approach:

— ldentify important phenomena

— Quantify uncertainties and approximations

— Establish evidence about predictive accuracy of the models

= NESSUS® probabilistic software makes model inputs random
variables, exercises the models, and links model outputs

Reality of Interest
(Component, Subassembly, Assembly, or System)
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Demonstration Cases and Probabilistic Analysis

* Predict stress intensity factor (SIF) for two flaws in head-to-shell (H-S) circumferential
welds for 4-layer (small) and 14-layer (large) LPV to demonstrate framework

— H-S welds have unique geometry and stress =2 interlayer gaps

introduce bending stress + complex VRS from fabrication
Shell-to-Shell
+«— Circ Weld

— H-S weld non-destructive evaluation (NDE) is challenging = Head-to-Shel
/’ Irc vve
use models in probabilistic framework to guide NDE el =
* Perform probabilistic studies: (1) full cumulative T srellcoimses

Cross-Sectional View of LPV

distribution function and (2) global sensitivity analysis
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* Compute probability of failure based on limit-state
function: g = K;c — K; = 0

— ps=Plg < 0] =P|K;c — K; < 0| = P[K;¢ < K]

Head-to-Shell
Circ Weld

— Integrate joint PDF (fx) of all random variables (X) over
failure region: py = fg<0 e L e (el |1 [ N I S omferent iy o A QB e
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Vessel Materials and Geometry

" 4-layer (| inner + 3 shell layers) and 14-layer (| inner + |3 shell layers) vessel:

Inner layer rolled from | 143 Mod. steel

Shell layers rolled from 1146 steel

Head fabricated from A-225 Grade B FBX steel

* Uncertainty in inner shell and head thickness
estimated based on construction records

" Variation in vessel efficiency estimated from pi
tape measurements of other vessels in fleet

" Fracture toughness determined experimentally
— ASTM E-1921 - cleavage toughness model

— Uncertainty in cleavage transition to upper shelf

9

SwRI

use lower of cleavage or upper shelf toughness

Manufactured in 1963 by Chicago Bridge and Iron Company
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Probabilistic Framework
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Legend

Model driven by
NESSUS

Model input/output

Risk assessment

NESSUS Probabilistic Framework

Inputs:

Service stress

Weld residual stress
Total thickness

Initial crack depth (a,)
Initial crack shape (a/c)
da/dN model (C, n)

- Width of plate (W)
Offset (B)

« Toughness (K,.)
Elastic modulus
Yield stress

L]

(B) NASFLA FAD

criteria Output: Critical crack size, FAD
Sizes of Interlayer Axisymmetric Stress Intensity Toughness vs.
J— I
4 Gaps LPV Model Factor (K;) SIF (K;c <K)) [N
—— Failure py)
> o
Linner effic Assessment g '
Diagram >
0
. . n |
Vessel Efficiency Gap Closure Service Stress Critical o
X c c c NASGRO Crack Si (7))
and Basic Geometry Tool Gradientin Weld 8 Tack Size
‘? o® |
g 3
: a
Weld Residual 2 ol Drobabil .
. it1al Flaw oughness robability |
Stress Gradient Size (K;0) of Detection
Gap Closure Tool Parametric Axisymmetric LPV Model (A) NASSIF (C) NASCCS
Inputs: Inputs: Inputs: Inputs:
+ Diameter * Gap distribution -+ Inner layer mod.| | * Service stress gradient * Service stress
« Pressure « Diameter « Shell layer mod.| | + Weld residual stress grad. - Weld residual stress
Input Variables for « Gap type « Pressure + Head modulus + Total thickness of vessel « Total thickness

each Model and
the Model
Response:

» Efficiency

* Number of layers

* Inner layer thickness
+ Shell layer thickness
* Elastic modulus

Output: Gap sizes

« Number of layers
» Inner layer thick.
« Shell layer thick.
» Head thickness
» Circ. weld width

Output: Service stress gradient

]

Circ. weld mod.
Friction

+ Crack depth (a)

+ Crack shape (a/c)

« Width of fracture plate (W)
« Offset from plate center (B)

Output: Stress intensity factor

+ Initial crack shape (a/c)
» Width of plate (W)

» Offset from center (B)
» Toughness (K,

Output: Critical crack size




Gap Closure Tool

" Excel-based tool developed at NASA'’s
Marshall Space Flight Center

— Inputs: basic vessel geometry, linear
elastic material properties, vessel
efficiency, internal pressure, and

through-thickness distribution of gaps

Outputs: through-thickness size of

interlayer gaps and closure pressure

Uses thin walled vessel theory and

Excel’s Goal Seek function

* Uniform through-thickness
distribution of gaps used in this study
—> conservative assumption

Input basic vessel

parameters
| TN W NN . S . e e e - -
{Vessel d inner 20 in ‘I Mono Equivalent Layered Response
I t total 1.750 in. | P (psi) oi (ksi) oo (ksi) C (in) D (in) D (in)  Efficiency
l E 29500000 |psi | Initial 0 0 0 73.8274 23.5 23.5053
| # Layers 6 | [Closure| 825.00 5.16 4.33 85.00 | From P
I MAWP 5500 psig l Final | 5500.00 34.40 28.90 73.8947 | 23.5214 | 23.5235
\_.gaﬁpiﬂglypi* S N __I delta: 0.0673 0.0214  0.0182 85.00 From D
Target Efficiency 85 M:acro | Given a target efficiency’ ,I— ===
:4--— computes equivalent layer I Al
gapping 3D oa (ksi) P actual
Layer # T layer Gap R Layer T closure P closure R Mono Cclosure D Closurn! 0 0
0 0.5 0.000530 10.251 0.500| 76.396 87.54 10.250 65.977 21.001 : 0.230 87.54
1 0.25 0.000530 10.626 0.750| 113.331 128.17 10.375 67.551 21.502: 0.567 215.71
2 0.25 0.000530 10.877 1.000| 149.476 166.85 10.500 69.125 22.003: 1.005 382.56
3 0.25 0.000530 11.127 1.250| 184.833 203.63 10.625 70.699 22.50&: 1.540 586.24
4 0.25 0.000530 11.378 1.500| 219.602 233.76 10.750 72.273 23.005 : 2.167 825.00
5 0.25 0.009103 11.637 1.750| 4376.813 | 4675.00 10.875 73.901 23.524 : 14.450 | 5500.00
5] 0 0.000000 11.762 1.750| 0.000 0.00 10.875 73.901 23.52&; 14.450 | 5500.00
31 0 0.000000 11.762 1.750| 0.000 0.00 10.875 73.901 23.524- 14.450 | 5500.00
Proof 0 0.005355 11.767 1.750| 2581.831 | 2750.00 10.875 73.935 23.534 ‘k21.6?5 3250.00
Py rry [ \h B N _§ B
f # |Multiplier|* Gapping Type ) A,l
I 1 1 uniform 1 f"
I 2 0.5 linear change through thickness | ‘¢’
: 3 0 inner only (most conservative for inner layer) : Calculates pressu re-consistent
I ;1 0.8 linear change through thickness I stress history fOr a" |ayers
| o e N 4

Adjustable presumed

gap distribution
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Parametric Axisymmetric LPV Model

" Linear elastic finite element model in Abaqus Axial Stress Mesh -:
Path Transition |

— Parametric = capable of simulating all LPVs in fleet

I
I
: Mesh Hoop Stress
: Transition Path

— Axisymmetric = takes advantage of axisymmetric
nature of circumferential welds to reduce order of

simulation and computational cost

— Inputs: vessel geometry, material properties, service

pressure, gap sizes from Gap Closure Tool

— Outputs: linear elastic stress field during service

(univariate stress gradient extracted along path)
" Limitations of the model:

— Does not consider effect of longitudinal welds

— Does not include weld backing plate in geometry

® MECHANICAL ENGINEERING
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Thermo-mechanical Weld Simulations

" Multi-pass weld simulations of 4- and |4-layer H-S welds performed by Engineering Mechanics

Corporation of Columbus usingVFT™ (Virtual Fabrication Techno

logy) code'

— Sequentially coupled thermo-mechanical FEA —> elastic-plastic VRS field prediction

— Include hydro test at 1.5 times max pressure in simulation = univariate stress gradient extraction after hydro

* Temp-dependent stress-strain curves determined experimentally for materials in vessels

* Temp-dependent CTE and stress-strain curves (yield stress) are ra
" Generated 25 WRS

140

600

gradients to train 120 |
surrogate model 100
5 807
— PCA-based model s T Z ol
. | G % 40l

— Predicts WRS variability B 3 standard deviations =

— Reduces computational

-20 R

cost vs. FEA ,
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T 20t

ndom variables
14-layer Weld Residual Hoop Stress

="

variation in material properties

- large variation in hoop stress

0 0.5 1 1.5 2 2.5 3 3.5 4
Vessel Through-Thickness (in)

4.5

Plastic Strain - 3
0 Temp-dependent stress-strain curves for A-225 Gr. B
1User Manual for VFT - Virtual Fabrication and Weld Modeling Software by Engineering Mechanics Corporation of Columbus (EMC2), Battelle Memorial Institute and Caterpillar Inc., April 2016. SWri.or
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Fracture Mechanics Model

= Used NASGRO® fracture mechanics software? to perform LEFM

* Model reference flaws as semi-elliptical surface crack in flat plate (SC30 weight function

solution)
SC30

" |n this study:

v S0
—  Width of plate (W) = "4 vessel circumference < w\’? TTSi(X}
Fift
— Thicl f plate (t) = thicl f I o~
ickness of pla é () ickness onesse \___@“ 4;| X
— Cracks centered in the plate (B = —) el
2 — t —»
= Univariate service stress and VRS
superimposed to create stress field for *ﬂ“ _
computing SIF N // W
= NASGRO® capabilities include fatigue crack 2 xf’,i
ki //// By

growth, FAD, and CCS

0 MECHANICAL ENGINEERING
2NASGRO® Fracture Mechanics and Fatigue Crack Growth Analysis Software, Version 9.0, NASA Johnson Space Center and Southwest Research Institute, May 2018. SWri.or
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Legend

Model driven by
NESSUS

Model input/output

Risk assessment

NESSUS Probabilistic Framework

Inputs:

Service stress

Weld residual stress
Total thickness

Initial crack depth (a,)
Initial crack shape (a/c)
da/dN model (C, n)

- Width of plate (W)
Offset (B)

« Toughness (K,.)
Elastic modulus
Yield stress

L]

(B) NASFLA FAD

criteria Output: Critical crack size, FAD
Sizes of Interlayer Axisymmetric Stress Intensity Toughness vs.
J— I
4 Gaps LPV Model Factor (K;) SIF (K;c <K)) [N
—— Failure py)
> o
Linner effic Assessment g '
Diagram >
0
. . n |
Vessel Efficiency Gap Closure Service Stress Critical o
X c c c NASGRO Crack Si (7))
and Basic Geometry Tool Gradientin Weld 8 Tack Size
‘? o® |
g 3
: a
Weld Residual 2 ol Drobabil .
. it1al Flaw oughness robability |
Stress Gradient Size (K;0) of Detection
Gap Closure Tool Parametric Axisymmetric LPV Model (A) NASSIF (C) NASCCS
Inputs: Inputs: Inputs: Inputs:
+ Diameter * Gap distribution -+ Inner layer mod.| | * Service stress gradient * Service stress
« Pressure « Diameter « Shell layer mod.| | + Weld residual stress grad. - Weld residual stress
Input Variables for « Gap type « Pressure + Head modulus + Total thickness of vessel « Total thickness

each Model and
the Model
Response:

» Efficiency

* Number of layers

* Inner layer thickness
+ Shell layer thickness
* Elastic modulus

Output: Gap sizes

« Number of layers
» Inner layer thick.
« Shell layer thick.
» Head thickness
» Circ. weld width

Output: Service stress gradient

]

Circ. weld mod.
Friction

+ Crack depth (a)

+ Crack shape (a/c)

« Width of fracture plate (W)
« Offset from plate center (B)

Output: Stress intensity factor

+ Initial crack shape (a/c)
» Width of plate (W)

» Offset from center (B)
» Toughness (K,

Output: Critical crack size
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Preliminary Results

Cross-Sectional View of LPV

—

Inner Layer

__ Shell
Layers

Head-to-Shell
Circ Weld

W Axially oriented, Hoop loaded flaw

| Circumferentially oriented, Axially loaded flaw

Reference Flaw Sizes

a=0.25in,a/c=1

a=0.2in,a/c=2/3
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4-layer Vessel Stress Gradients

N inal St Plot w
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*Weld geometry differences have minimal effect on stress gradient predictions

*Stress predictions are more sensitive to gap size and through-thickness distribution 0 o5 1 15 2 25 3 35 4 45
Vessel Through-Thickness (in)
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Inner Layer

Shell
Layers
WV Axially oriented, Hoop loaded flaw

5 AXi a-l I'y O ri e nted ’ h OO P I Oad ed fl aW: I Circumferentially oriented, Axially loaded flaw

Sensitivity Studies

Head-to-Shell
Circ Weld

— Variability in SIF is primarily the result of variation in WRS

» Circumferentially oriented, axially loaded flaw:

— Variability in SIF is primarily the result of variation in WRS and
vessel efficiency = interlayer gaps
* Flaw size did not have a significant effect on sensitivity analysis
= Sensitivity analysis more dependent on flaw location
— Flaw on shell-side is more sensitive to efficiency (interlayer gaps)
— Relative influence of weld material properties is dependent on
flaw location

» Thickness and weld width variation have minimal contribution
to SIF variability

m Main Effects
m Total Effects

2
203

14 14| 4 14

4 4

4

14

H-S [nner Shell Vessel
Layer Layer |Efficiency
Thickness|Thickness

Axially Oriented, Hoop Loaded Flaw
a=0.25in,a/c=1

0.9 ®m Main Effects H
0.8 m Total Effects [

20 Axially

2
203

4 4 144 14| 4

4 14| 4 14 14

Weld Head H-S Inner Shell Vessel

Residual |[Thickness| Width | Layer Layer [Efficiency
Stress Thickness|Thickness

Circumferentially Oriented, Axially Loaded Flaw
a=0.2in,a/c=2/3
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Stress Intensity Factor vs.Toughness

= NESSUS® used to generate CDF of K, - converted to
PDF to compare to K in heat-affected zone

SwRI

Monte Carlo sampling used to perform integration:

Pr=J, oI Fx(x)dx

4-layer vessel

— "a” crack tip probability of K, > K = 0.027
— “c” crack tip probability of K, > K = 0.0002

|4-layer vessel

— Separation of K; and K;c PDFs: probability of K, > K-~ 0

Predictions largely driven by uncertainty in WRS
models/data and assumptions of fracture toughness

variation

Probability Density

Probability Density

0.18

0.16 |
0.14 ¢

e
—
b

0.1

0.18

0.16 1
0.14

e
—
o

0.1r

Fracture Toughness (K, )

——SIF "a" crack tip
SIF "c" crack tip

_Circumferentially oriented,
| Axially loaded flaw
(a=025in,alc=1)

)\

4-Layer
Vessel

Axially oriented, 1
<+«— Hoop loaded flaw |
(a=0.2 in,a/c=2/3)

0 10 20 30 40 50 60 70 80 90

ksi 4/in

Fracture Toughness (K, )

SIF "a" crack tip
SIF "c¢" crack tip

Axially oriented,
<+— Hoop loaded flaw
(a=02 in,a’/c=12/3)

Circumferentially

Axially loaded flaw
(@=0.25 in,alc=1)

14-Layer
Vessel

oriented,

0 10 20 30 40 50 60 70 80 90

ksi /in
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Conclusions

* Developed probabilistic framework to predict fracture risk in regions of interest

— Includes models for WRS, service stress, SIF, and fracture toughness
— Model development using V&V approach
— Framework can utilize fatigue crack growth and failure assessment diagram capabilities in NASGRO®

* Probabilistic studies performed to predict variability in SIF and global sensitivities

— Results are preliminary = used to demonstrate framework and guide resource allocation
— WRS and vessel efficiency variation and uncertainty are largest drivers of SIF variability
— Considerable variation and uncertainty in fracture toughness as well

* Further development and evaluation of this probabilistic framework are underway as one
part of NASA’s strategy to evaluate safety of LPV fleet

o MECHANICAL ENGINEERING
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4-layer Vessel Geometry and

Loading/Boundary Condition (BC) Information

Design Distribution | Parameters
Geometry
Head B, e+ | a=1.056
Thickness '3l tntfoiny b=1.1088
Diameter 24 1n deterministic
Length? 118 in deterministic
Inner Layer N : a=0.50
Thickness Pl uniorn b=0.54
Shell Layer b : a=0.25
Thickness Nkl Ui S 0=0.29
a=7.8207
Efficiency > 50% beta =3.0674
L=50 U=100
H-S Weld : \ ! a=0.7437
Width 0.875 In uniform b=1 0063
Loads/BCs
Pressure® 3500 psi | deterministic
Coefficient of b
. 0.7 deterministic
Friction

dtangent-to-tangent vessel length

bmaximum allowable working pressure (MAWP)
‘minimum

dvariable range: -0, +5% from design

®variable range: £15% from design

E =295 x 107 psi
v=0.3

| 4-layer Vessel Geometry and

Loading/Boundary Condition (BC) Information

Design Distribution | Parameters
Geometry
Head : : a=3.699
Thickness S99 UNTOT b=3.8840
Diameter 60.25 in deterministic
Length? 720 In deterministic
Inner Layer 0.46875¢ uhitdfm a=0.46875
Thickness in b=0.50875
Shell Layer 0.28125¢ uniform a=0.28125
Thickness in b=0.32125
a=7.8207
Efficiency > 50% beta =3.0674
L=50 U=100
H-S Weld . : a=0.9031
Width 1.0625 In uniforme b=12219
Loads/BCs
Pressure® 5000 psi deterministic
Coefflu_ent ol 0.7 deterministic
Friction

3tangent-to-tangent vessel length

bmaximum allowable working pressure (MAWP)
‘minimum

dvariable range: -0, +5% from design

®variable range: £15% from design

MECHANICAL ENGINEERING
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Surrogate Modeling Approach

" Principal component analysis (PCA) technique used to create
surrogate model for service & VRS stress gradient

— Predicts stress at multiple points (gradient) vs. single location
— PCA reduces dimensionality of model output?

— Greatly reduces computational time vs. FEA

" Surrogate Model Development Procedure:

2. PCA used to express variation in gradients as linear combination of

3.

Run FE model based design of experiments to generate training data

shape vectors = retaining only most important shape vectors

reduces dimensionality

Response surface to predict individual principal component score
(eigenvalue) based on inputs = then reconstruct stress gradient as

linear combination of most important shape vectors

®
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Nominal Contour Plots (with mesh shown)

= Axial stress:

Axial Stress Hoop Stress
— Largest stress at inner surface o e T Hoop (oD
Axial (psi) EEEEE R T i 45000
— Gaps result in bending stress < w200 B i B 22000
Q 46667 D HiETE | 30000
> s B . | o
» Hoop stress: S Lig67 | 15000
< 1 |
— Largest stress at outer surface sgee o
:70000 i 3 - -15000
— Gaps result in stress
. Hoop (psi)
concentrations e , 130000
" Weld geometry differences have . g o sl
o o 3 70000
minimal effect on stress gradient & 3o 121323;?6%3;
predictions <+ | |B S - 258%
p— = - 22900 '
= Stress predictions are more L
-80000
sensitive to interlayer gap size —
and through-thick distribution
o MECHANICAL ENGINEERING >
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Mesh Convergence

6-Layer Vessel Convergence Study

Solution Error (%)

6.0%

5.5%

5.0%

4.5%

4.0%

3.5%

3.0%

2.5%

2.0%

1.5%

1.0%

0.5%

0.0%

10

60
- =@ -~ Radial Stress: Head-Shell
—®— Hoop Stress: Head-Shell /. 55
---@-++ Axial Stress: Head-Shell / ’
Radial Stress: Shell-Shell / : 50
Hoop Stress: Shell-Shell / ’
Axial Stress: Shell-Shell / ’ 45
--@-- Radial Stress: Far Field P
. : = 40
45 elementslln was —@— Hoop Stress: Far Field o
---@--- Axial Stress: Far Field P 35
seleCted because the —& - Simulation Run Time .
solution error < 1.5% and /-"’ 30
simulation time < 5 minutes e
25
20
15
10
5
0
160

Element Line Density (elements/in)

Simulation Run Time (min)

*Solution uses element line density of 200 elements/in
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Axisymmetr

4-Layer Vessel

Far-Field
Gradient

14-Layer Vessel

Stress (ksi)

-0.5

Stress (ksi)

¢ Model Verification

Radial Stress (Far-Field)

T T T T T T T T T
o
Monolithic Numerical Solution /,’
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