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Abstract 

 

Development of nanocarriers for drug delivery has received considerable attention due to their 

potential in achieving targeted delivery to the diseased site while sparing the surrounding 

healthy tissue. Safe and efficient drug delivery has always been a challenge in medicine. During 

the last decade, a large amount of interest has been drawn on the fabrication of surfactant-based 

vesicles to improve drug delivery. Niosomes are self-assembled vesicular nano-carriers formed 

by hydration of non-ionic surfactant, cholesterol or other amphiphilic molecules that serve as 

a versatile drug delivery system with a variety of applications ranging from dermal delivery to 

brain-targeted delivery. A large number of research articles have been published reporting their 

fabrication methods and applications in pharmaceutical and cosmetic fields. Niosomes have 

the same advantages as liposomes, such as the ability to incorporate both hydrophilic and 

lipophilic compounds. Besides, niosomes can be fabricated with simple methods, require less 

production cost and are stable over an extended period, thus overcoming the major drawbacks 

of liposomes. This review provides a comprehensive summary of niosomal research to date, it 

provides a detailed overview of the formulation components, types of niosomes, effects of 

components on the formation of niosomes, fabrication and purification methods, physical 

characterization techniques of niosomes, recent applications in pharmaceutical field such as in 

oral, ocular, topical, pulmonary, parental and transmucosal drug delivery, and cosmetic 

applications.  Finally, limitations and the future outlook for this delivery system have also been 

discussed. 
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1. Introduction 

Conventional drug delivery systems face some significant challenges, such as unfavorable 

pharmacokinetics and distribution, which can lead to unwanted side effects (1). Drug 

degradation in blood circulation by the reticuloendothelial system and insufficient drug uptake 

at the target site can reduce drug efficacy (2). Nanocarriers have been extensively investigated 

in the past decades to overcome the challenges associated with conventional drug delivery 

systems, due to the following advantages: a) facilitate targeted drug delivery to the diseased 

site; b) enhance absorption as surface area increases and hence increase bioavailability; c) 

improve pharmacokinetics and biodistribution of therapeutic agents; d) increase retention in 

biological systems and prolong the efficacy of drugs (2,3). Numerous papers have been 

published regarding the development of different types of nanocarriers, such as polymeric 

nanoparticles, solid lipid nanoparticles, liposomes, micelles, dendrimers, carbon tubules, 

mesoporous silica and quantum dots. However, only a few of them have demonstrated 

significant clinical potential (2,4). The ultimate goals for designing an effective nano drug 

delivery system include formulation with biocompatible and biodegradable materials; 

achieving target delivery of therapeutics to the pathological site without affecting the 

surrounding healthy tissue or organs; no premature or burst release; ability to load a significant 

amount of drug in order to achieve the desired therapeutic effect; controlled release of drug 

over an extended period to reduce dose frequency and improve patient compliance (1). Among 

the different drug delivery systems, niosomal delivery systems can achieve majority of the 

goals listed above.   

Niosomes are formed by self-assembly of non-ionic surfactants. They are structurally similar 

to liposomes and were developed as an alternative delivery system to liposomes, as niosomes 

can overcome the problems associated with large-scale production, sterilization and physical 

stability (5,6). Also, the raw materials for niosomes are relatively cheaper and more readily 

available than phospholipids used for liposomes. Niosomes can be prepared as unilamellar or 

multilamellar vesicles following similar preparation methods as liposomes (7,8). They were 

first reported by researchers from L’Oréal (Clichy, France) for cosmetic applications in the 

1970s and 1980s. Since then, niosomes have been extensively investigated for multiple 

applications in different fields including pharmaceutical, cosmetic and food sciences, leading 

to a large number of publications and patents (2). Niosomes can enhance drug delivery across 

the skin barrier – stratum corneum (SC) (9,10). Some mechanisms have been proposed to 

explain their penetration-enhancing effects (2). Topical vaccine delivery using niosomes as 
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carriers have been reported in the literature, where the antigen remains intact in the aqueous 

core while the niosomal components enhance penetration across the skin and initiate an 

immunological response. Niosomes are also studied for the ocular delivery of therapeutics due 

to their low toxicity and penetration enhancing effects (11-13). In anti-cancer research, 

niosomes can achieve targeted delivery of anti-cancer agents and decrease toxicity to reduce 

side effects associated with these drugs (4,14). Proniosomes are of particular interest in the 

pulmonary delivery of aerosol drugs through nebulization devices, where drug loaded 

proniosomes can be deposited into the deep lung and achieve a better therapeutic response (15-

17).  

This up-to-date review of niosome drug delivery systems covers the elemental composition of 

niosomes, recent advances of new materials, functionalized ligands for targeted delivery, 

fabrication methods and different types of niosomes. Characterization studies, applications in 

various fields including pharmaceutical and cosmetic and comments on limitations and future 

directions of the niosomal system are also presented. 

 

2. Types of niosomes 

Various kinds of niosomes have been reported in the literature. These are classified into 

different groups according to their size or number of lamellar layers. Based on the size, there 

are small unilamellar vesicles (SUV) and large unilamellar vesicles. Based on the number of 

bilayers, there are multilamellar vesicles (MLV) and small unilamellar vesicles (SUV) (2). The 

size of niosomes is also a crucial factor that affects the choice of administration route. 

Submicron size vesicles are suitable for intravenous or transdermal applications, whereas those 

up to 10 microns are often used for intraperitoneal, intramuscular, nasal and oral administration 

(18). Small unilamellar vesicles (SUVs) are produced from multilamellar vesicles by methods 

such as sonication, extrusion under high pressure and high shear homogenization. The size of 

SUVs is around 10 to 100 nm (Fig. 5a). They are thermodynamically less stable compared with 

other types of niosomes and have poor drug loading capacity for hydrophilic drugs as well as 

a higher tendency to form aggregates (2,3). Large unilamellar vesicles (LUVs) comprise a 

single bilayer surrounding the aqueous core and are around 0.1 to 1 m in diameter (Fig. 5b). 

LUV niosomes have a large aqueous compartment, can be used for encapsulation of 

hydrophilic drug molecules (2). Multilamellar vesicles (MLV) comprises several bilayers 

surrounding the aqueous lipid compartments separately. The diameter of these vesicles ranges 
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from 0.5 m to 10 m (Fig. 5c). MLVs can be easily prepared without complex techniques and 

are more stable compared to the other two types of niosomes under normal storage conditions. 

Also, they are favorable in the loading of lipophilic drugs due to the presence of multiple 

bilayer membranes (2,3). 

 

2.1 Types of specialized niosomes 

2.1.1 Proniosomes 

Proniosomes are produced by coating a thin layer of non-ionic surfactant on a water-soluble 

carrier (2,11,19). To make proniosomes, the water-soluble carriers need to be non-toxic, safe, 

free-flowing and have good water solubility to allow easy hydration. Maltodextrin, sorbitol, 

mannitol, glucose monohydrate, lactose monohydrate, and sucrose stearate have been used to 

prepare proniosomes (2,19). Proniosomes present in a dry powder form and have several 

advantages over the conventional niosomes such as better stability, less likely to form 

aggregates as well as reduced drug leakage (3). Proniosomes can be prepared by various 

methods such as slurry method, slow spray coating method and coacervation phase separation 

method. They exist in two forms, depending on the method of preparation, which are dry 

granular proniosomes and liquid crystalline proniosomes (17,18,20-22). 

2.1.2 Elastic niosomes 

Elastic niosomes are flexible niosomes, which can pass through pores that are smaller than 

their size without destroying their structure. The components of these vesicles are surfactants, 

cholesterol, water, and ethanol (Fig. 6b). They are commonly used in topical or transdermal 

drug delivery owing to their ability to pass through small pores and therefore improve 

penetration through the skin barrier. Manosroi and colleagues prepared elastic niosomes for 

transdermal delivery of diclofenac diethylammonium; the deformability index was around 14 

times higher than conventional niosomes (23). Another study carried out by the same group of 

researchers found that elastic niosomes prepared by addition of sodium cholate improved 

transdermal delivery of papain for scar treatment (24). 

2.1.3 Discomes 

Discomes are a large disc-like niosomes. In previous work by Uchegbu and co-workers, 

discomes were prepared using hexadecyl diglycerol ether, cholesterol and dicetyl phosphate by 

mechanical agitation and sonication (25). In the study, they found the size of discomes were 

large (11 to 60 m) and further increased in size after sonication. Discomes are also 
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thermoresponsive; their structure becomes less organized when the temperature increases 

above 37 C. Abdelkader et al. investigated discomes for ocular delivery of naltrexone for the 

treatment of diabetic keratopathy (26). 

2.1.4 Bola niosomes 

Bola niosomes are made of bola surfactants. This particular type of surfactants was found in 

the membrane of archaebacteria in the early 1980s. They have two hydrophilic heads that are 

connected by one or two lipophilic linkers. Zakharova (2010) has shown that bola surfactants 

have a strong assembling ability, which was demonstrated by their much higher surface tension 

and lower critical micelle concentration than the conventional surfactants; further research 

revealed their tolerability both in vitro and in vivo (27).  

2.1.5 Transfersomes 

Transfersomes are novel deformable vesicular carrier systems primarily composed of 

phospholipids, which self-assemble into a lipid bilayer in an aqueous environment and close to 

form a vesicle. A lipid bilayer softening component is added to increase lipid bilayer flexibility 

and permeability. This is known as an edge activator. An edge activator usually consists of a 

single chain surfactant of non-ionic nature that causes destabilization of the lipid bilayer, 

thereby increasing its fluidity and elasticity (Fig. 6c). Transfersomes comprise both 

hydrophobic and hydrophilic moieties and as a result can accommodate drug molecules with a 

wide range of solubilities. They can act as a carrier for low as well as high molecular weight 

drugs (28). 

2.1.6 Aspasomes 

Ascorbyl palmitate has been explored as bilayer forming material; it forms vesicles with 

cholesterol, ascorbyl palmitate and a negatively charged lipid (dicetyl phosphate). Aspasomes 

are prepared by film hydration method followed by sonication. They have been studied for the 

transdermal delivery of active ingredients, and it was found that aspasomes can enhance 

transdermal penetration across the skin barrier. Gopinath and co-workers developed 

azidothymidine (AZT) loaded aspasomes for topical application. Transdermal permeation of 

AZT loaded in aspasomes was much higher than AZT solution and ascorbyl palmitate aqueous 

dispersion. Although no study was conducted to determine the mechanism by which aspasome 

is enhancing the permeation of AZT, it is speculated that due to its lipophilicity it partitions 

into lipids of the skin and by its amphiphilic character alters the intercellular space and thus 

improve permeation. This study also revealed that the antioxidant potency of ascorbyl moiety 
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is retained after converting ascorbyl palmitate been into vesicles, aspasome rendered much 

better antioxidant activity compared with ascorbic acid. The antioxidant property and skin 

permeation enhancing property indicate a promising future for aspasome as a transdermal drug 

delivery system (29). 

 

3. Formulation components and their effects 

The components for niosomes include surfactants (generally non-ionic surfactants), cholesterol 

and charge inducing agents (3,30,31). Understanding the physicochemical properties of these 

formulation components as well as their effects on niosomes is essential for preparing niosomes 

with desired properties (32,33). Formulation components such as surfactants, cholesterol, 

charge inducing agents, the effect of hydrophilic-lipophilic balance (HLB) value, liquid gel 

transition temperature will be discussed in the following sections (2,3). 

 

3.1 Surfactants 

Surfactants are amphiphilic molecules, which comprise a lipophilic tail and a hydrophilic head. 

They are classified according to the charges on their hydrophilic head groups, which are 

cationic, anionic, amphoteric and non-ionic (Fig. 1) (1). The tail group of surfactants can be 

alkanes, fluorocarbons, aromatics or other non-polar groups. Non-ionic surfactants are the 

major components of niosomes due to their low toxicity and biocompatibility compared with 

the other types of surfactants. A variety of non-ionic surfactants have been commonly used in 

the preparation of niosomes. For example, derivatives of alkyl ethers, alkyl esters, and sorbitan 

fatty acid esters (1-3,34).  

Alkyl esters include sorbitan fatty acid esters (Span) (Fig. 2) and polyoxyethylene sorbitan fatty 

acid esters (Tween), these surfactants are non-toxic and non-irritating. Tween surfactants are 

derived from a reaction between polyoxyethylene and sorbitan fatty acid esters. They have 

higher HLB values compared with surfactants in the Span family (2). Brij surfactants are an 

example of alkyl ethers. Among the members of the Brij family is Brij 30 (Polyoxyethylene (4) 

lauryl ether) with a phase transition temperature less than 10 C and able to form large 

unilamellar with high drug loading (35). 
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Sucrose esters (SEs) are another group of non-ionic surfactants, they have a sugar substituent, 

sucrose, as the polar head group and fatty acids as non-polar groups (36). As sucrose contains 

eight hydroxyl groups, compounds ranging from sucrose monoesters to octaesters can be 

produced. These esters contain different fatty acids (stearic, palmitic, myristic and lauric acid) 

in different ratios (37). The type of fatty acid and the degree of esterification determines the 

hydrophilic lipophilic balance (HLB) value and the melting point of these materials. They have 

HLB values from 1 to 16, because of this variety, they are applied in many areas of 

pharmaceutical and cosmetical technology as emulsifiers, solubilizing agents, lubricants, 

penetration enhancers and pore forming agents (38,39). SEs have low toxicity, they are 

biocompatible, are less hemolytic and irritating than other surfactants, and finally, they have 

excellent biodegradability (40). SEs have drawn a worldwide interest as permeation enhancers 

of reduced irritation potentials; they are approved by Food and Agriculture Organization 

(FAO), World Health Organization (WHO), in Japan, USA and Europe, as food additives 

owing to their high safety and excellent properties. Sucrose stearate and sucrose palmitate are 

approved as inactive ingredients by the Food and Drug Administration (FDA) and listed in the 

Inactive Ingredients Database for oral dosage forms and sucrose distearate and sucrose 

polyesters are listed for administration by topical route (39). Most applications of SEs are found 

in transdermal drug delivery while they are also studied for oral administration of antigens and 

sucrose stearate-based proniosomes have been investigated for pulmonary delivery of 

cromolyn sodium (20). 

Bola and Gemini surfactants are the newer generations of surfactants that have been 

synthesized to produce niosomes with optimal properties (2). Gemini surfactants have a low 

critical micelle concentration and are non-toxic, non-irritating and non-hemolytic (2,10,41). 

Bola surfactants are of higher solubility and higher critical micelle concentration (1). Another 

new type of surfactant is tyloxapol, which is composed of ethylene oxide and formaldehyde 

and forms niosomes in water. It is a non-ionic biological surfactant of alkyl aryl polyether 

alcohol type that has been used in ophthalmic preparations and as a mucolytic agent for 

pulmonary diseases (2). Sucrose stearate-based proniosomes derived from niosomes have also 

been explored for pulmonary delivery of cromolyn sodium (20). 
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3.2 Additive agents 

Various additives have been used for niosome membrane among which the most common and 

important of these agents is cholesterol (Fig. 3) (25). Cholesterol interacts with surfactant by 

forming a hydrogen bond between its hydroxyl groups and the alkyl chain of surfactant 

molecules. It increases the transition temperature of vesicles and hence can improve stability 

by altering the fluidity of chains in bilayers. When present in sufficient concentration, it 

abolishes the gel to liquid phase transition endotherm of surfactant bilayers (12,42-46). 

Cholesterol also improves EE due to its membrane stabilizing effect, as it distributes between 

the bilayer, occupying otherwise void space and decreasing membrane fluidity, thus enhancing 

stability (3,5,47-49). On the other hand, increasing cholesterol above a certain point may inhibit 

the formation of the regular linear structure of the vesicular membrane, as it competes with the 

drug molecules for space and excludes them (44,50).  

Cholesterol influences other properties such as membrane rigidity, permeability, and ease of 

hydration (51-53). The fluidity of the niosomal membrane is one of the critical factors 

governing the release of drug molecules. The difference in release behavior is due to the 

variation in cholesterol content in different niosomes. The amount of cholesterol required in a 

particular formulation is dependent on the HLB value of the surfactants; when the value is 

greater than 6; cholesterol must be used to form niosomes. For Span niosomes, Span 60 and 80 

can form niosomes requiring little or no addition of cholesterol due to their low HLB values. 

Tween 60, with a higher HLB, needs more cholesterol to maintain membrane rigidity (8). 

Drug loading capacity can be influenced by cholesterol, the addition of cholesterols delays drug 

release by abolishing gel to liquid phase transition and improving drug loading hydrophilic 

drugs (20). On the other hand, for lipophilic drugs, decreasing the concentration of cholesterol 

in the formulation lead to an increase in EE as cholesterol disrupts the regular linear structure 

of the niosomal membrane, which does not allow more entrapment for lipophilic drugs (54-

56).  

Charge inducing agents also play an essential role in stabilizing bilayer membranes by 

imparting either a negative charge or positive charge to the surface of the niosomes, preventing 

aggregation by electrostatic repulsion (57). Negatively charged ionic compounds such as 

dicetyl phosphate (DCP) and positively charged compounds like stearyl amine (STR) or stearyl 

pyridinium chloride are commonly used charge inducing agents in the preparation of niosomes. 

Generally, these charged molecules are added to the formulation in an amount of 2.5 to 5 mol % 
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(17,25,58,59). However, increasing amount of the charge inducing agents beyond the limit will 

prevent the formation of niosomes (3). 

 

3.3 Critical packing parameter 

Nonionic surfactants are composed of both polar and non-polar parts. The formation of bilayer 

vesicles instead of micelles depends on the HLB of the surfactant, chemical structure of 

surfactants and the critical packing parameter (CPP) (Fig. 4) (2). CPP can be expressed by the 

following equation: 

CPP = V/a0lc 

Where V is hydrophobic group volume, a0 is the area of hydrophilic head group and lc is the 

critical hydrophobic group length. 

From the CPP value, the type of micellar structure formed can be ascertained.  A CPP of less 

than 0.5 suggests the formation of spherical micelles, whereas a CPP between 0.5 and 1 

suggests the formation of bilayer micelles. A CPP of greater than 1 suggests the formation of 

inverted micelles. A comparison between Tween surfactants confirmed the influence of the 

surface area of the polar head. Tween 21 and 20 have the same alkyl chain but different 

hydrophilic head groups, which influences the HLB value, the former being HLB 13.3 and the 

latter being HLB 16.7 (3).  

 

3.4 Hydrophilic-lipophilic balance (HLB) 

HLB is an empirical expression for the relationship of the hydrophilic and the hydrophobic 

groups of surfactants (2). Surfactants with a higher HLB value are more water-soluble than 

surfactants with a lower HLB (8,42-44). HLB value affects the size of the niosomes as well as 

EE of the active ingredient (35,60,61). It has been reported that surfactants with an HLB value 

between 4 and 8 can form niosomes, whereas surfactants with an HLB value of 6 or higher 

require the addition of cholesterol to form niosomes. Surfactants with an HLB outside of this 

range do not form niosomes (62,63). 
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3.5 Gel liquid transition temperature (Tc) 

Gel liquid transition temperature (Tc) of the surfactants is an essential factor that influences 

the formation of niosomes. It affects EE, membrane fluidity, membrane permeability, and 

stability. Tc and the length of the alkyl chain of non-ionic surfactants are correlated with each 

other. Shorter alkyl chains have a lower Tc, which leads to the formation of “leaky” niosomes. 

Surfactants with a higher Tc are more likely to be in an ordered gel form, reducing bilayer 

leaking compared with surfactants that have a lower phase transition temperature (19,43). Tc 

is dependent on the degree of the unsaturated alkyl chain. Lack of saturation in the alkyl chain 

lowers Tc and increases chain fluidity and membrane permeability. Studies have shown that 

niosomes formed by surfactants with lower Tc are more flexible than those formed with a 

higher Tc. The temperature of the hydration medium should be higher than the Tc of the 

surfactant, as this affects the formation of niosomes and could induce modifications in the 

bilayer (64-66). 

 

4. Methods of preparation 

There are multiple methods for preparing niosomes. These include the thin film hydration 

(hand shaking) method, ether injection method, reverse phase evaporation method, trans-

membrane pH gradient drug uptake process, emulsion method, lipid injection method, micelle 

solution and enzyme method, bubble method, microfludization method, the formation of 

niosomes from proniosomes and supercritical reverse phase evaporation method. Some new 

methods have been developed in the past decade; for example, the supercritical reverse phase 

evaporation method was described by Manosroi and colleagues using supercritical carbon 

dioxide fluid (60). Another microfluidization method was introduced recently, which is rapid 

and provides controlled mixing of surfactant cholesterol solution and an aqueous solution in 

microchannels (3). Also, proniosome methods have been proposed to overcome physical 

instability issues. Niosomes obtained as a dry powder provide easy unit dosing and can also be 

applied in pulmonary delivery (61). The advantages and disadvantages of the different 

preparation methods are summarised in Table 1. Niosomes prepared by different method yield 

difference sizes of vesicles. The methods of preparation are detailed below. 
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4.1 Thin film hydration (hand shaking) method 

The thin film hydration method is a simple technique (Fig. 7); however, it requires the use of 

organic solvents to dissolve surfactant and cholesterol. Surfactants and cholesterol are 

dissolved in a round-bottomed flask followed by evaporation of the organic solvent to form a 

thin film on the bottom of the flask. Addition of aqueous medium swells the film from the wall 

of the round bottom flask at a temperature above the transition temperature of the surfactant 

for a specified period with constant mild agitation to produce multilamellar vesicles, which are 

then treated to produce unilamellar vesicles (2,3,67,68). 

 

4.2 Ether injection method 

In this method, surfactant and drug are dissolved in diethyl ether and injected slowly to an 

aqueous phase, then heated above the boiling point of the organic solvent (Fig. 8). This method 

produces LUVs and can be further treated to reduce the size (3,46). 

 

4.3 Reverse phase evaporation method 

In this method, surfactants are dissolved in an organic solution of ether and chloroform, 

followed by addition of an aqueous drug solution (Fig. 9). The two immiscible phases are then 

homogenized, and organic solvents are removed under reduced pressure to form a niosome 

suspension. This method is considered ideal for preparation of hydroxychloroquine niosomes, 

due to high EE, large particles size with a small variation (73). The reverse phase method has 

been reported to encapsulate large hydrophilic macromolecules with relatively higher EE than 

other methods (69). 

 

4.4 Trans-membrane pH gradient drug uptake process  

In this method, surfactants and cholesterol are dissolved in an organic solvent. This solution is 

then evaporated under reduced pressure to obtain a thin film on the wall of the round bottom 

flask (Fig. 10). Hydration of this film is carried out with a citric acid solution at pH 4 by vortex 

mixing. The resultant vesicles then undergo a freeze and thaw process for three cycles and 

sonication. An aqueous drug solution is then added and vortexed. The pH of this solution is 

adjusted to 7 and heated at 60 C to produce multilamellar vesicles (70).  
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4.5 Emulsion method 

With the emulsion method, surfactant and cholesterol are dissolved in organic solvent and then 

added to an aqueous drug solution to form an oil in water emulsion (Fig. 11). The organic 

solvent is then evaporated to obtain niosomal suspension in an aqueous medium (2). 

 

4.6 Lipid injection method 

This method does not require the use of organic solvents. Surfactant and cholesterol are melted 

and then injected into a highly agitated heated aqueous phase containing dissolved drug 

molecules to form a niosomal suspension (Fig. 12) (2).  

 

4.7 Niosomes prepared using micelle solution and enzymes 

Niosomes can be prepared with a mixed micellar solution by the use of enzymes. For example, 

esterases break the ester links of polyethylene stearyl derivatives leading to the formation of 

breakdown products such as cholesterol and polyoxyethylene, which can form multilamellar 

niosomes with the addition of dicetyl phosphate and other lipids (Fig. 13) (1).  

 

4.8 The bubble method 

The bubble method is a single step technique that does not require the use of organic solvents. 

Surfactants and cholesterol are added to a buffer solution at 70C, the dispersion is mixed for 

fifteen seconds with a high shear homogenizer, and nitrogen gas is passed through this solution 

leading to the formation LUVs (Fig. 14) (71). 

 

4.9 Microfluidization 

This newly developed method produces smaller unilamellar vesicles with narrow size 

distribution. A solution of surfactants and drug is pumped through an interaction chamber 

under pressure at a rate of 100 ml/min. The solution is then passed through a cooling loop to 

remove the heat produced during microfluidization to form niosomes (Fig. 15) (2).  
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4.10 Proniosomal method 

Proniosomes are produced by coating a water-soluble carrier material with non-ionic 

surfactants, such as water-soluble materials including sucrose stearate, maltodextrin or 

mannitol. The water-soluble carriers are covered by a thin layer of surfactant and are rehydrated 

under agitation in hot aqueous media to form a niosomal suspension. Proniosomes are obtained 

as a dry powder, thus eliminating the physical instability issue of niosomes, such as aggregation, 

fusion, and leaking. Proniosomes made from this method are stable during storage and transport; 

the dry powder also allows easy unit dosing for patients (2,20,21). 

Proniosomes can also be obtained using the coacervation phase separation method (Fig. 16). A 

mixture of surfactant, cholesterol, drug and phosphatidylcholine are dissolved in absolute 

ethanol in a wide mouth glass tube. The open end of this tube is covered with a lid and warmed 

in a water bath at 70ºC for 5 minutes. An aqueous phase is then added and warmed on a water 

bath until a clear solution is observed. The mixture is allowed to cool down at room temperature 

until the dispersion is converted into a proniosomal gel (12). 

 

4.11 Supercritical reverse phase evaporation method 

This method involves supercritical fluid as described by Manosroi and colleagues (60). It does 

not require the use of organic solvent, which can be difficult to remove and toxic. This method 

can also be easily scaled up to produce a large number of niosomes. However, large unilamellar 

niosomes are obtained with a size between 100 to 500 nm. Sonication or extrusion method can 

be combined with this method to produce smaller niosomes (2,72).  

 

5. Niosome purification 

Purification of niosomes is an essential step, as complete encapsulation of drug molecules in 

niosomes is seldom possible regardless of optimization of the drug loading processes. The free 

drug must be removed to prevent the burst release of niosomes when applied in in vitro and in 

vivo experiments (67). Purification methods used to remove unentrapped drug molecules 

include dialysis, gel filtration, and centrifugation. The dialysis method is based on the diffusion 

of the solute through a semi-permeable membrane, which is frequently used by researchers to 

remove free drug. Niosomes are filled into a dialysis bag and then dialyzed against a saline 

solution. The concentration of the drug in the saline solution is determined by 
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spectrophotometry (2). Purification of niosomes from the unencapsulated drug can be carried 

out by gel filtration chromatography on Sephadex G75, G50 or G25, which allows efficient 

separation of free drug molecules (2,72). Centrifugation and ultracentrifugation have also been 

used to purify niosomes. These methods can be applied to a variety of solutes and more than 

90% recovery can be achieved without dilution of niosome preparation (62,74,75). 

 

6. Characterization studies 

The characterization of niosomes includes parameters such as size, distribution, zeta potential, 

morphology, EE, and in vitro release behavior. These are studied to determine the quality of 

the niosomes in formulation development and their applications in future clinical studies. These 

parameters have a direct impact on stability and in vivo performance (2,3).  They are 

summarized in Table 2 and discussed in more detail below. 

 

6.1 Niosome particle size and size distribution 

Particle size is a fundamental parameter in the characterization of niosomes as it provides 

information on physical properties and stability of the formulation (3). The size of niosomes 

can be measured by techniques such as dynamic light scattering (DLS) and microscopy. DLS 

is also known as photon correlation spectroscopy (2). This method is rapid and non-destructive, 

and only a small amount of sample is required. It can be used to measure particles in the size 

range of 3 to 3000 nm. This technique is based on the principle of random Brownian motion 

of small particles dispersed in a medium. A laser generated by the equipment irradiates the 

niosome suspension and the niosomes scatter light. This is detected at either a fixed or variable 

scattering angle, with the intensity of the fluctuations in scattered light from the collision of 

particles arising from random Brownian motion as a function of time. Smaller particles produce 

higher intensity fluctuations due to their higher diffusion coefficient, whereas larger particles 

move relatively slowly and cause a lower intensity of fluctuations. The polydispersity index 

(PDI) is an indication of the distribution of niosome size, with PDI value of less than 0.5 

indicating a monodispersed sample. The limitation of DLS is that it does not provide any 

information on the shape of the niosomes (1). Electronic microscopic techniques are also used 

to determine the size of niosomes, DLS and microscopic techniques are sometimes used in 

combination to produce more reliable results (3).  
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6.2 Morphology 

Microscopic techniques are used to study the morphology of niosomes. Electronic microscopic 

methods including transmission electronic microscopy (TEM), negative-staining transmission 

electronic microscopy (NS-TEM) and freeze-fracture transmission electronic microscopy (FF-

TEM) are used preferentially for liquid state samples, whereas scanning electron microscopy 

(SEM) is used for solid samples. Atomic force microscopy (AFM) and scanning tunneling 

microscopy (STM) were used by Binnig’s group in 1982 for characterization of micro- and 

nano-scale structures. STM is useful in determining the bilayer thickness of liposomes and 

niosomes due to its analytical ability in the vertical axis (2,23,76).    

  

6.3 Zeta potential 

The zeta potential, which is also known as surface charge, provides essential information in 

determining the physical stability of niosomes. The surface potential can be measured by laser 

Doppler anemometry and the magnitude of zeta potential provides an indication of the degree 

of electrostatic repulsion between two adjacent particles. Niosomes with a zeta potential higher 

than 30 mV or lower than 30 mV are considered to have acceptable stability (3,77,78). 

 

6.4 Bilayer characterization 

Niosomes are either present in a single layer (unilamellar) or multiple layers (multilamellar) 

(3). The number of lamellae can be determined by small angle X-ray scattering (SAXS), 

nuclear magnetic resonance spectroscopy (NMR) and AFM. The SAXS can be coupled with 

energy-dispersive X-ray diffraction (EDXD) to characterize the thickness of niosomal bilayer. 

The fluidity of the niosomal membrane allows membrane deformation without changing 

bilayer integrity and can be measured by the mobility of the fluorescent probe as a function of 

time and temperature. Microviscosity of niosomal membranes can be determined by 

fluorescent polarization to study the packing structure of the lipid bilayer (60). 

 

6.5 Niosome stability 

Stability of the vesicular system is an issue and concerns not only physical and chemical but 

also biological stability. This fundamental parameter is used to determine the potential in vivo 

and in vitro application of the niosomes (64). Stability is generally determined by monitoring 
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particle size and zeta potential over time, with variations in these two parameters indicating 

possible instability. Stability is often determined over three months in different conditions, such 

as 4C, 25C, 40C at 75% relative humidity, to assess the effect of temperature on stability 

(20,49,55,67,79). 

 

6.6 Entrapment efficiency (EE) 

EE is described as the number of drug molecules that have been successfully entrapped within 

the vesicles and in this case the niosomes, and can be expressed by the following equation: 

               EE = (Amount of drug entrapped ÷ Total amount of drug added) x 100% 

The amount of drug entrapped refers to the actual amount of drug molecules been successfully 

enclosed in the vesicles and the total amount of drug refers to the amount of drug used in 

preparation (2). The free drug molecules need to be separated from the entrapped drug by 

methods such as dialysis, filtration or centrifugation (86,87). The EE can be determined by 

spectrophotometry, or by gel electrophoresis followed by UV densitometry for genetic 

materials (88). Moreover, this parameter can also be determined using a fluorescence marker 

such as calcein to evaluate the number of marker molecules entrapped (80-82). 

 

6.7 In vitro drug release 

In vitro release behavior of the niosomes is a fundamental parameter, which can be affected by 

many factors such as drug concentration, hydration volume, and nature of the membrane. The 

release of drug molecules from niosomes is generally studied using a dialysis membrane. This 

is where purified niosomal suspension without free drug is filled into a dialysis bag, then tied 

at both ends and placed in a beaker of phosphate buffered saline (PBS) at a constant temperature 

at 37C and under magnetic agitation. Samples are taken at predetermined time intervals and 

replaced with the same amount of fresh medium. These samples are then analyzed using 

appropriate assays to determine the concentration of drug released over time (34,76,78). Franz 

diffusion cells have also been used to study the release behavior of niosomes. This is where the 

dialysis membrane is placed between the donor and receptor compartment of the apparatus; the 

niosomal suspension is filled into the donor compartment. The receptor compartment contains 

PBS at pH 7.4 and the whole system is maintained at 37C. Samples are collected from the 
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receptor compartment at defined time intervals and replaced with the same amount of release 

medium (22,25,83-85).  

 

7. Applications of niosomes in drug delivery 

Applications of niosomes can be found in areas such as drug delivery and cosmetics, they are 

suitable for the delivery of many pharmaceuticals and have been studied for various routes of 

administration including oral, topical, transdermal, ocular, intravenous, pulmonary and 

transmucosal; the design of the formulation is influenced by the route of administration of the 

niosomal formulation (56,57,69,84,89,90). 

 

7.1 Oral delivery 

Oral delivery is widely regarded as the most accessible and convenient route of drug 

administration, especially when repeated administration is required. However, there are several 

challenges to consider when formulating oral drugs, such as the acidic environment of the 

stomach, enzymatic degradation in the gastrointestinal tract, first pass metabolism, poor 

absorption and variable drug bioavailability. Niosomes have been explored to overcome these 

challenges by improving absorption and bioavailability (3,91,92). Examples of niosomes that 

have been developed for oral delivery are outlined in Table 3. 

The first application of niosomes in oral delivery was reported in 1985 by Azmin et al., who 

found that the niosomal formulation significantly improved the bioavailability of methotrexate 

(93). Niosomes modified with polysaccharide o-palmitoyl mannan have also been studied for 

oral genetic immunization of hepatitis B (69). Niosomes have been investigated for oral 

delivery of lipophilic drugs such as diacerein, which has limited bioavailability due to low 

solubility and belongs to Class II of the Biopharmaceutical Classification System (BCS). 

Researchers investigated sorbitan monolaurate and Poloxamer 184 based niosomes for oral 

delivery of diacerein and found improved in vitro dissolution profiles of the niosomal 

formulations compared with diacerein aqueous suspension (57). Paclitaxel (PCT) is an 

anticancer drug used to treat several types of cancers including ovarian, breast, lung, cervical 

and pancreatic cancer. Bayindir and co-workers have successfully encapsulated this drug in 

various niosomal formulations. Niosomes composed of Span 40, cholesterol and DCP showed 

a high EE and better stability of PCT against gastric enzymatic degradation than other 
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formulations prepared with Span 20, 60, Tween 20, 60 and Brij 76, 78, 72. PCT released from 

niosomes by a diffusion-controlled mechanism and the resulting sustained release could be 

beneficial for reducing the adverse effects associated with PCT (91). Tramadol HCl 

encapsulated niosomes have been investigated for extending the analgesic effect following oral 

administration. Tramadol has poor bioavailability due to first pass metabolism, with only 68% 

of the administered dose reaching the blood circulation following a single oral dose, and 

patients often experience adverse side effects such as sedation. In order to improve 

bioavailability and reduce side effects, an oral dosage form was developed using niosomes. 

Proniosome gel and solution were prepared with Span and Tween surfactants, then niosomes 

were formed by mixing the heated phosphate buffered saline to the gels or solution of tramadol 

proniosomes. Oral administration of tramadol loaded niosomes to mice showed extended 

analgesic effects compared to tramadol solution (94).  

 

7.2 Topical and transdermal delivery 

Topical drug delivery has several advantages, such as localized drug release at the site of action 

and reduced side effects by minimizing systemic absorption (9,10). In transdermal drug 

delivery, the active ingredients are delivered across the skin for systemic circulation, which has 

several advantages compared with other routes of administration. Transdermal delivery has 

higher bioavailability as first-pass hepatic metabolism can be avoided, is non-invasive as no 

needle is required, avoids acidic and enzymatic degradation in the gastrointestinal tract and 

eliminates potential drug-food interaction. However, use of the transdermal route is limited due 

to the poor penetration rate of drug molecules, with the primary barrier for drug absorption 

across the skin being the stratum corneum (SC) (97,98). Low molecular weight (≤500 Da), 

lipophilicity, and effectiveness at low dosage are the ideal characteristics of the drugs for 

transdermal delivery (40). However, many drugs do not possess ideal physicochemical 

properties; only a minimal number of drugs have been successfully formulated into transdermal 

preparations. Topical applications of niosomes have been widely reported due to their ability 

to enhance cutaneous drug delivery to the epidermis and dermis layer (24,76,99-102). Several 

mechanisms have been proposed to explain their penetration-enhancing effects. Firstly, 

adsorption and fusion of drug-loaded vesicles onto the surface of the skin leads to a high 

thermodynamic activity gradient of the drug at the surface of vesicles and SC, which acts as a 

driving force for the penetration of drugs across the SC (55,58,103-106). Secondly, disruption 

of the densely packed lipids that fill extracellular spaces of the SC, enhance the permeability 
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of drugs through structural modification of SC. Thirdly, the non-ionic surfactants play a crucial 

role in improving penetration by acting as penetration enhancers. Wherein vesicle bilayers 

enter the SC with subsequent modification of the intercellular lipids, which increases overall 

membrane fluidity (50,55,58,84,104,105,107-112). Lastly, niosomes cause an alteration in the 

SC properties through a reduction in the trans-epidermal water loss, thus leading to an increase 

in SC hydration with the loosening of its closely packed cellular structure (55,104).  

An important research contributes to the evaluation of niosomes as permeation enhancers for 

transdermal delivery was made in 2011. It aimed to evaluate if the increased hydrophilic drug 

permeation across the skin, which is always observed with vesicular systems, is dependent on 

the structural organization of niosomes, that are used to transport the active molecule, or it is 

only dependent on the dual nature of surfactant. The study was designed to examine the real 

role of surfactant molecule and the influence of its structural organization on the ex vivo 

permeation of a hydrophilic drug. The percutaneous permeation profiles of sulfadiazine sodium 

salt were obtained, according to the following experimental conditions: a drug-loaded niosome 

formulation, drug solubilized in a sub-micellar solution of surfactants, a drug aqueous solution 

after skin pretreatment with empty niosomes, a drug aqueous solution after skin pretreatment 

with the sub-micellar solution of surfactants. The results showed that the permeation of 

sulfadiazine was not increased after pretreatment with sub-micellar solutions of surfactants or 

direct treatment with a sub-micellar solution of surfactant containing the drug respect to the 

control. Only the direct treatment of the skin with loaded niosomes gave a relevant increase of 

the percutaneous permeation of the drug, confirming their role as permeation enhancers. It has 

been reported that the intercellular lipid barrier in the SC would be dramatically changed to be 

more permeable by treatment with non-ionic surfactants in the form of niosomes that act as 

penetration enhancers (113). The possible mechanisms of action of niosomes to enhance skin 

penetration are shown in Fig. 17a-e. 

Moreover, topical application of niosomes is limited by its liquid nature of the preparation; 

when applied they may leak from the application site. This challenge is overcome by 

incorporation gelling agents to niosomal dispersion, thereby forming a niosomal gel. Niosomal 

gels can provide a reservoir of drugs in SC for the sustained release, which leads to high 

accumulation of drugs in the dermis and epidermis. The gel can also promote the penetration 

of drug across the SC owing to the occlusion effects from the gel formation which can enhance 

skin hydration and subsequently increase the absorption and penetration of drug across the skin 

(24,40). The most recent development in vesicle design for transdermal delivery is the use of 
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elastic vesicles, which differ from conventional niosomes by their characteristic fluid 

membrane with high elasticity. This feature enables them to squeeze themselves through the 

intercellular regions of the SC under the influence of transdermal water gradient upon 

application on the skin surface (24,107). Ethanol used in the preparation of elastic niosomes is 

known as an efficient permeation enhancer, it can interact with the polar head group region of 

the lipid molecules, resulting in the reduction of the melting point of the SC lipid, thereby 

increasing lipid fluidity, and cell membrane permeability (10). Penetration can also be due to 

the adhesion of the vesicle to the skin surface followed by the destabilization and finally the 

fusion with the SC lipid matrix. Studies have demonstrated that elastic vesicles were often 

localized and accumulated in the channel like regions which are located within the intercellular 

lipid lamellae of the skin surface (24). Manosroi and co-workers developed novel elastic 

niosomes entrapped with the non-steroidal anti-inflammatory drug, diclofenac 

diethylammonium for topical application. Various formulation composing of 

dipalmitoylphosphatidylcholine, Tween 61, or Span 60 mixed with different molar ratios of 

cholesterol and ethanol at 0%–25% (v/v) were prepared. Elastic Tween 61 niosomes were 

selected due to their better stability. The deformability index values for elastic niosomes were 

significantly higher than for the conventional empty or loaded niosomes, indicating the higher 

flexibility of the elastic vesicles, especially when entrapped with the drug. Gels containing 

elastic niosomes demonstrated enhanced transdermal absorption through rat skin by exhibiting 

higher fluxes of diclofenac in the SC, viable epidermis and dermis and receiver chamber 

compared to commercial emulgel containing an equivalent amount of drug. Diclofenac 

entrapped in the elastic niosomes and incorporated in the gel also demonstrated good anti-

inflammatory effect in the rat ear edema assay (23). 

Drugs with different physicochemical properties have been investigated for topical and 

transdermal delivery include diacerein (53), itraconazole (114), tretinoin (115), salidroside 

(104) and finasteride are listed in Table 4 (116). An exciting area in dermal drug delivery is a 

topical vaccine, niosomes have been studied in this area for delivery of antigens. The topical 

vaccine has the advantages of safety and flexibility. The skin acts as a barrier to protect from 

foreign invaders; there are specialized cells of the immune system throughout the layers of the 

skin, e.g., Langerhans cells, dendritic cells, and epidermotropic lymphocytes. Hepatitis B 

infection remains a significant worldwide health problem. Vyas and co-workers investigated 

niosomes for a non-invasive topical genetic vaccine against hepatitis B virus (69,117). DNA 

encoding hepatitis B surface antigen (HBsAg) were loaded in niosomes composed of Span 85 

and cholesterol. The immune-stimulating activity was determined by measuring hepatitis B 
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surface antigen titer and cytokine levels following topical application of antigen-loaded 

niosomes in Balb/c mice. Results were compared with naked DNA and liposome encapsulated 

DNA applied topically, naked DNA and pure recombinant HBsAg administered 

intramuscularly. Topical niosomes elicited a similar serum antibody titer and endogenous 

cytokine levels when compared to intramuscularly injected recombinant antigens (107,117). 

Gupta et al. also studied the topical delivery of tetanus toxoid for non-invasive immunization 

using transfersomes, niosomes, and liposomes. The in vivo study found that transfersomes 

elicited a higher immune response in comparison to niosomes and liposomes due to its elastic 

bilayer, which allows transfersomes to deform and pass through the minute pores present in 

the skin (107,117). Niosomes have been studied to deliver antioxidant enzyme catalase (CAT) 

for wound healing. Researchers used biocompatible non-ionic sugar ester surfactants to deliver 

enzyme catalases. The mean diameter of the resulting niosomes was around 222-275 nm and 

the catalytic activity of enzymes was improved after encapsulation by a factor of 1.7-fold. 

Further, the niosomes were able to preserve the catalytic activity for 180 days when stored at 

4C. The in vivo studies showed a significant improvement of the prepared CAT niosomes on 

wound healing (118). A hybrid system of moxifloxacin-loaded niosomes incorporated into 

chitosan gel was studied for preventing burn infection by Sohrabi et al.  The optimized 

niosomal formulation showed 74% EE and approximately 50% of the drug released in 8 hours. 

The gel embedded niosomes showed pseudoplastic flow behavior and more sustained release 

compared with niosomes. Both of the formulations were found efficiency against common skin 

bacteria, while the hybrid formulation was more superior against Staphylococcus aureus (119). 

 

7.3 Ocular delivery 

Conventional ocular drug delivery preparations such as eye drops, ointments, and suspensions 

are unable to achieve high bioavailability due to physiological barriers in the eyes, such as the 

barrier properties of retinal pigment epithelium and the endothelium lining the inner side of the 

retinal blood vessels. Also, a significant amount of the dose is usually washed away into the 

nasolacrimal ducts (56). Studies have shown that niosomes can overcome some of these 

barriers and may be suitable carriers for ocular delivery. Firstly, the nano-sized niosomes can 

resist drainage by reflex tearing and blinking. Secondly, niosomes are better retained on the 

eye surface compared to other carriers (12). Zeng and co-workers have investigated hyaluronic 

acid (HA) coated niosomes. HA is a linear polymer composed of long chains of repeating 

disaccharide units of N-acetyl glucosamine and glucuronic acid has attracted more attention in 
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ocular delivery as it is a natural component of the vitreous body and aqueous humor of the eye. 

The mucoadhesive property of HA facilitates ocular contact time of the formulation and hence 

improves drug absorption and bioavailability. This study demonstrated that HA-coated 

niosomes were able to prolong pre-corneal retention, increase aqueous humor 

pharmacokinetics and bioavailability of tacrolimus (11). Chitosan-coated niosomes were 

studied by Zubairu and his team for trans-corneal delivery of gatifloxacin. Niosomes were 

prepared with Span 60 by the solvent injection method and coated with different concentrations 

of chitosan. Permeation studies showed that the chitosan coated niosomes increased 

transcorneal permeation of gatifloxacin by more than two-fold when compared with the drug 

solution. The uncoated niosomes showed longer retention, which was further enhanced in 

coated niosomes (77).  Abdelkader and co-workers investigated niosomes and discomes for 

delivery of naltrexone hydrochloride. They evaluated spreading, rheological properties and 

their ability to prevent autoxidation of naltrexone hydrochloride in aqueous solutions. The 

prepared niosomes showed better wetting and spreading abilities than aqueous drug solutions. 

Niosomes were also significantly more viscous than the aqueous drug solution. The lipid 

content, size, and composition of niosomes are the main factors affecting the viscosity of 

niosomal dispersions. The stability of naltrexone hydrochloride was evaluated by exposing it 

to artificial daylight illumination; the niosomal dispersion was able to protect the extensive 

degradation of naltrexone from photo-induced oxidation compared with free naltrexone 

solution (26). Recently, proniosome-derived niosomes were developed for topical ocular 

delivery of tacrolimus; these niosomes were prepared with poloxamer 188, lecithin and 

cholesterol. Proniosomes were reconstituted to form niosomes with ethanol and a small amount 

of water before use. In vitro permeation studies were performed on freshly excised rabbit 

cornea, and it was determined that the cumulative permeation amount of tacrolimus from 

niosomes and the drug retention in the cornea was significantly increased compared with the 

commercial ointment. An In vivo ocular irritation test in rat eyes showed no irritation and good 

biocompatibility with the cornea. In vivo anti-allograft rejection assessment was performed in 

a rat corneal xenotransplantation model. The results showed that treatment with 0.1% 

tacrolimus loaded niosomes delayed the occurrence of corneal allograft rejection and 

significantly prolonged the median survival time of corneal allograft to approximately of 

fourteen days as compared with those treated with 1% cyclosporine eye drops, plain niosomes 

or untreated. The investigated niosomes showed a potential for ocular delivery of tacrolimus 

(12). 
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Cationic lipids have been used with non-ionic surfactants to fabricate cationic niosomes for 

gene delivery, as cationic lipids form complexes by electrostatic interactions upon the addition 

of negatively charged genetic materials. Cationic lipids are considered as “helper” lipids and 

have a marked influence on both the physio-chemical and biological properties of niosome 

gene carriers. Mashal et al. investigated the retinal gene delivery enhancement by lycopene 

incorporated into cationic niosomes based on N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-

trimethylammonium chloride (DOTMA) and Tween 60. Niosomes were prepared by the 

reverse phase evaporation method and characterized for size, zeta potential, PDI and capacity 

to condense, release and protect the DNA against enzymatic degradation. The results showed 

the incorporation of a natural lipid – lycopene to the niosome formulation significantly 

increased transfection efficiency in human retinal pigment epithelial cells without 

compromising cell viability. In vivo administration to the rat retina showed the niosomes were 

able to transfect the outer segment of the retina and indicated their potential application in 

retinal gene delivery (56). Table 5 lists the uses of niosomes in ocular delivery.  

 

7.4 Pulmonary delivery 

Pulmonary drug delivery is preferred over the oral route when treating diseases such as lung 

infection, inflammatory diseases of the respiratory tract, or lung cancer, as drugs are directly 

administered to the site of action for either local or systemic treatment. The lung contains the 

equivalent of approximately 2400 kilometers of airways and 700 million alveoli, with an 

estimated surface area of around 50 to 75 square meters (18,124). This large surface area is 

ideal for drug absorption, and drug delivery devices such as inhalers and nebulizers have been 

used for decades to treat various lung diseases. However, there are some limitations, such as 

the low efficiency of the inhalation systems and uneven drug loading per inhalation from the 

inhaler. Various drugs have been studied for pulmonary delivery including steroids, anti-

tuberculosis drugs, antifungal drugs and antibacterial drugs (18,124-126). Table 6 lists the 

application of niosomes in pulmonary delivery. Proniosomes have been investigated for 

pulmonary delivery of beclomethasone dipropionate. This technique allows the preparation of 

drug in a powder form, which forms niosomes by hydration before administration to patients 

(18). Amphotericin B-loaded niosomes have been studied both in vitro and in vivo for treating 

leishmania and aspergillosis. Researchers found a significant reduction in fungal lung burden 

in a rat model of invasive pulmonary aspergillosis and significant suppression of Leishmania 

donovani liver parasite. These results indicate that amphotericin B loaded niosomal 
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formulations enhanced pulmonary delivery while reducing toxicity by minimizing systemic 

exposure (124).  

 

7.5 Parenteral delivery  

The parenteral route is the most common and efficient way to administer drugs with poor 

bioavailability and narrow therapeutic index (2). Parenteral administration has additional 

advantages, such as a reduction in fluctuation of the steady-state plasma drug level, and 

maximum utilization of medicine. On the other hand, drawbacks include reduced potential for 

dosage adjustments, retrieval of the drug is difficult in case of toxicity, and injections can lead 

to low patient compliance due to needle phobia (69). Some progress has been made using 

nanocarriers, which are capable of achieving targeted drug delivery and sustained release, to 

overcome the problems associated with conventional parenteral delivery formulations (3). 

Niosomal formulations have been reported for parenteral delivery of a variety of drugs (Table 

7). Mukherjee and colleagues compared liposomes and niosomes for parenteral delivery of 

acyclovir. This study aimed to determine whether drug-loaded nanocarriers could achieve 

sustained release to reduce dose-related systemic toxicity. The results indicated that niosomes 

are better carriers for acyclovir as they showed better stability and achieved sustained release 

when compared to liposomes (127). Nystatin is a potent antifungal drug for the treatment of 

fungal infections on the skin and oral cavity. One study encapsulated nystatin in niosomes to 

obtain a safe and effective formulation for parenteral administration for patients with 

neutropenia. Niosomes were prepared with Span 40, Span 60, cholesterol, and positive and 

negative charge inducing agents. Neutral and positively charged niosomes showed the highest 

EE, but in vitro release studies showed that both types of niosomes had sustained release profile. 

In vivo studies demonstrated that nystatin loaded niosomes showed less nephrotoxicity, 

hepatotoxicity and pronounced efficacy in the elimination of fungal burden in experimental 

animals infected with Candida albicans compared with those treated with a drug solution 

injected intraperitoneally (128).  

Mullaicharam et al. investigated lung accumulation of rifampicin loaded niosomes following 

intravenous infusion in rats. Niosomes were prepared with Span 20, 40, 60 and 80 by thin film 

hydration method. The in vivo organ distribution pattern following intravenous injection was 

studied in albino rats to determine the potential of the delivery system for the site targeted 

delivery of rifampicin. A significant difference in the total drug concentration in the lung, liver, 
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kidneys and blood serum was found between the rifampicin loaded niosomes and free 

rifampicin solution (80). Pardakhty and co-workers prepared positively charged niosomal 

formulations containing sorbitan esters, cholesterol and cetyl trimethyl ammonium bromide by 

film hydration method for entrapment of autoclaved Leishmania major (ALM). Niosomes 

containing ALM and free ALM were subcutaneously injected to balb/c mice. Results showed 

that the ALM loaded niosomes had a moderate effect in the prevention of cutaneous 

leishmaniasis and can successfully delay the development of papules in studied animals (129). 

The parenteral route is commonly used in chemotherapy to administer antineoplastic drugs. 

Using niosomes as carriers could achieve selective drug delivery to the tumor site, hence reduce 

toxicity and side effects. For instance, intravenous administration of hydroxycamptothecin 

loaded niosomes to sarcoma 180 ascites tumor-bearing mice lead to a total regression of tumor 

and a slower elimination from the systemic circulation (130). pH-sensitive niosomes are also 

studied for parenteral delivery of anticancer drugs. The tumor targeting effect of these 

niosomes loaded with 5-fluorouracil was demonstrated by accumulation at the tumor site of 

mice transplanted with tumor cells (131). Cisplatin niosomes (CP-NMs) were prepared with 

Span 40 and cholesterol, and their anticancer efficacy was investigated in vivo using rabbits 

bearing VX2 sarcoma. Rabbits were locally injected with either CP-NMs or a drug solution, a 

significant inhibition of tumor growth with much lower mortality, as well as inhibition of tumor 

metastasis to liver and inguinal lymph nodes were observed in the group treated with CP-NMs. 

The results indicated that CP-NMs could be developed as an effective anticancer preparation 

with low toxicity (132). Recently, Shaker investigated tamoxifen citrate (TMC) loaded 

niosomes for localized cancer therapy through in vitro cancer cytotoxicity as well as in vivo 

solid anti-tumor efficacy. Niosomal formulations were prepared with Span 40, 60, 80, Tween 

20 and cholesterol at different molar ratios using the thin film hydration method. Niosomes 

prepared with Span 60 were spherical with an EE up to 92.3%. Sustained release of TMC was 

observed from the optimized niosomal formulation and in vitro studies showed enhanced 

cellular uptake and greater cytotoxicity. In vivo studies were performed using the Ehrlich 

carcinoma mice model and a reduced tumor volume of niosomal TMC was observed when 

compared to the free TMC solution (43). 

 

7.6 Transmucosal drug delivery 

Bioadhesion has been widely studied in the development of pharmaceutics to improve local 

and systemic absorption. Transmucosal drug delivery has gained impressive momentum in the 
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past decade, especially with nano drug delivery systems (133-135). Transmucosal drug 

delivery routes include ocular, nasal, oromucosal (buccal, sublingual and gingival), pulmonary, 

gastrointestinal and vaginal sites. When considering the potential of these sites for drug 

administration, each has distinct features. When designing a suitable drug delivery system, 

these features need to be considered. Niosomes are a versatile drug delivery system and due to 

their advantages, they have been studied for transmucosal delivery of various compounds 

through the oral, nasal and vaginal mucosa (Table 8). Benzocaine proniosomal gel formulations 

were prepared by El-Alim and co-workers using Span 80, Span 80, Span 85, and combinations 

of the three to achieve effective buccal delivery of benzocaine for local anesthesia. EE was 

found to improve with increasing ratio of Span 80 or Span 85, and in vitro drug release studies 

showed an initial burst release followed by a slower release. Formulations prepared with Span 

80 and 85 showed better rate and extent of benzocaine permeation when examined using 

chicken pouch as a model mucosal membrane. Physical stability studies showed more than 90% 

of drug remaining after storage for one month at 4-8C. Benzocaine loaded proniosomes 

improved permeation through the mucosal membrane and could be used for managing mucosal 

pain (133). There is increasing interest in the establishment of protective mucosal immunity, 

which could be achieved by vaccination via mucosal routes. Oral immunization is the safest 

and most convenient means to induce mucosal immunity (3). Orally delivered antigens are 

taken up through the specialized epithelial cells. The selected antigen is then transported into 

the regional lymphoid tissue, stimulating specific B lymphocytes in the germinal canter (136). 

Most antigens are poorly immunogenic when processed through the mucosal surface, 

stimulating only weak or no immunoglobulin response (137). The effective mucosal response 

can be elicited with the use of adjuvants or novel carrier systems. Polysaccharide capped 

particles have several advantages such as increased stability against enzymatic attack and 

improved biochemical stability. Katare and co-workers developed polysaccharide-capped 

niosomes for oral mucosal vaccination of tetanus toxoid. In this study, niosomes were prepared 

by the reverse phase evaporation method using Span 60, Tween 20, stearylamine, and 

cholesterol, before being coated with pullulan derivative (O-palmitoyl pullan). Serum 

immunoglobulin level was measured to assess the immune stimulating effect of the niosomes 

following oral administration. The coated niosomes were able to produce an immune response 

equivalent to injected tetanus toxoid (96).  

Transmucosal delivery through the nasal mucosa has been studied in order to bypass the blood-

brain barrier for brain delivery. The use of this route will eliminate first pass metabolism, 
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reduce side effects as a result of systemic circulation, and improve bioavailability. Niosomes 

that are less than 300 nm can cross the blood-brain barrier; as niosomes can carry both 

hydrophilic and hydrophilic compounds, they have been investigated for delivery of various 

active agents. The study conducted by Abdelrahman et al. formulated elastic niosomes known 

as spanlastics for brain delivery of risperidone. These are sorbitan-based nano particles, 

modified from conventional niosomes by incorporating an edge activator to impart flexibility 

to their membranes. The spanlastics were prepared with Span 60 and polyvinyl alcohol using 

the ethanol injection method.  Ex vivo permeation was conducted using sheep nasal membrane 

to investigate the effect of spanlastics to improve permeation. The optimized formulation 

showed significantly higher transnasal permeation and better distribution to the brain when 

compared with the drug solution. The improvement in brain targeting and percentage of drug 

transported through the olfactory pathway suggests this may be a promising system that can 

effectively carry drug from nose to brain (134).  

Chattaraj and colleagues investigated the nasal mucosal delivery of influenza antigens using 

niosomes. The dehydration-rehydration method was used to encapsulate vital influenza antigen, 

and the influence of the different proportion of surfactant, cholesterol and dicetyl phosphate on 

morphology, particle size, EE and in vitro release was studied. Stability of the antigen 

encapsulated in the vesicles was confirmed by using SDS-polyacrylamide gel electrophoresis 

and immunoblotting. Span 60 based niosomes were found to be best for antigen encapsulation 

(135). Zidan and co-workers investigated the vaginal delivery of an anti-AIDS niosomal gel. 

This study aimed to improve mucoadhesion and skin permeation. According to the (BCS), 

tenofovir is a drug substance with high solubility and low permeability (BCS Class 3). Its poor 

permeation limits its antiretroviral potency. Chitosan was used as a mucoadhesive agent in the 

formulation, and a full factorial design was used to optimize the transmucosal delivery and 

mucoadhesion characteristics. The niosomal gels were characterized by investigating their 

vesicular size, shape and surface charge, drug EE, in vitro release and skin permeation. An ex 

vivo study using porcine vaginal tissue was also assessed. It was found that the mucoadhesion 

percentage was increased by five-fold and was further improved by decreasing the niosomal 

vesicular size and by increasing the surface charge. The formulation did not affect the viability 

of Lactobacillus crispatus, a common commensal bacterium found in the vagina, suggesting 

the niosomal gel could be promising for vaginal delivery of antiviral drugs (138). Another 

study investigated cationic niosomes for intravaginal administration of metformin 

hydrochloride for the treatment of polycystic ovary syndrome (PCOS). In this study, the 
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niosomes were loaded with thermosensitive gel to improve mucoadhesion on the vaginal 

mucosa. Oral administration of metformin is limited by impaired bioavailability and frequent 

dosing for patients with PCOS is required to maintain therapeutic effects, which can ultimately 

influence patient compliance and treatment outcomes. In this study, metformin loaded 

unmodified and cationic small unilamellar niosomes were incorporated with thermosensitive 

gel through the vaginal route. Both types of niosomes were prepared by the reverse phase 

evaporation method and characterized to determine gelation time, gelling temperature, 

viscosity, mucoadhesiveness, and drug release. In vivo studies were conducted on PCOS rats, 

under a scheduled dosage regimen with oral metformin solution or intravaginal gels loaded 

with either small unilamellar niosomes or cationic small unilamellar niosomes. Results showed 

that the gels offered similar advantages as compared to oral metformin solution in the treatment 

of PCOS at lower dose-dosage regimen with negligible side effects. However, no significant 

difference was detected between the gels (28).  

A clinical trial was conducted on niosomal propolis as an oromucoadhesive film for the 

treatment of recurrent aphthous ulceration (RAU). The films were prepared by loading propolis 

in niosomal vesicles and then incorporated into oromucoadhesive films. A total of 24 patients 

suffering from RAU were divided equally into medicated and placebo groups and participated 

in this study to examine the onset of ulcer size duration, complete healing and pain relief for 

two weeks. Results revealed the duration of film adherence lasted from 2 to 4 hours in the two 

groups. The onset of ulcer size reduction in the medicated group was observed within the 

second and third day, pain relief lasted for more than 4 to 5 hours after application, and five 

patients reported complete healing within the five days of treatment, and seven patients had 

complete ulcer healing within the period from day 5 to day 10 of treatment. On the other hand, 

no patients in the placebo group reported healing of ulcer during the first five days of treatment, 

and eight patients had complete ulcer healing from day 10 to day 15 of the treatment (139). 

Priprem and co-workers conducted a clinical trial to investigate the pharmacokinetics of a 

melatonin niosomal oral gel in human subjects. Melatonin loaded niosomal oral gel has been 

formulated in order to overcome the problems associated with poor drug absorption and 

stability. This randomized, double-blind, three phase crossover design recruited 14 male 

volunteers. Melatonin oral gel was applied topically on labial mucosa at doses of 2.5, 5 and 10 

mg with seven days washout for each period. The pharmacokinetic parameters that were 

determined included the maximum plasma concentration (Cmax), area under the curve (AUC), 

time to peak concentration (Tmax) and elimination half-life (t1/2). Possible side effects including 
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nausea, vomiting, headache, and irritability were also evaluated in the study. Results showed 

that the three different doses of melatonin niosomal oral gel provided dose-proportional 

pharmacokinetic profiles, extended the absorption process and improved plasma concentration, 

time to maximum plasma concentration and half-life compared to conventional immediate 

release oral dosage forms (140).  

 

7.7 Cosmetic applications of niosomes  

Niosomes were first developed and patented by a cosmetic company L’Oréal (Clichy, France) 

in 1975, and products were launched under the trade name of Lancôme (Paris, France) in 1987. 

Since then, a wide range of pharmaceutical applications and a variety of cosmetic products 

were developed and marketed with various functions, such as anti-wrinkle, skin whitening, 

moisturizing and sunscreen (141,142). Some examples of commercialized cosmetic products 

containing bioactive compounds loaded in niosomes are listed in Table 9.  

Niosomes have been widely investigated as a carrier system for cosmetic actives because of 

their advantages such as improved stability of entrapped active ingredients, enhanced skin 

penetration, bioavailability, improved surface adhesion and sustained release properties (143). 

The usefulness of niosomes in cosmetic formulations has been evaluated with respect to 

conventional formulations such as emulsions. Niosomes showed lower toxicity, allowing 

controlled delivery of the loaded active ingredients that exhibit useful properties for skin 

moisturizing and tanning products (144). Some bioactive ingredients extracted from plant 

materials are of particular interest in cosmetic research; these compounds possess beneficial 

effects such as antioxidant and anti-aging. A large number of plant-based bioactive compounds 

have been investigated using niosomes to improve their effects on the skin. Pando and co-

workers prepared liposomes and niosomes for topical delivery of resveratrol; olein was used 

as a penetration enhancer for both vesicles. Negatively charged vesicles with a mean size 

around 200 nm were obtained. Results showed high accumulation and low transdermal delivery 

of resveratrol for both vesicles when compared with the control; this phenomenon was more 

significant for niosomes, which showed better behavior for cutaneous delivery of resveratrol 

(145). Curcuminoids found in turmeric are major bioactive substances that possess antioxidant, 

anti-inflammatory and anti-cancer properties. These were encapsulated in niosomes for 

enhancement of skin permeation and an EE of 83% was obtained. An in vitro penetration study 

showed that niosomes significantly enhanced permeation of curcuminoids when compared 

with the control solution. The fluxes of curcumin, desmethoxycurcumin, and bis-
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desmethoxycurcumin were 1.117, 0.273 and 0.057, consistent with the lipophilicity of the three 

compounds, showing improved properties of curcuminoids by encapsulation in niosomes for 

skin delivery (146). Elastic and non-elastic niosomes loaded with gallic acid isolated from 

Terminalla chebula galls were investigated for transdermal absorption. Both niosomes showed 

negative zeta potential in the size range of 200 to 400 nm. The percentages of gallic acid in 

non-elastic niosomes were higher than in elastic niosomes. An in vivo penetration study showed 

elastic niosomes exhibited higher percentages of gallic acid through rate skin than non-elastic 

niosomes. The authors concluded that niosomes, especially elastic niosomes, were able to 

enhance chemical stability and skin penetration of gallic acid and could be useful carriers for 

skin anti-aging molecules (65). Niosomes loaded with caffeine for treatment of cellulite were 

formulated and evaluated by Mahmoud and co-workers for the treatment of cellulite. Histology 

revealed a significantly greater reduction in the size and thickness of the fatty layer of rat skin 

for the niosomal gel containing system, when compared to the commercial product Cellu 

Destock®. Further, a higher plasma concentration of caffeine was observed in the niosomal 

group, indicating that incorporation of caffeine into a niosomal system improved penetration 

through the skin and into the underlying fatty layer. This presents a promising approach for the 

formulation of a transdermal anti-cellulite product of caffeine in a niosomal gel system with 

improved transdermal bioavailability (147). Similarly, a transdermal gel prepared with elastic 

niosomes loaded with papain has been investigated in comparison with polymeric 

nanoparticles. Elastic niosomes demonstrated enhanced penetration of papain in rat skin, better 

transdermal absorption, and reduced scar formation when compared with polymeric 

nanoparticles (24).  Ellagic acid (EA) is a potent antioxidant. However, its application is limited 

by poor solubility and low permeability. EA niosomes prepared with Span 60 and Tween 60 

have been investigated in transdermal delivery. The results showed that the niosomal 

formulation could enhance skin penetration when compared to the EA solution, by improving 

its distribution in the human epidermis and dermis layer (120).  

 

7.8. Targeted drug delivery 

Targeted drug delivery by niosomal systems can be achieved by two approaches. Firstly, 

passive targeting of the reticuloendothelial system (RES), which is a part of the immune system 

that comprises phagocytic cells located in reticular connective tissue. The circulating serum 

factor, opsonin, marks the niosomes for clearance by macrophages (114). Agrati et al. showed 

that Tween 20 niosomes have intrinsic selectivity to phagocytic cells such as macrophages. For 
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this reason, niosomes can be used to treat infectious diseases in which the infecting organism 

resides in the RES. Secondly, niosomes can be conjugated with functionalized ligands to 

achieve targeting to specific organs or tissues (148). Bragagni and colleagues developed a 

brain-targeted delivery system loaded with doxorubicin for cancer. Niosomes prepared in this 

work were conjugated with a glucose derivative N-palmitoyl glucosamine ligand. Intravenous 

injection of this formulation to rats resulted in reduced drug accumulation of doxorubicin in 

other organs such as the heart, longer blood circulation time and an increased brain 

concentration with respect to the commercial formulation of the drug (149). The same 

functionalized niosomes were also studied for brain-targeted delivery for dynorphin-B. In vivo 

studies in mice by intravenous injection of the niosomal formulation showed a significantly 

higher antinociceptive effect compared with the drug solution at the same concentration (47). 

Another study explored the possibility of a combination of the PEGylated niosomes and active 

targeting function of transferrin by transferrin receptor-mediated endocytosis to promote drug 

delivery to solid tumor following intravenous injection with hydroxycamptothecin as the model 

drug. Niosomes were prepared by thin film hydration method, and periodate-oxidated 

transferrin was coupled to polyethylene glycol to produce the active targeting niosomes (Tf-

PEG-NS). The strongest cytotoxicity to three carcinomatous cell lines in vitro was 

demonstrated by Tf-PEG-NS when compared with drug solution, non-stealth niosomes, 

PEGylated niosomes, Tf-PEG-NS showed the most powerful anti-tumor activity with the 

inhibition rate of 71% against S180 tumor in mice, suggesting transferrin modified PEGylated 

niosomes could be promising for delivering anti-tumor drugs to tumor (150). 

 

8. Delivery of bioactive compounds  

Nanocarriers such as liposomes, solid lipid nanoparticles and niosomes have been investigated 

to deliver vitamins, plant constituents and other bioactive compounds. Modifying the 

pharmacokinetics of phytochemicals may enhance or modulate delivery to the target site and 

achieve better effect upon administration. Various natural products have been loaded into 

niosomes, such as ginkgo biloba extract, curcumin, rutin, and rice bran extract. Table 10 lists 

the application of niosomes in bioactive delivery (24,72,109,151-154). These formulations 

were prepared for various routes of administration, including dermal, oral, subcutaneous and 

rectal. Ginkgo biloba extract (GbE) loaded niosomes showed improved in vivo distribution 

after oral administration when compared to conventional GbE tablets (151). Silymarin is an 
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active extract from milk thistle, a complex of flavonolignans and polyphenols that has poor 

bioavailability. A niosomal formulation was developed and in vivo studies performed in albino 

rats showed a significant reduction in both transaminase level as well as in serum alkaline 

phosphatase level after subcutaneous injection when compared with silymarin suspension 

(154). Moreover, the biochemical markers assessed showed an excellent antioxidant activity 

of the niosomal formulation (155).  

 

9. Limitations and perspectives 

Niosomes have attracted a great deal of attention in controlled drug delivery because of many 

advantages, such as biodegradable, biocompatible, chemical stability, able to improve the 

therapeutic performance of drug molecules by modulating drug release. Despite numerous 

studies and with respect to the fact that niosomes have a long way to become a clinical reality, 

there are still multiple and serious challenges regarding the niosomes. The major obstacle that 

hinders the utilization of niosomes as potential drug delivery system is sterilization. Heat 

sterilization such as dry heat and steam sterilization are inappropriate and destructive for lipid 

or surfactant-based formulations with a gel liquid transition temperature lower than the 

temperature used in the sterilization process, as heat can cause extensive drug leakage from the 

vesicles due to the destruction of the bilayer membranes (3). Similarly, membrane filtration is 

not suitable for niosomes that are larger than the pore size (0.22 µm) of the membrane filters. 

Preparation under aseptic conditions could be a possible solution, as well as methods that 

generate minimal heat such as gamma irradiation. Niosomes can be prepared under aseptic 

conditions by filtering all organic solvent, buffer, surfactant solution, and drug solution through 

anti-bacterial filters, autoclaving glassware and working under aseptic conditions in a laminar 

fume hood that produces sterile airflow. The gamma sterilization process uses Cobalt 60 

radiation to kill microorganisms, which yields quick turnaround time and can easily penetrate 

packaging and products as a minimal amount of heat is generated. Many marketed 

pharmaceutical products such as eye ointments, drops and injectable preparations are gamma 

radiation sterilized (157). This method could potentially be applied onto niosomes, and hence 

the effect of gamma irradiation on the physical and chemical stability of niosomes can be 

studied in future work. 

Surfactants as building components of niosomes have the most critical role in the formation 

and properties of these carriers, and potential toxicity of surfactants is another limitation. 
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Segregation of surfactants may cause some degree of toxicity; there is not enough research 

about the toxicity of niosomes as minimal studies have been conducted on this topic. Hofland 

et al. evaluated the inhibition of human keratinocyte cell proliferation by different niosomal 

formulations, in particular, the effect of surfactants and concentration of cholesterol. The 

surfactants were of different hydrocarbon chain length and polyoxyethylene chain length. 

Ether- and ester-type surfactants were also investigated. The study reported that both the 

hydrocarbon chain and the polyoxyethylene chain length had minor effects on cell proliferation. 

However, the bond by which the alkyl chain was linked to the polyoxyethylene head group 

significantly influenced cell proliferation.  Ester-type surfactants were less toxic compared to 

the ether-type surfactants, which was attributed to enzymatic degradation of the ester bond. 

Cholesterol in the bilayers has not been found to affect cell proliferation  (158,159). Niosomes 

prepared using Bola-surfactants showed safety and tolerability both in vitro on human 

keratinocytes up to incubation of 72 hours and on human volunteers, with no skin erythema 

observed when topically treated with drug-free Bola niosomes (160). Recently, the ocular 

toxicity of niosomes has been investigated by measuring conjunctival and corneal irritation 

potential of Span 60 niosomes and surface modified Span 60 niosomes using hen’s egg 

chorioallantoic membranes and excised bovine corneal opacity and permeability models. The 

study showed minimal ocular irritations and suggesting good ocular tolerability for niosomes 

(26). Currently, data related to the cytotoxicity of niosome as well as surfactant molecules have 

been reported by many papers; however, there are no specific studies aimed to investigate 

toxicity after administration in animal models, particularly in long term studies. Filling the gap 

in research on long term tolerability of using surfactant-based systems would be fundamental 

before reaching clinical reality.  

From the vast literature on niosomes, it appears that not much attention was focused on 

exploring the possibility of using amphiphilic molecules are biologically active or can serve as 

targetable ligands, into bilayer vesicles. However, very few materials with dual qualities such 

as amphiphilicity and biological activity may be available. Therefore, it would be useful to 

synthesize such amphiphilic materials which can be converted into bilayer vesicles for drug 

delivery. Uchegbu and co-works were working on these compounds; for example, they 

synthesized palmitoyl muramic acid and N-palmitoyl glucosamine and prepared niosomes with 

these materials (161). 1-O-Alkyl glycerols isolated from shark liver oil have several biological 

activities, including macrophage activation and natural killer cell activation. They also have a 

prominent effect on blood barrier permeability and studies have shown that they markedly 

improve brain uptake of anti-cancer agents (162). Due to their surface-active properties, 
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Gopinath and his group have converted them into bilayer vesicles called algosomes. These 

vesicles are spherical and are capable of encapsulating drugs in the aqueous regions of the 

bilayer. However, they are osmotically sensitive, vulnerable to electrolytic destabilization and 

are stable for only a few days. Later, the same group developed ascorbyl palmitate vesicles 

(aspasomes) using ascorbyl palmitate. Several eater derivatives of ascorbic acid were 

synthesized to transfer the peculiar antioxidant properties of ascorbic acid in lipophilic media 

and to improve its stability, all of them retained the antioxidant property of the ascorbyl moiety 

and are amphiphilic. Ascorbyl palmitate is one of the derivatives, more stable than ascorbic 

acid and its lipophilic character is beneficial for skin penetration. Aspasomes prepared with 

this compound showed better antioxidant property when compared to ascorbic acid, and 

enhanced penetration of across the rat skin (29). The antioxidant property and skin permeation 

enhancing properties of aspasomes indicate a promising future for application as transdermal 

drug delivery systems in disorders implicate with reactive oxygen species. Thus, vesicles with 

biological activity or with a targeting function in addition to carrier properties will have an 

added advantage to increase the efficiency of niosomes, which can be an exciting area to study 

in the future.  

Currently, there are four main approaches to develop and extend the application of niosomes 

in the pharmaceutical field. The first approach aims to enhance the efficiency of targeted drug 

delivery by decorating niosomes with ligands. Encapsulation of drug in nano-vesicles is not 

enough for the successful delivery of drugs to areas such as the central nervous system; specific 

targeting is required to elevate the specific uptake and permeability of drugs across the blood-

brain-barrier. The second approach focuses on developing and optimizing novel techniques 

that improve the quality of niosomes and provide the possibility for scale-up in industrial 

production. Most niosomes are prepared by traditional methods, such as thin film rehydration, 

reverse phase evaporation, and ether injection method. These methods require the removal of 

organic solvents and they are expensive and time-consuming. To overcome these problems, 

Khan et al. developed a simple probe sonication method, which is an eco-friendly green 

technique with no addition of organic solvents (163). Besides, it is a low-cost and straight 

forward technique. In this method, only aqueous phase of the drug is mixed with surfactant, 

cholesterol and other surface additives, and subjected to ultra-sonication with a probe. 

Niosomes prepared by this technique were smaller with higher monodispersity and faster drug 

release as compared to niosomes prepared by traditional methods. By the third approach, new 

generations of niosomes for drug delivery and development of cosmeceutical products in 

practice have been continuously discovered and introduced with numerous outstanding features: 
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better stability, deformability, elasticity, enhanced skin permeation, the newer generation of 

niosomes including proniosomes, aspasomes, elastic niosomes and cationic niosomes. 

Proniosomes exhibits excellent stability owing to its potential to surmount physical instability 

including aggregation or fusion, leaking of entrapped drugs and sedimentation. They provide 

an additional convenience of transportation, distribution, storage and dosing. However, most 

of publications were focused on the utilization of proniosomes in transdermal drug delivery. 

Application of proniosomes can be further explored in areas such as aerosol drug delivery due 

to their unique properties. Elastic niosomes formed with the addition of edge activators such 

as sodium cholate and ethanol, they are superior to conventional niosomes for transdermal 

delivery due to its flexibility and deformability of being able to squeeze itself through pores on 

the skin which are much smaller than its diameter. The fourth approach involves the 

development of hybrid systems consists of niosomes and vehicles such as gel matrices. The 

hybrid system not only aims to improve drug release profile but also to obtain an adequate 

formulation with better patient acceptability. These four approaches of development will 

continuously be developed to adapt to the higher advancement of the pharmaceutical industry; 

more advanced niosomes will continuously be introduced in order to achieve targeted and site-

specific drug delivery.  

 

10. Conclusion  

In recent years, niosomes have been extensively studied for various applications, from topical, 

transdermal, oral to brain-targeted drug delivery. They are easy to prepare at a low cost as well 

as being able to achieve higher EE than their analog system, liposomes. This versatile drug 

delivery system has great potential in the fields of pharmaceutical and cosmetic sciences. 

Niosomes are promising delivery systems, their potential can be further enhanced by novel 

preparation, modification methods and novel formulation components, which allow them to 

achieve targeted delivery, better drug entrapment efficiency and develop vesicles with special 

structures. 
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Tables 

Table 1. Advantages and disadvantages of niosome preparation methods. 

Preparation method Advantages Disadvantages References 

Thin film hydration 

(hand shaking) 

method 

An easy technique for 

laboratory researches 

Involves the use of 

organic solvents 

(3,67,68) 

Ether injection 

method 

An easy technique for 

laboratory researches 

Cannot be used for heat 

labile drugs 

(3,46) 

Reverse phase 

evaporation method 

High drug EE Involves the use of 

organic solvents 

(69) 

Trans-membrane pH 

gradient drug uptake 

process 

High drug EE Involves the use of 

organic solvents 

(70) 

Emulsion method An easy technique for 

laboratory research 

Involves the use of 

organic solvents 

(2) 

Lipid injection 

method 

No organic solvents 

involved 

Cannot be used for heat 

labile drugs 

(2) 

Niosome prepared 

using micelle solution 

and enzymes 

No organic solvents 

involved 

The active ingredient 

may be degraded by 

enzymatic degradation 

(1) 

Bubble method No organic solvents 

involved 

Cannot be used for heat 

labile drugs 

(71) 

Micro fluidization No organic solvents 

involved 

Cannot be used for heat 

labile drugs 

(2) 

Formation of 

niosomes from 

proniosomes 

No organic solvents 

involved 

Better physical stability 

Complex process 

Complete drug 

entrapment may not be 

(2,20,21) 



 53 

possible during 

hydration 

Supercritical reverse 

phase evaporation 

method 

No organic solvents 

involved 

 

Special equipment 

required for this method 

(72) 
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Table 2. Characterization techniques for niosomes. 

Parameters Applied techniques or methods Reference 

Particle size and 

distribution 

Dynamic light scattering, Scanning electron 

microscopy (for solid samples), Transmission 

electronic microscopy (for liquid samples) 

(3) 

Morphology Transmission electronic microscopy, Negative-

staining transmission electronic microscopy, 

Freeze-fracture transmission electronic microscopy, 

Atomic force microscopy, Scanning electron 

microscopy, Cryo-scanning electron microscopy 

(2,23,76) 

Zeta potential Laser doppler anemometry (45,77,78) 

Bilayer 

characterization 

Fluorescence polarization (60) 

Vesicle stability Dynamic light scattering, microscopic techniques (20,49,55,67,79) 

EE UV-spectrometer, High performance liquid 

chromatography and Fluorescence 

(80-82) 

In vitro release Dialysis, Franz diffusion cells (22,25,34,76,78,83-

85) 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Examples of niosomes that have been investigated for oral drug delivery. 
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Drug  Surfactant Method of Preparation Reference 

Celecoxib Span 60 Proniosome derived niosome 

method 

(15) 

Diacerein Sorbitan monolaurate and 

poloxamer 184 

Thin film hydration (57) 

Ganciclovir Span 40 and 60 Reverse phase evaporation (95) 

Methotrexate Tween 80 Thin film hydration (48) 

Paclitaxel Span 40 Thin film hydration (91) 

Plasmid DNA 

for Hepatitis B 

Span 60 Reverse phase evaporation (69) 

Tetanus toxoid Span 60 and ween 20 Reverse phase evaporation (96) 

Tramadol  Tween 80, Tween 40, 

Span 80 and 40 

Proniosome derived niosome 

method 

(94) 

Valsartan Span 60 Proniosome derived niosome 

method 

(92) 

 

 

 

 

 

 

 

 

 

 

Table 4. Examples of niosomes that have been investigated for dermal and transdermal delivery. 

Drug  Surfactant Method of Preparation Referenc

e 

Acetazolamide Span 60 Thin film hydration (76) 
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Antioxidant enzyme 

catalase 

Sugar ester surfactants Thin film hydration (118) 

Artemisone Span 60 Thin film hydration  (83) 

Capsaicin Span 60 Thin film hydration (62) 

Diacerein Span 60 Thin film hydration (53) 

Diclofenac 

diethylammonium 

Tween 61 and Span 60 Thin film hydration (23) 

Ellagic acid Span 60 and Tween 60 Reverse phase evaporation (109) 

Ellagic acid Span 60 and Tween 60 Reverse phase evaporation (120) 

Enoxacin Span 40 and Span 60 A combination of ethanol 

injection and freeze drying 

(58) 

Estradiol Span 40, 60 and 85 Proniosome derived 

niosome method 

 

(105) 

Febuxostat Tween 20 and Span 60 Thin film hydration  (106) 

Finasteride Brij 52, 72, 97 and 

Span 40 

Thin film hydration (116) 

Gallidermin Tween 61 Freeze dried (40) 

Hydroxychloroquine Pluronic 27, Brij 98, 

Tween 20, 40, 65 and 

80, Span 20, 40, 60 and 

80 

Reverse phase evaporation (73) 

Itraconazole Span 40 and Span 60 Thin film hydration (114) 

Lacidipine Span 60 Thin film hydration (74) 

Methotrexate Span 60 Thin film hydration (98) 

Minoxidil Brij 52,76 and Span 20, 

40, 60 and 80 

Thin film hydration (35) 

Moxifloxacin Span 20 and 60, Tween 

20, 40, 60 and 80 

Thin film hydration  (119) 

N-terminal Tat-GFP 

fusion protein 

Tween 61 Freeze dried liposome 

method 

(99) 

Papain Tween 61 Thin film hydration (122) 
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Plasmid DNA 

(Hepatitis B) 

Span 85 Reverse phase evaporation (117) 

Propolis Span 60 Ethanol injection method (49) 

Resveratrol Span 80 Thin film hydration and 

ether injection 

(75) 

Resveratrol Gelot 64 Thin film hydration and 

ethanol injection 

(97) 

Risperidone Tween 20, 60 and 80, 

Span 20, 40, 60, 80 

Proniosome derived 

niosome method 

 

(110) 

Roxithromycin  Span 60 Thin film hydration (22) 

Salidroside Span 40 Thin film hydration (104) 

Sulfadiazine sodium Pluronic L64 and P105 Modified lipid film method (85) 

Sumatriptan 

succinate 

Brij 72, Eumulgin B2, 

Span 60 and 80 

Thin film hydration (45) 

Tenoxicam Span 80 and 60, Tween 

20 and 60 

Proniosome derived 

niosome method 

(coacervation phase 

separation) 

(112) 

Tramadol Span 20, 40, 60 and 80, 

Tween 20, 40, 60 and 

80 

Proniosome derived niosome 

method (coacervation phase 

separation) 

(100) 

Tretinoin Brij 30, Span 40 and 60 Thin film hydration (79) 

Tretinoin Pluol Oleique CC Thin film hydration (115) 

Tretinoin Alkyl polyglucoside Thin film hydration (101) 

Ursolic acid Span 60 Thin film hydration (50) 

Vitamin E Tween 80 and Span 20 Emulsion evaporation (102) 

8-methoxypsoralen Span 40 and 60 Thin film hydration (55) 

Sulfasalazine, 

propranolol, tyrosol 

Pluronic L64, sodium 

bis(2-ethylhexyl) 

sulfosuccinate) 

Thin film hydration (108) 
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Table 5. Examples of niosomes that have been investigated for ocular delivery. 

Drug Surfactant Method of Preparation Reference 

Gatifloxacin Span 60 Solvent injection method (77) 

Naltrexone Span 60 Reverse phase evaporation (122) 

Plasmid pCMS-

EGFP 

Tween 80 Emulsification and thin film 

hydration 

(13) 

Plasmid pCMS-

EGFP 

DOTMA and Tween 

60 

Reverse phase evaporation (56) 

Plasmid pCMS-

EGFP 

Tween 80 Solvent emulsification 

evaporation 

(123) 
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Tacrolimus Poloxamer 188 and 

lecithin 

Proniosome derived niosome 

method 

(11) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6. Examples of niosomes that have been investigated for pulmonary delivery. 

Drug Surfactant Method of Preparation Reference 

Amphotericin B Tween 80 - (124) 

Beclomethasone 

dipropionate 

Span 60 Thin film hydration and 

Proniosome derived 

niosome method 

(18) 

Ciprofloxacin Span 60 and Tween 

60 

Thin film hydration (126) 

Glucocorticoid Tween 20 Thin film hydration (125) 
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Table 7. Examples of niosomes that have been investigated for parenteral delivery.                                     

Drug Surfactant Method of Preparation Reference 

Acyclovir Span 20, 40, 60 and 

80 

Thin film hydration (127) 

Autoclaved 

Leishmania Major 

Span 20, 40, 60 80 

and Tween 20, 40, 

60, 80 

Thin film hydration (129) 

Cisplatin Span 40 Emulsion method (132) 

5-fluorouracil pH-sensitive 

niosomes 

Thin film hydration-probe 

ultrasound method 

(131) 

Gentamycin Span and Tween 

surfactants 

Thin film hydration (66) 
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Hydroxycamptothecin Span 60 Thin film hydration (130) 

Nystatin Span 40 and 60 Thin film hydration (128) 

Rifampicin Span surfactants Thin film hydration (80) 

Tamoxifen Span 40, 60, 80 and 

Tween 20 

Thin film hydration (43) 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8. Examples of niosomes that have been investigated for transmucosal delivery.                                     

Drug Surfactant Method of Preparation Target delivery 

site  

Reference 

Benzocaine Span 80 and 

Span 85 

Reverse phase 

evaporation method 

Buccal mucosa (133) 

Influenza 

antigens 

 Dehydration-rehydration 

method 

Nasal mucosa (135) 

Metformin Span 80 Reverse phase 

evaporation method 

Vaginal mucosa (28) 

Risperidone Span 60 Ethanol injection method Nasal mucosa (134) 

Tenofovir Span 20, 40 

and 60 

Proniosome derived 

niosome method 

Vaginal mucosa (138) 

Tetanus 

toxoid 

Span 60 and 

Tween 20 

Reverse phase 

evaporation method 

Oral mucosa (96) 
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Table 9. Commercial cosmetic products containing niosomes. 

Product Name Marketed by Functions 

Niosome Plus Lancôme®  

(Clinchy, France) 

Foundation, clear and 

balance skin tone 

Niosome Plus perfected age 

treatment 

Lancôme® 

(Clinchy, France) 

Anti-wrinkle 

Mayu Niosome Base Cream Laon Cosmetics® 

(Seoul, Korea) 

Whitening and hydrating 

Anti-Age Response Cream Nouvelle-HAS cosmetics® 

(Varese, Italy) 

Anti-wrinkle 

Identik Masque Floral 

Repaire 

Identik® 

(Paris, France) 

Hair repair masque 

Indentik Shampooing Floral 

Repair 

Identik® 

(Paris, France) 

Hair repair shampoo 

Eusu Niosome Makam Pom 

Whitening Facial Cream 

Eusu® 

(Bangkok, Thailand) 

Whitening 
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Anne Möller Anti-Fatigue 

Eye Contour Roll-On 

Anne Möller® 

(Barcelona, Spain) 

Anti-puffiness and 

moisturizing 

 

 

 

 

 

 

 

 

 

Table 10. Examples of niosomes that have been investigated for bioactive delivery. 

Natural product Surfactant Method of Preparation Reference 

Curcumin Span 60, 80 and Tween 

20 

Proniosome derived niosome 

method 

(156) 

Ginkgo biloba extract Span 80 and Tween 80 Thin film hydration (151) 

Rice bran extract Tween 61 Thin film hydration  (72) 

Silymarin Span 60 and 40 Thin film hydration (154) 

Rutin Span 60 Thin film hydration (153) 

Resveratrol Span 60 and Span 80 Thin film hydration (7) 

Embelin Span 60 Thin film hydration (155) 
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Figure Captions 

Figure 1. The different types of surfactants. 

Figure 2. The most used surfactants. 

Figure 3. Chemical structure of cholesterol. 

Figure 4. Schematic structure of a single-chain surfactant, v is the hydrophobic group volume, 

lc is the hydrophobic group length, and a0 is the area of the hydrophilic head group. 

Figure 5. (a) Small unilamellar (SUV) (10 to 100 nm), (b) large unilamellar (LUV) (0.1 to 1 

µm) and (c) multilamellar vesicles (MLV) (0.5 µm to 10 µm). 

Figure 6. Schematic representation of the different types of surfactant based vesicular delivery 

systems. (a) Niosomes (b) elastic niosomes and (c) transfersomes. 

Figure 7. Schematic diagram of the preparation of niosomes using thin film hydration (hand 

shaking) method. 

Figure 8. Schematic diagram of the preparation of niosomes via ether injection method. 

Figure 9. Schematic diagram of the preparation of niosomes via the reverse phase evaporation 

method. 

Figure 10. Schematic diagram of the preparation of niosomes via the trans-membrane pH 

gradient drug uptake process. 

Figure 11. Schematic diagram of the preparation of niosomes using the emulsion method. 

Figure 12. Schematic diagram of the preparation of niosomes via lipid injection method. 

Figure 13. Schematic diagram of the preparation of niosomes using micellar solution and 

enzymes. 

Figure 14. Schematic diagram of the preparation of niosomes via the bubble method. 

Figure 15. Schematic diagram of the preparation of niosomes using the microfludization 

method. 

Figure 16. Schematic diagram of the preparation of proniosomes via coacervation phase 

separation method. 

Figure 17. Possible mechanisms of action of niosomes for dermal and transdermal drug 

delivery, (A) drug molecules released by a niosome; (B) adsorption of niosome and fusion with 
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SC; (C) intact niosome/elastic penetration through intact SC; (D) components of niosomes act 

as penetration enhancer to enhance drug absorption; (E) niosome penetration through hair 

follicles or pilosebaceous units (not to scale) (modified from El Maghraby et al., 2006 (103). 
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Figure 1. The different types of surfactants. 
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Figure 2. The most used surfactants.  
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Figure 3. Chemical structure of cholesterol. 
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Figure 4. Schematic structure of a single-chain surfactant, v is the hydrophobic group volume, 

lc is the hydrophobic group length, and a0 is the area of the hydrophilic head group. 
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Figure 5. (a) Small unilamellar (SUV) (10 to 100 nm), (b) large unilamellar (LUV) (0.1 to 1 

µm) and (c) multilamellar vesicles (MLV) (0.5 µm to 10 µm). 
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Figure 6. Schematic representation of the different types of surfactant based vesicular delivery 

systems. (a) Niosomes (b) elastic niosomes and (c) transfersomes. 
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Figure 7. Schematic diagram of the preparation of niosomes using thin film hydration (hand 

shaking) method. 
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Figure 8. Schematic diagram of the preparation of niosomes via ether injection method. 
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Figure 9. Schematic diagram of the preparation of niosomes via the reverse phase evaporation 

method. 
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Figure 10. Schematic diagram of the preparation of niosomes via the trans-membrane pH 

gradient drug uptake process. 
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Figure 11. Schematic diagram of the preparation of niosomes using the emulsion method. 
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Figure 12. Schematic diagram of the preparation of niosomes via lipid injection method. 
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Figure 13. Schematic diagram of the preparation of niosomes using micellar solution and 

enzymes. 
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Figure 14. Schematic diagram of the preparation of niosomes via the bubble method. 
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Figure 15. Schematic diagram of the preparation of niosomes using the microfludization 

method. 
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Figure 16. Schematic diagram of the preparation of proniosomes via coacervation phase 

separation method. 
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Figure 17. Possible mechanisms of action of niosomes for dermal and transdermal drug 

delivery, (A) drug molecules released by a niosome; (B) adsorption of niosome and fusion with 

the SC; (C) intact niosome/elastic penetration through intact SC; (D) components of niosomes 

act as penetration enhancer to enhance drug absorption; (E) niosome penetration through hair 

follicles or pilosebaceous units (not to scale) (modified from El Maghraby et al., 2006 (103). 

 

 

 

 




