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Purpose & Objective

• Historically, Cryogenic Tank Pressurization is either modeled 
by a single node using Fluid System Code (GFSSP & ROCETS) 
or by high fidelity Navier-Stokes code (FLUENT or CFX).

• Use of multi-node modeling using Fluid System code has 
not been explored. The main purpose of this paper is to 
describe a multi-node system modeling of cryogenic tank 
pressurization in GFSSP

• In recent years, a test program has been conducted at 
NASA/MSFC to measure boil-off of cryogenic liquid 
propellant in a flight tank to support United Launch 
Alliance’s IVF (Inter Vehicular Fluid) program where boil-off 
propellants are used to pressurize the tank

• The model results have been compared with test data
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Program Structure & Numerical Scheme



Review of Tank Pressurization Model
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• In Liquid Propulsion System, accurate modeling 
of Cryogenic Tank Pressurization is needed to 

a) Ensure safe operation of the turbo-pump
b) Estimate amount of pressurant requirement
c) Estimate boil-off of Liquid Propellant

• Cryogenic Tank Pressurization model must 
account for

a) Heat Transfer between ullage and wall
b) Heat Transfer between ullage and liquid propellant
c) Evaporative mass transfer between liquid propellant and 

ullage



Review of Tank Pressurization Model
Zero Dimensional Model
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Zero Dimensional Model Results
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C ratio of wall to gas thermal capacitance
p1 - p8 fitted constants (dependent on propellant)
Q ratio of ambient heat input to effective thermal capacitance of gas
S modified Stanton number
T0 pressurant inlet temperature
Ts propellant saturation temperature at initial tank pressure

• Collapse Factor Correlation (Epstein)
− Ratio of actual pressurant consumption to an ideal pressurant consumption 

which assumes no heat or mass transfer

where:
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• Pressurization Model Validation
− GFSSP Collapse Factor Prediction: 1.46
− Epstein Correlation Collapse Factor Prediction: 1.51

 GFSSP Prediction Discrepancy: -3.3%

Zero Dimensional Model Validation
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One Dimensional Self-Pressurization Model of Cryogenic Tank
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Results of Self-Pressurization Model
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Integrated Vehicle Fluid System Overview
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Test Program at MSFC
Flight Tank provided by ULA
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Two Dimensional Axisymmetric Model of 
Tank Pressurization 

Working Fluid: Nitrogen, Tank Height ≈ 10 ft, Tank Dia ≈ 10 ft

Tank was tested at 75% and 45% Fill Level
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Heat and Mass Transfer Model at 
Liquid-Ullage Interface

Qnet

QUI = hUIA(TU–TI)

QIL = hILA(TI–TL) 

Evaporative Mass Transfer:

Heat Transfer Coefficients using Natural Convection

C = 0.27, n = 0.25, KH = 0.5

Net Heat Transfer Rate: 
Qnet �= 𝑚̇𝑚[𝐶𝐶𝑃𝑃,𝑙𝑙 𝑇𝑇𝐼𝐼 − 𝑇𝑇𝐿𝐿 + ℎ𝑓𝑓𝑓𝑓
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Results for 75% Fill Level
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Results for 45% Fill Level
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Ullage Temperature
Boil-off
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Temperature contour /stream traces



Conclusions
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• This paper demonstrates the feasibility of system level modeling of tank 
pressurization using multiple nodes. 

• The ullage of a flight tank has been modeled using 25 nodes and 40 
branches where mass and energy conservation equations were solved at 
the nodes and momentum equations are solved at the branches. 

• Gravity, heat and mass transfer at the liquid vapor interface, and heat 
transfer between solid and fluid are accounted for in the governing 
equations. 

• The model results have been verified by comparing with test data.
• The advantage of using multiple nodes in a system level code is that it 

allows prediction of recirculation and stratification with a fraction of the 
computational cost of a high fidelity Navier-Stokes code. 
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