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Background

• Priming is the process of filling an evacuated pipe line.
– For safety reasons, storable propellants such as hydrazine are 

separated from thrusters by one or more valves.
– Once in orbit, the valve is opened, and the evacuated line is 

filled with propellant.
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Picture Credit: Moore et al., JSR, 2018.



Background

• The velocity change when the fluid hits the dead end can 
cause a brief pressure surge.
– The pressure rise can be as high as:

∆𝑃𝑃 = 𝜌𝜌𝜌𝜌∆𝑉𝑉

– For example, if liquid water is suddenly stopped from 10 m/s, the 
pressure rise could be:

∆𝑃𝑃 = 1000
𝑘𝑘𝑘𝑘
𝑚𝑚3 1500

𝑚𝑚
𝑠𝑠

10
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= 15 𝑀𝑀𝑃𝑃𝑀𝑀

• Accurate prediction of maximum pressure aids in the 
design of a propulsion system that is not too 
conservatively heavy.
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Control Volume 
Analysis

Finite Volume 
Analysis

GFSSP

• The Generalized Fluid System Simulation Program 
(GFSSP) is a general-purpose computer program to 
calculate pressures, temperatures, and flow rates in a 
fluid network.

• Fluid networks are discretized into nodes and branches.
– Mass and energy equations are solved in the nodes.
– Momentum equation is solved in the branches.
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Georgia Tech Experiment
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Ph.D. dissertation by N. H. Lee, 2005

Test series varied:
• Reservoir pressure:  2 to 7 atm
• Gas volume proportion: α = Lg/LT

D = 1.025 in



Georgia Tech Experiment
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• Nodes 1-11 initially contain liquid water at 102.9 psia.  
• Nodes 12-20 initially contain air (as an ideal gas) at 14.7 psia.
• A Fortran user subroutine fixes all temperatures in model at 60°F.  Air 

temperature increase by compression is neglected.



Georgia Tech Experiment
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• Predicted peak pressure is 20% higher than experimental.



Georgia Tech Experiment

TFAWS 2019 – August 26-30, 2019 8

• Maximum pressure increases when trapped air length is decreased:
• α = 0.448, Pmax = 250 psia
• α = 0.195, Pmax = 450 psia



Hughes Aircraft Experiment
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Prickett et al., 1992

• Test series varied reservoir pressure:  30 to 120 psia
• Pipe diameter:  0.25 in.
• Pipe downstream of latch valve (LV) is initially evacuated.



Hughes Aircraft Experiment
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• GFSSP does not understand “empty”, so the evacuated line is initially filled 
with ideal gas air at low pressure.



Hughes Aircraft Experiment
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• Reported maximum pressure is 2350 psia in the dead end at 0.17 sec.
• GFSSP predicts 2279 psia at 0.176 sec.



Hughes Aircraft Experiment
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• Decreasing initial air pressure of evacuated lines increased the maximum 
pressure, although there was little change when Pair < 1 psia.



Hughes Network Experiment
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Prickett et al., 1992

• Reservoir pressure:  240 psia
• Pipe diameter:  0.25 in.
• R1 is the suddenly opening valve.
• R2 is a pair of valves that close quickly during priming event.



Hughes Network Experiment
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• Evacuated nodes are modeled as ideal gas air initially at 1 psia.
• Pressure data available at nodes 15 and 28.



Hughes Network Experiment
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• Maximum pressure in lower branch is 1837 psia at node 28.  Measured pressure
at this location is 1800 psia.

• Maximum pressure in upper branch is 3500 psia at node 9.  No test data were 
reported for this location.



Penn State Experiment
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Moore et al., JSR, 2019

• Reservoir pressure:  1.5, 2.2, or 2.9 MPa
• Line lengths:  0.51 or 2.0 m
• Line diameters:  6.5, 9.5, or 12.7 mm
• Flow Control Valve Cv:  0.037, 1.5, or 4.0
• Initial air pressure in line:  4, 15, 101 kPa



Penn State Experiment
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Three valve opening 
profiles were studied:
• Linear: 𝐴𝐴 = 𝑘𝑘𝑘𝑘
• Quick open:  𝐴𝐴 = 𝑘𝑘 𝑘𝑘
• Slow open:  𝐴𝐴 = 𝑘𝑘𝑘𝑘2



Penn State Experiment
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• Predictions are reasonable for cases with FCV Cv = 0.037 and 1.5.
• For cases with Cv = 4.0, GFSSP consistently over-predicts peak pressure.
• No clear relationship seen between GFSSP prediction accuracy and tank 

pressure or initial line pressure.  



Penn State Experiment
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• Discretization study found that predicted peak pressure values slowly converged 
as more nodes were added to model.

• Valve history profile (linear or parabolic) usually had little effect on the peak 
pressure, and only a small effect on predicted time of peak pressure.

Cv = 1.5, D = 12.7 mm, L = 2 m
Ptank = 2.9 MPa, Pinit = 101 kPa
Pmeas = 4510 kPa at 0.172 sec

Cv = 1.5, D = 9.53 mm,  L = 2 m
Ptank = 2.2 MPa, Pinit = 15 kPa
Pmeas = 28,140 kPa at 0.106 sec



Penn State Experiment
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• However, choice of valve opening profile did have an effect on those runs where 
the valve was not completely open before the pressure surge time.

• Shorter line with narrow-or-medium diameter.
• Moderate-or-high tank pressure
• High Cv valve with slow opening time (0.075 s)

Cv = 4, D = 9.53 mm, L = 0.51 m
Ptank = 2.2 MPa, Pinit = 101 kPa
Pmeas = 11,290 kPa at 0.055 sec



Penn State Experiment
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• Penn State paper did not provide line length and minor losses between tank and 
flow control valve.

• Adding an arbitrary line length between the boundary and the valve decreased 
peak pressure, but not enough to match data.

Moore et al., JSR, 2019Cv = 4, D = 9.53 mm, L = 2 m
Ptank = 2.2 MPa, Pinit = 15 kPa
Pmeas = 14,080 kPa



Discussion
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• GFSSP’s predictions of peak pressure during a priming event are usually 
either accurate or too high.

• Models of the Penn State Experiments stress the importance of the valve 
opening time and profile shape to the peak pressure prediction when a 
slow-opening valve is matched with a small volume to be filled.

• Future work:
• More complex fluid networks
• Effect of a cavitating venturi in the line
• Implicit vs. explicit solution of the conservations equations
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