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27 Additive Manufacturing A\

Additive Rocket Engine Components

=

» Advantages
» Mass Reduction
» Part count reduction
* Reduced assembly time
* Reduced manufacturing costs

« Reduced lead time Hot-fire testing of an Aerojet Rocketdyne RL 10C-X
prototype engine with 3-D printed core components.
» Challenges [1]

 Still a maturing technology

» Small geometric features and
passages/Large scale parts

» Manufacturing imperfections

.........
------

» Several successful test programs with i, Bt
AM parts. Subscale Integral injector
manufactured with SLM. [2]

SLM produced integrated nozzle

film coolant ring designed and tested
at NASA. [3]

1. “3-D Printed RL10C-X Prototype Rocket Engine Soars Through Initial Round of Testing,” Aerojet Rocketdyne Press Release,
www.rocket.com/article/3-d-printed-rl10c-x-prototype-rocket-engine-soars-through-initial-round-testing, 2019.

2. Soller, S. et. al., “Design and Testing of Liquid Propellant Injectors for Additive Manufacturing,” 7t European Conference for Aerospace Sciences,
2017.

3. Gradl, P., et. al. “Additive Manufacturing of Liquid Rocket Engine Combustion Devices: A Summary of Process Developments and Hot-Fire Testing
Results,” 54t AIAA/SAE/ASE Joint Propulsion Conference, 2018.
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Objective

 Assess the manufacturer-to-manufacturer variability in flow
discharge coefficients of identical parts with small flow passages.

Scope:
* Investigate two internal geometries:
» 1) Radial-Fed Annulus
 2) Cavitating Venturi

Investigate subtractive (baseline) and additive manufacturing (11
vendors) .

Cold flow (water) parts over relevant operating regimes
Perform detailed measurement uncertainty analysis

Determine and compare differences in discharge coefficients among
the manufacturing methods
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PRC Injector Spray Facility

Non-Reactive, cold flow environments for the
study of injectors and injection processes in liquid
injection devices.
» Pressurized Spray Chamber
e 18" Internal Diameter x 72” Tall
e 500 psig Max Pressure
e Four - 6” Diameter Optical Access Ports

o Atmospheric Spray Bench
* Flow Bench

 Liquid simulant flow rates up to 2 lbm/s (water
and water based solutions)

o Gas flow rates up to 1 Ib/s (Nitrogen/Compressed
Air)
» Optical Diagnostic Access:

» High Speed or Standard Video
e Laser Diagnostics (PIV, PDPA)

e Common DAQ system
* High Speed 1Ms/s
» Integrated adjustable Low Pass Filtering
» Temperature/Static Pressure (1000Hz) 5
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e 45 Injectors

Injector Specifications

» Operating Conditions

e Atmospheric Back Pressure
* Flow Geometry 1
75 psig to 550 psig
0.51b/s to 1.6 Ib/s

* Flow Geometry 2
50 psig to 1550 psig
0.05 Ib/s to 0.3 Ib/s

11 Manufacturers using SLM printers

4 Design Variants on the same build plate

Inlet
Orifices

Flow
Annulus

Flow Geometry 1:
Radially-Fed Annulus

Exit to
Atmosphere

A\
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Inlet

|

Exit to
Atmosphere

Flow Geometry 2:
Cavitating Venturi

Flow Geometry 1:

Flow Geometry 2:

Radially-Fed Annulus Cavitating Venturi
Radial Hole ID Annulus ID AnnulusOD | Flow Duct ID Venturi ID
Design Variant # oLlslzgllal

(% of Baseline) (% of Baseline) |(% of Baseline)| (% of Baseline) | (% of Baseline)
1 100 168 100 100 100 100
2 100 168 111.2 100 100 105.3
3 115.8 168 107.5 111.9 100 110.5
4 157.9 67 103.7 100 100 115.8

Baseline 100 168 100 100 100 100

Venturi
Restriction
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Pressure
Supply —]

Upstream
Pressure

Vent 0.01" Venturi Geo. 2
% >~ Sample
()
e Holder/
Manifold

T

|

/ |

Upstream |
0.26" Venturi Pressure ' Cat(_:h
Geo. 1 Basin

e \enturis shared common DP Transducer

* \enturi manually selected based on Flow
rate

* Pressures measured at 1000Hz and
averaged over 7 seconds of steady state
flow
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Venturi Calibration
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Establish single Discharge Coefficient, C,,
for each venturi

 In-line, end-to-end calibration

» Timed collection at steady flow
» 18 setpoints (0.10 venturi)
o 12 setpoints (0.26 venturi)

Calculate Setpoint Discharge
Coefficient (Cy yen)

v

Calculate Setpoint Discharge —
Coefficient Uncertainty

(UCd vent)
¢

Calculate Average Cd and
mean Cd Uncertainty for
Venturi

m = mass of collected water
t collection time

% d, =venturi throat diameter
Ca = d, = venturi inlet diameter
" 2pAP T p = density
i 2 AP = ventrui pressure drop
(”it ) (”il ) (inlet to throat)
o =standard deviation
tq = student t distribution
Systematic Uncertainties (B)
ac,  \> [(oc, \° [(ac; \° [ocy, 2
BCd_sp _\/<%Bm> +<73t> + %Bp + aA—PBAP

1.96acd_sp>2

2
UCd,sp = (BCd_sp) +< N l
sample

1
Ca vent = ﬁz Cd_sp

2 2
= Z ( Ucd—SP ) + t“ﬁv * O-Cd vent
Nsetpoint \ Nsetpoint

UCd vent
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0.100” venturi
Cy=1.015
Uy =2.7%

0.02 Lb/s to 0.3 Lb/s

0.260” venturi
Cy=0.984
Uy =4.6%

0.1 Lb/sto 2.1 Lb/s

Larger uncertainty at low mass
flow due to low AP

Cd Venturi

Ve
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o D Venturi Calibration
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= «+ = \ean Cd

= = = = [Jncertainty of Mean Cd

-’fs::—:&:z5:-:5}:-%—::%-:ie:-:ﬁ:}::g::szH;}—:::{-:s

0.1 0.15 0.2 0.25 03
Mass Flow [Lb/s]

0.6 0.8 1 1.2 14 16
Mass Flow [Lb/s]

10
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- Testing Procedure SEEN

Load injector into housing

v
Set system pressure to

lowest setpoint
v

A

Wait for steady state flow

v
Trigger Labview
v

Take data for 7 seconds

\ 4

Set system pressure for next
setpoint

11
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Mass Flow [Ib/s]

‘- B
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Flow Geometry 1
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Noted “Clustering”: 4 groups

Wide range of mass flow variation at given inlet pressure
2 significantly lower performing test articles
Discontinuous trend for Manufacturer 11

A\

@ Manufacturer 1
O Manufacturer 2
O Manufacturer 3
Manufacturer 4
® Manufacturer 5
A Manufacturer 6
A Manufacturer 7
X Manufacturer 8
B Manufacturer 9
+ Manufacturer 10
® Manufacturer 11

@ Baseline

12
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Mass Flow [Ib/s]
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Flow Geometry 1
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Linear trends with square root of pressure
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A Manufacturer 7
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B Manufacturer 9
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@ Baseline
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Calculate mass flow (1) at
each setpoint

v

Calculate mass flow
Uncertainty at each setpoint

(Urhsetpoint )

m = mass flow rate
d = venturi throat diameter
d; = venturi inlet diameter
p = density

P =ventrui pressure drop

(inlet to throat)
C4 yent= venturi discharge

‘

Calculate Cd for injector at
each setpoint (Cy )

v

/

Calculate Cd for injector
Uncertainty at each setpoint

(UCd _sp)

Urhsetpoint = <a Cd vent

coefficient
P,, = inletpressure
P.,, = vapor pressure
. 2 . 2 . 2 2
om om om 1.960;
Ug ==, ) +opUsp | + [ e
dvent ap aAP N
rhsample
m .
Cy P;,, = inlet pressure

Atnroaty 2P (Pin — Feav) P.,, = vapor pressure

om

v

Calculate Average Cd and
mean Cd Uncertainty for
each test article

i

UCd inj

Ucd_sp= < d.m]

2
0Cq inj
B B
p) +< 0P

2
) + (G

2 " 2
Cd inj setpoint) + a,v Ucd inj setpoint
Nsetpoint v Nsetpoint

1
Ca in ji= Nz Cd_sp

_ 2(”

14
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Ty Design Variant 1

0.25
¢ I Test Article with
0.2 . .
¢ $ T . « discontinuous
} X 1 } mass flow trend
5 0.15 'i —
L}
-
=
O 01
— Test Articles with
— significantly lower
0.05 mass flow rates
0
AR A I T
W X L =, ) L L ) X L o ¥
Q @ @ @ @ e @ @ @ @ £ =
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» Uncertainty ranged from 3% to 6% for 9 of the test articles
o 12%-53% Uncertainty for 3 of the test articles

A\
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Uncertainty Range: 4%-13%
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Calculate uncertainty of
average Cd for all
manufactures for a given
design variant and flow path

2 2
UCd inj setpoint ta;V O-Cd inj setpoint
U, . = —dinjsetpoint |
Cdinj N . N
setpoint setpoint

Calculate average Cd for all
manufactures for a given
design variant and flow path

1
Ca = Nz Ca_inj

1.0

. S .

0.6
05 ® Geometry 2

0.4 A Geometry 1

Mean Cd Injector

0.3
0.2 A

0.1

0.0

Design Variant 1 Design Variant 2 Design Variant 3 Design Variant 4

o (Geometry 1 uncertainty ranged from 10% to 14%
o (Geometry 2 uncertainty ranged from 6% to 10% 17
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Calculate average Cd for all
design variants for a given
manufacturer and flow path

A 4

Calculate uncertainty of
average Cd for all design
variants for a given
manufacturer and flow path

A 4

Normalize injector Cd for
both flow paths

1
Cq = Nz Ca inj

Nsetpoint

2 2
U _ UCdinjsetpoint + ta'v O-Cdinjsetpoint
Cainj — N .
setpoint

_ Cainj

Cd norm —
Cd baseline

18
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Results by Manufacturer
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1.0 %

) §}§§§§ {»§

o
o
& 06
@
=
0.4
02 [~& & A
A & a A A % A A
0.0
Y N e e O o Y & O N N
& @ @ & & & & @ @ & &
& 3 3 3 3 3 3 3 N g g
& &~ &~ o " " &~ & o & &
R ¥ S &S F S o

* Flow geometry 1
e 10 manufacturers ranged from 7%-30%
e 1 manufacturer was 61 %

* Flow geometry 2
e 9 manufacturers ranged from 4%-10%
e 1 manufacturer was 61 %

@ Geometry 2

A Geometry 1

19
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Normalized Results by
Manufacturer
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® Geometry 2
A Geometry 1
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Calculate average Cd for all
manufacturers for a given
flow path and geometry

A 4

Calculate uncertainty of
average Cd for all
manufacturers for a given
flow path and geometry

A 4

Calculate the predicted Cd
for a new injector from the
same population

Calculate the prediction
interval for the new injector

1
Cq = Nz Ca_inj

U 2 [t ?
Cd inj setpoint ay O-Cd inj setpoint
Ucd inj = —N +

setpoint

Nsetpoint

I
O
[
&
ul
=
+
S|

Cq Predicted

21
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Cd Injector
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Flow Geometry 2
Design Variant 1
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e Flow Geometryl:
 The mean CD of all injectors was 0.16

o Significant mean CD variability depending on the
manufacturer

« Additive CD’s generally lower than subtractive baseline

e Flow Geometry 2:
e The mean CD of all injectors was 0.80

o Significant mean CD variability depending on the
manufacturer

« Additive CD’s generally lower than subtractive baseline

 Differences among CD of all injectors are generally
well beyond the uncertainty bars of the CD results.

e Manufacturer Is more important than slight changes in
geometry

24
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