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Abstract

Decision making is widespread in many domains, including aircraft collision avoidance, au-

tonomous driving and space exploration. Except for highly engineered environments, uncer-

tainties are unavoidable and can not be ignored. It challenges the decision maker to figure

out rational actions and solving such problems in large and complex scenarios are even harder.

This thesis provides new perspectives to alleviate the difficulty of solving large-scale decision

making problems under uncertainty.

The first decision making model considered is the stochastic Multi-Armed Bandit (MAB).

It is an important model for studying the exploration-exploitation tradeoff. In this problem, a

gambler has to repeatedly choose between a number of slot machines (arms) to maximize the

total payout. The outcome of playing arms is stochastic and the total number of plays is fixed.

To solve large-scale MABs, we introduce a method, called Cross-Entropy-based Multi-Armed

Bandit (CEMAB), adopting the Cross-Entropy method as a noisy optimizer. Various MAB

testing cases are used to compare the performance of CEMAB and different competitors. The

results show that CEMAB is promising when the size of the arm space is large.

Making principled decisions in the presence of uncertainty is often facilitated by using the

powerful framework of Partially Observable Markov Decision Processes (POMDPs). However,

precisely because of its generality, solving this problem exactly is computationally intractable.

Recently, approximate POMDP solvers have shown to be able to compute good decision strate-

gies, but handling POMDPs with large action spaces remains difficult. We propose a sampling

method called Quantile-Based Action Selector (QBASE) that can scale up to very large prob-

lems. We employ several scalable robotics scenarios with up to 100,000 actions to evaluate the

performance of the proposed technique. Based on numerical experiments, QBASE performs

significantly better than POMCP, a state-of-the-art solver, when the size of action space is large

(>100).

Finding the best performance of POMDP solvers involves parameter optimization. It is

usually done by searching for the good performing settings off-line, which unavoidably adds

an extra burden to users. We extend QBASE to identify parameters automatically within the
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planning time, called Adaptive Parameter Sampling (APS-QBASE). Two tasks with up to one

million possible actions are used in numerical experiments. We find that APS-QBASE can

achieve a higher policy quality than several on-line POMDP approaches with different action

selectors, including QBASE and an enhancement of POMCP for handing large action spaces.

A sensitivity study of APS-QBASE suggests that the proposed method can significantly reduce

the difficulty of setting good parameters.
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Chapter 1

Introduction

1.1 Motivation

Decision making is important and widespread in engineering, computer science, operation re-

search, economics and so on. In many problems, an agent has to make decisions sequentially

to complete a given task. In other words, the decision made now has to consider not only the

results of immediate effect but also the future impacts. Moreover, the agent inevitably has to

deal with various types of uncertainties in the real world. For example, the effects of actions are

not precisely known, sensors and sensing are erroneous, and information about the operating

environment is imperfect. How should the agent decide what action to take now, so that it will

reach its goal optimally and reliably, despite these types of uncertainties?

As an illustration, consider a Navigation problem where the agent moves in a grid world

(Figure 1.1). The robot starts from the cell marked with start and tries to reach the cell marked

with money with the minimum cost. If it decides how to move at the start only based on one

action, moving up and right has equal benefits. However, in the long-run, moving right

from the start will force the agent to take a more expensive route to the goal. Therefore, a better

approach is to consider sequences of actions to reach the goal, rather than a single step action.

Now, consider the sequential decision making problem when the agent is experiencing two

types of uncertainties: uncertainty in the effects of performing actions and uncertainty in percep-

1
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Figure 1.1: Illustration of the Navigation in a grid world. The agent has four possible move-
ments (up, down, left, right). Moving to the obstacle cell (black) is prohibited. The agent
receives a reward of +1 when it reaches the cell with “money”, and incurs a cost of 1 when it
enters the cell labelled with “warning”. Moving out of any other cells incurs a cost of 0.04.

tion. For instance, the mobile robot may move slower than expected (from its motion equation)

due to the unknown friction coefficient of the surface, and it may not know its exact location on

the map because the GPS signal is influenced by high-rise buildings. Many practical problems

of interest share one or more properties motivated by the Navigation example. Those properties

are:

• Sequential. The decision at each step depends on the previous decisions, and thus influ-

ences future decisions.

• Uncertain. Three types of uncertainties are considered:

– Reward. The outcome of reward function can be noisy.

– Transition. The effect of an action can be stochastic.

– Perception. The agent cannot determine its exact position.

• Large-Scale. For example, the state space can be very large (say 1032 possible states)

and/or the action space can be large as well (e.g., a million possible discrete actions).
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1.2 Background

The Partially Observable Markov Decision Process (POMDP) (Sondik, 1971) is a mathemat-

ically principled model for sequential decision making under uncertainty. A POMDP can be

described as follows. At each step, an agent is in some hidden true state and takes an action. It

moves to the next state according to some state-transition function. This next state is partially

perceived via an observation function. After each step, the agent receives a reward. This process

repeats. One possible objective function is to maximize its expected (discounted) total reward.

Now, due to the uncertainty in the effects of actions and in perception, the agent never knows

its exact state. Instead, it maintains an estimate of the current state in the form of a belief. Even

though a POMDP is a nice mathematical framework for such robust sequential decision making

problems, it has been considered impractical for decades (Papadimitriou and Tsitsiklis, 1987a;

Madani et al., 1999). Generally, four components lead to high computational complexity in

solving POMDP problems: long planning horizons, large state spaces, large action spaces, and

large observation spaces.

Pioneering works of POMDP solvers are proposed (Aoki, 1965; Astrom, 1965; Smallwood

and Sondik, 1973; Sondik, 1978) in the 1960s. Some of the early surveys on POMDP algorithms

are reviewed in Monahan (1982); Lovejoy (1991); White (1991). Not long ago, the best solvers

are only available to provide solutions for tiny problems with less than 100 states and less than

20 observations (Littman et al., 1995a,b). Fortunately, starting from Pineau et al. (2003), ap-

proximate POMDP solvers developed rapidly in the past decade. By trading off optimality for

efficiency, approximate POMDP solvers significantly improve the scalability of problems with-

out sacrificing too much of the solution quality within a reasonable time. There are two types

of solvers in general: off-line and on-line. The off-line methods build a mapping for each belief

state, while the on-line solvers do a planning phase, execute one step, get an observation and re-

plan again. Some of the off-line and on-line methods are reviewed in (Ross et al., 2008; Shani

et al., 2013). Table 1.1 provides a brief summary of the scalability of the current approximate

POMDP solvers.
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Table 1.1: Approximate POMDP solvers.

Type Algorithms Scalability
2003, PBVI (Pineau et al., 2003) The first point-based approximate solver;

Finds a good solution for a benchmark called Tag (870 discrete states)
2004, HSVI (Smith and Simmons, 2004) Significantly speeds up compared with PBVI;

Provides a benchmark called Rocksample (10 times larger than Tag)
Off-line 2005, HSVI2 (Smith and Simmons, 2005) Scales up to > 105 discrete states

2005, Perseus (Spaan and Vlassis, 2005) Handles continuous action spaces
2008, SARSOP (Kurniawati et al., 2008) Dramatically reduces planning time of finding a good policy within

6 seconds in Tag, where HSVI2 takes 2 hours
2010, MCVI (Bai et al., 2010) Handles continuous observation spaces
2011, MiGS (Kurniawati et al., 2011) Handles long time horizons up to 100 steps
2010, POMCP (Silver and Veness, 2010) Scales up to 1056 discrete states and 1024 discrete observations
2013, ABT (Kurniawati and Yadav, 2013) Handles dynamic environments

On-line 2013, DESPOT (Somani et al., 2013) Scales up to 106 discrete observations
2015, GPS-ABT (Seiler et al., 2015) Significantly outperforms ABT with discretization in action spaces;

Handles up to 3-D continuous action spaces
2018, POMCPOW (Sunberg and Kochenderfer, 2018) Focuses on handling continuous observation spaces
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Since then, many complex decision problems have become solvable in practice, for ex-

ample, the nurseBot in nursing facilities (Porta et al., 2006), the airplane collision avoidance

system (Temizer et al., 2009, 2010), the system of handwashing assistance (Hoey et al., 2010),

conservation planning (Chadès et al., 2011), multi-robot cooperation to tracking (Capitan et al.,

2013), clinical decision-making (Bennett and Hauser, 2013), autonomous drones (Floreano and

Wood, 2015), and the in-silico behavior discovery system in ethology (Wang et al., 2015).

Despite these developments, most of the solvers up to now can only solve POMDP problems

with a small number of actions (< 100). In order to be applied to more applications, it is crucial

for the solvers to handle much larger action spaces. For example, the action size of a real

problem in a spoken dialog system is at least 10 billion (Young et al., 2013). Problems with

large action spaces are unlikely to be handled even by the best solvers today. Finding the best

strategy in POMDPs involves, firstly, the estimation of the expected total reward (called Q-

value) for executing some action at the current belief, and, secondly, the optimization of the

Q-value over the action space. The difficulty here is that the evaluation of the expectation itself

is expensive because it cannot be computed in a closed form. Furthermore, it will be more

difficult if we want to find the best action that maximizes the Q-value. For this reason, most

successful solvers resort to enumerating all possible actions. When the size of action space is

large, such enumeration will significantly reduce the planning horizons that the solver can look

ahead within a given planning time and then reduce the quality of the solution.

In fact, the action selection is a fundamental issue in solving POMDP problems. The chal-

lenge is how to select the best action sequence even if the consequence of each action may not

be exactly known. We investigate its simpler one-step decision problem as a start. The action

selection from a given belief is akin to choosing which slot machine to play from a number

of choices. This simplified problem can be studied as a Multi-Armed Bandit (MAB) problem

(Robbins, 1952). Although MAB is the simplest version of POMDP, it reflects the core of rein-

forcement learning (Sutton and Barto, 1998). The key is to balance between making decisions

that have been giving good rewards in the past (often called exploitation) and choices that have

not been tried before (often called exploration).
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Inspired by our preliminary work on MAB, the primary goal of the thesis is to alleviate the

difficulty of solving POMDPs with large action spaces. It is conducted by adopting a sampling-

based stochastic optimization method and carefully constructing the sampling technique in the

action space, so that we are able to obtain the optimal actions from only a small number of

samples, thus creating a significant improvement in computational efficiency. The way of con-

structing the sampling strategy is motivated by recent developments in stochastic optimization

methods, e.g., the Cross-Entropy method (Rubinstein and Kroese, 2004).

1.3 Contributions

The research work documented in this thesis provides a number of contributions as follows.

Chapter 3 presents a quantile-based sampling approach called Cross-Entropy-based Multi-

Armed Bandit (CEMAB) to address MAB problems with a large number of arms. One of

the variants is guaranteed to converge to the optimal arm by applying results on CE for noisy

optimization. This property holds under certain conditions on the reward function. Different

existing strategies and CEMAB are tested on ten small problems and four large problems, in-

cluding discrete and continuous reward functions. Empirical results show that the proposed

method can significantly outperform established methods when the number of arms is large.

Although computing the exact optimal POMDP decision is computationally intractable, ap-

proximate solvers can compute good decision strategies for problems with increasingly large

state and observation spaces, enabling POMDPs to become practical. Despite these advances,

finding good strategies for problems with large action spaces remains difficult. To alleviate

this difficulty, Chapter 4 proposes a novel approximate on-line POMDP solver, called Quantile-

Based Action Selector (QBASE). Extensive numerical experiments on different robotics tasks

with up to 100,000 actions illustrate that QBASE can generate substantially better strategies

than a state-of-the-art method.

With the aim of computing the optimal policy, most POMDP solvers, including QBASE,

have to identify the best parameters as a prior. Invariably, the performance of parameters is

instance-dependent, which is unknown in advance. This is often done off-line by running a
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set of preliminary tests for each problem. The test set is a grid search within given parameter

ranges. Such search strategy is repetitive, costly and tedious. In Chapter 5, a parameter search

mechanism is built on top of QBASE, allowing it to find a good performing parameters auto-

matically. Numerical experiments show that the proposed method can significantly reduce the

difficulty to set QBASE’s parameters.

1.4 Outline

This thesis is organized as follows.

Chapter 2 provides an overview of background knowledge for three types of mathematical

models for decision making in the presence of uncertainties: multi-armed bandit in Section 2.1,

Markov decision processes in Section 2.2 and partially observable Markov decision processes in

Section 2.3. The framework of the Cross-Entropy method as a stochastic optimization method

is also reviewed in Section 2.4.

Chapter 3 presents a sampling-based method to solve large-scale MAB problems. A number

of existing algorithms are reviewed in Section 3.2. We introduce the proposed CEMAB and

analyze its time complexity and convergence properties in Section 3.3. The comparison results

are reported in Section 3.4 with five well-known methods.

Chapter 4 presents a new on-line planner for POMDP with large discrete action spaces.

We review some recent developments on POMDPs with large action spaces in Section 4.2. A

detailed description of the proposed QBASE is given in Section 4.3. We assess the performance

of QBASE by comparing with a leading POMDP solver on a wide range of robotics tasks

including RockSample, Navigation, and Hunting in Section 4.4. In particular, we output more

results on Hunting in Section 4.4.3, such as the success rate and collaboration strategies.

Chapter 5 presents an extension of QBASE with a mechanism of identifying running pa-

rameters automatically. A simple modification on POMCP to handle large action space is in-

troduced in Section 5.2. The description of APS-QBASE is given with details in Section 5.3.

The proposed method is tested on two tasks and compared with state-of-the-art algorithms in
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Section 5.4. Except for a robotics task, we introduce a partially observable version of inventory

control problem in Section 5.4.2. A sensitivity study of APS-QBASE’s parameter is given in

Section 5.4.4.

Chapter 6 briefly summarizes the contributions in this thesis.



Chapter 2

Decision Making Under Uncertainty

In this chapter, we review several models for decision making under uncertainty and consider

various methods for solving those models as well. We also introduce a stochastic optimization

technique that does not rely on gradient information.

2.1 Multi-Armed Bandit

The Multi-Armed Bandit (MAB) problem was first described in Robbins (1952). In this prob-

lem, a gambler has to decide which of several slot machines (often called arms) to play with,

where each machine gives a random reward according to some unknown probability distribu-

tion. The goal is to maximize the total reward of all the plays. Ideally, the player should only

consider the arm that yields the highest reward on average. The difficulty of arm (or action)

selection is that the reward function is not known and can only be evaluated by sampling. Thus,

due to the fixed number of trials, the effects of the noise cannot completely be eliminated before

the decision is made. In the decision process, one has to face the dilemma of the exploration

and exploitation. In this thesis, we only consider MAB with stochastic reward functions.

Definition 2.1.1 (MAB). A multi-armed bandit can be described as 2-tuple 〈K, R〉 consisting

of

9
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• Arm space: K is the set of possible arms. Each arm k ∈ K corresponds to an unknown

reward distribution Dk with support [0, 1] and expectation µk.

• Reward: Rk is a random reward for taking arm k.

We assume that the reward distribution of each arm to be stationary and independent of the

other arms. The goal of MAB is to maximize the total payout over a fixed number of trials.

Mathematically, it can be defined as follows.

Definition 2.1.2 (Objective Function). Let Kt be the arm at step t, t = 1, . . .. The expected

total rewards over a fixed number of plays is given by

E

[
T∑
t=1

RKt

]
, (2.1)

where T is the fixed number of plays.

The expectation takes over stochastic outcomes of plays and the random selection made by

the decision maker. A policy in MAB selects the next arm to play based on the history of past

plays and rewards.

Equivalently, we can minimize a total regret. The total regret is the gap between not playing

the optimal arm with the highest expectation during T plays. Specifically, a pseudo-regret

(Bubeck et al., 2012) is defined as

T max
k∈K

µk − E

[
T∑
t=1

RKt

]
. (2.2)

Example 2.1.1 (Navigation MAB problem). Imagine an agent who stands in front of four closed

doors (Figure 2.1). Behind each door is a machine. Every time a door is visited, the correspond-

ing machine will return a reward. Due to the unreliability of the machines, the rewards from

each machine are not deterministic and follow an unknown distribution. The agent has four

choices (door 1, 2, 3 and 4) in each run. Immediately after it takes an action and receives a

reward, the problem restarts. The goal of the agent is to maximize the total reward over a fixed

number of trials.
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Figure 2.1: Illustration of the Navigation MAB problem

To find out the (near) best door as soon as possible, we can use different strategies to interact

with the unknown environment. For example, one possibility is to try out all doors to obtain

some initial understandings among those doors and then play with the promising doors more

often in the future. The ‘promising doors’ refers to those doors that have been giving good

rewards up to now. We provide more detailed explanations in different methods to balance the

exploration and exploitation and compare their performance from small (like |K| = 2) to large

arm sets (such as |K| = 10, 000) in Chapter 3.

2.2 Markov Decision Process

2.2.1 Fundamentals

A Markov Decision Process (MDP) (Puterman, 1994) is a discrete-time stochastic control pro-

cess. Although MDPs with continuous-time domain exists, this thesis focuses only on MDPs

with discrete-time domains. At each time, the process is in some state and the decision maker

can choose one of possible actions. As a result, the process will move to a new state and supply

the decision maker with an associated reward. MDPs are generally used to model sequential
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decision making − answering the question “what action should I take next to maximize a long-

term goal”.

The multi-armed bandit problem can be viewed as a particular case of Markov decision

processes where there is only one state.

Definition 2.2.1 (MDP). A Markov decision process can be described as a 4-tuple 〈S,A, T, R〉
consisting of

• State space: S is the set of possible system states.

• Action space: A is the set of possible actions.

• State-transition function: T (s, a, s′) = p(s′ | s, a) is the probability that the next state is

s′ given that the current state is s and action a is taken.

• Reward: R(s, a) is the immediate reward function of choosing action a in state s.

Definition 2.2.2 (Decision Rule). A decision rule πt prescribes a procedure for action selection

in each state at a specified decision time t.

πt : S → A, t = 0, 1, . . . , N, (2.3)

where N(N ≤ ∞) is the planning horizon. In particular, πt(s) is the action a ∈ A when the

agent is in state s and N − t steps have still to be taken until the horizon.

Decision rules can be generally classified as deterministic Markovian, randomized Marko-

vian, Markovian history dependent and randomized history dependent. The easiest decision

rule is deterministic Markovian. This decision rule is said to be (first-order) Markovian for the

reason that the next state depends on the current state (and action) only, rather than on all the

previous states and actions, and deterministic because it chooses an action with certainty.

Definition 2.2.3 (MDP Policy). A policy is a sequence of decision rules

πN = (π0, π1, . . . , πN), t = 0, 1, . . . , N, (2.4)

where N(N ≤ ∞) is the planning horizon.
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For a given policy, the quality of following this policy, called the value function, can be

measured by different criteria as follows.

Let St be the state at step t, t = 0, 1, . . . , N .

1. Finite-horizon reward. For horizon N(1 < N < ∞), the expected reward of finite-

horizon model for a given policy πN and an initial state s is given by

V πN
N (s) = E

[
N∑
t=0

R(St, πt(St))

∣∣∣∣S0 = s

]
. (2.5)

Since the mapping πt(s) possibly changes over time, such policy is called non-stationary

policy.

2. Infinite-horizon reward. To be consistent with the definition in finite-horizon, let πN store

the planning history. If N goes to ∞, π∞ would be π∞ = (π0, π1, . . . , πk, . . .). Since

each πk has the equal (infinite) horizons to lookahead, there is no difference between

π0, π1, . . .. Therefore, it suffices to consider only one π. Such policy is called stationary

policy.

The discounted value function for a given stationary policy π and an initial state s is given

by

V π(s) = E

[
∞∑
t=0

γtR(St, π(St))

∣∣∣∣S0 = s

]
, (2.6)

where γ (0 < γ < 1) is a discount factor.

In what follows, we will only consider stationary policies.

Definition 2.2.4 (The Optimal Policy). Let Π be a policy space. Then the optimal policy can

be derived from the optimal value function V π(s).

π∗(s) = argmax
π∈Π

V π(s), s ∈ S. (2.7)

The associated optimal value is

V ∗(s) = max
π∈Π

V π(s), s ∈ S. (2.8)
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Example 2.2.1 (Navigation MDP problem (Russell and Norvig, 2016)). The decision maker is

an agent that moves in a grid world (Figure 2.2). The state space consists of 11 walkable states

and one unwalkable state (s22) The agent starts from the cell s31 and tries to reach the cell with

+1 with the lowest cost. The agent has four possible movements {NORTH, WEST, SOUTH,

EAST}. It cannot move into the obstacle cell. Due to the unknown fraction coefficient of the

ground surface, the agent only has 80% moving accuracy. The agent receives a reward of +1

when it reaches to the cell s14, and incurs a cost of −1 when it enters the cell s24. Moving out

of any other cells incurs a cost of −0.04.

Figure 2.2: Illustration of the Navigation MDP problem

In order to achieve the best total rewards, the agent has to consider sequences of all possible

future states after performing the current action. For example, when the agent stays in s23 and

s34, it has some potential to fall into the penalty cell (s24) due to the movement uncertainty.

Such future risks should be considered when the robot decides where to go from the current

state. Therefore, go EAST should not be better than go NORTH.
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2.2.2 Value Iteration

Off-line Solvers

To solve an MDP problem, there are two basic approaches: off-line and on-line. The off-line

methods build a policy prior to execution, whereas the on-line algorithms interleave a planning

phase with an execution step. Figure 2.3 visualizes the different running processes of off-line

and on-line solvers.

Off-line algorithm

policy construction Policy execution

On-line algorithm

· · · · · ·

Figure 2.3: Off-line and on-line algorithms comparison

Off-line MDP methods can be generally divided into three families: value iteration, policy

iteration, and policy search. For policy search, one directly searches the policy in the policy

space Π. Given a policy, it can be directly evaluated by the value function in (2.6). In this type

of solvers, the key components depend on policy π parametrization and the optimization used

to search for next policies (Williams, 1992; Ng and Jordan, 2000; Mannor et al., 2003; Busoniu

et al., 2011; Chang et al., 2013).

Value iteration and policy iteration (Puterman, 1994) explicitly build a mapping from S to

A. Those two methods mainly rely on Bellman’s criteria, which is derived as follows:

V ∗(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

p(s′ | s, a)V ∗(s′)

]
︸ ︷︷ ︸

Q-value: Q(s,a)

, (2.9)

where Q(s, a) denotes the state-action value or Q-value. Q(s, a) provides a measure for select-

ing the best action given the same state.
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Value Iteration

The basic idea of Value Iteration (VI) is simple. For a given state s, it tries to improve its

value function V (s) by one-step lookahead. During the local update, the immediate reward

and possible future values are backpropagated to the value of the current state s. VI sweeps

the entire action space to determine which action is able to yield the highest estimate Q-value

according to the right-hand side of (2.9), with V instead of V ∗. The associated action forms the

decision rule at the current state. We do this update for all state s. The outputs of VI are the

approximated value function V̂ and the policy π̂. VI essentially is an application of the fix-point

theorem to search the (approximate) optimal value function. The overview of the VI algorithm

is described in Algorithm 1.

Algorithm 1: Value Iteration for the Infinite-horizon Case
Input: Tolerance ε > 0 and discount factor γ.
Output: V̂ t(s) and π̂(s) for each s ∈ S.

1 Set t← 1
2 for s ∈ S do
3 V̂ 1(s)← maxa∈AR(s, a)

4 while ||V̂ t − V̂ t−1|| > ε(1−γ)
2γ

do
5 t← t+ 1.
6 for s ∈ S do
7 V̂ t(s)← maxa∈A

[
R(s, a) + γ

∑
s′∈S p(s

′ | s, a)V̂ t−1(s′)
]

8 for s ∈ S do
9 π̂(s)← argmaxa∈A

[
R(s, a) + γ

∑
s′∈S p(s

′ | s, a)V̂ t(s
′)
]

10 return V̂ t(s) and π̂(s)

Now, we show how to apply VI to solve the Navigation MDP problem.

Example 2.2.2 (Navigation MDP continued). We can define the problem in an MDP manner.

• S = {s11, s12, s13, s14, s21, s23, s24, s31, s32, s33, s34}, where s14 is a terminal state.

• A = {NORTH, WEST, SOUTH, EAST}.

• the state-transition function p(s′|s, a)
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– if next state s′ is walkable. For example, if the agent in state s33 and chooses action

”North”, its transition function is as follows:

p(s′ | s33, ’North’) =


0.8, s′ lies in s23

0.1, s′ lies in s32

0.1, s′ lies in s34

– if next state s′ is not walkable, the state after transition will stay in its original state.

For example, the transition function in state s21 choosing action ”East” is

p(s′ | s21, ’East’) =


0.8, s′ will stay in s21

0.1, s′ lies in s11

0.1, s′ lies in s31

– if state s is in terminal state, it will never move out.

• For the reward function, there is one terminal and ten non-terminals. Specifically,

R(s) =


+1, s = s14

−1, s = s24

−0.04, all other s

We compare several optimal policies with different parameters γ and ε. Given the same

discount factor γ = 0.95, the value function of those states far from terminals are able to back-

propagate well with a lower tolerance ε. We find the values of s31 and s32 improve significantly

and the optimal policy at s32 changes to WEST (Figure 2.4 and Figure 2.5). Although it leads to

a longer path, it avoids the potential of falling into the penalty cell. If ε is fixed, a larger discount

factor γ helps the agent to lookahead further and behave in a relative smart way (Figure 2.5 and

Figure 2.6). When γ is small, the agent seems to simply get away from some costs close to its

current cells, such as s23 and s34.
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Figure 2.4: The optimal policy and associated value with γ = 0.95 and ε = 0.1
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Figure 2.5: The optimal policy and associated value with γ = 0.95 and ε = 0.001
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Figure 2.6: The optimal policy and associated value with γ = 0.1 and ε = 0.001

2.2.3 Monte Carlo Tree Search

On-line Solvers

In off-line solvers, one has to build the mapping π for the entire state space. When the size of

the state space is large, constructing policies in such a way can be computationally inefficient.

On-line algorithms interleave a planning phase with an execution step. In other words, on-line
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solvers only need to figure out the best action (or policy) with respect to the agent’s current

state. It brings the benefit that the memory requirement of an on-line solver is dramatically

reduced.

Most on-line algorithms use a generative model due to two main advantages. Firstly, in

many practical problems, parts of the MDP model may not be known explicitly, such as the

state-transition function T and/or the reward function R. But we are still able to solve the

MDP problem via using such a simulator. Secondly, even if the complete model information is

known, it is still beneficial to use a simulator when the model is complicated or extensive. Take

VI (Algorithm 1) for example, it is not viable for fully updating V over the whole state space

if the state space is large. However, it is efficient to sample the next state from the transition

function with a given state and an action.

In this section, we introduce the Monte Carlo tree search. Other common on-line MDP

solvers include sparse sampling (Kearns et al., 2002) and real-time dynamic programming

(Barto et al., 1995; Bonet and Geffner, 2003).

Policy Tree

A policy in MDPs can be represented in multiple ways. In this section, we adopt the policy tree,

which maintains an explicit representation of the policy.

Figure 2.7 illustrates a simple MDP policy tree. It is convenient to view the MDP planning

as building an AND-OR tree (Figure 2.7). The AND-OR tree is a tree of reachable future states

from the current state. In the tree, there are two types of nodes: state nodes (circles) and action

nodes (squares). The root node s0 represents the current state. Starting from this state, two

actions can be taken: a and a′. Action a can lead to two types of next states: s and s′. The

state node s is a child resulting from taking action a and observing s, starting from root node

s0. It is important to note that we will use the same notation to refer to a state node and the

state it represents. If the action space and state space only have a few elements, it is possible to

fully enumerate all possibilities up to a given depth of the policy tree. This is no longer feasible
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for large (e.g., continuous) action and observation spaces, so that only a part of the tree can be

evaluated.

. . . . . . . . .

𝑎

. . .

𝑎′

𝑠0

𝑠

𝑠 𝑠′

Figure 2.7: MDP tree with two actions and two states

Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is an on-line solver that generates the optimal policy by

using a simulator. It explicitly represents a subset of the policy via a tree, and improves and

updates the policy at the same time. Upper Confidence bounds applied to Trees (UCT) (Kocsis

and Szepesvári, 2006) is one of the most successful variants. In the search tree, there are two

attributes associated with each state node: an estimate of the Q-value Q(s, a) and the number

of visits N(s, a) to state s using action a. The basic idea of UCT is to iterate over the following

five steps. Based on those steps, one iteration of UCT is visualized in Figure 2.8.

1. Each simulation always starts from the root node. At beginning of the search, the tree

contains nothing more than the root s0.
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Figure 2.8: One iteration of UCT

2. Action selection: For each state node, UCT frames the action selection as a multi-armed

bandit problem and applies the UCB1 strategy to balance exploration and exploitation.

The action is selected by

a = argmax
a∈A

{
Q(s, a) + C

√
logN(s)

N(s, a)

}
, (2.10)

where C is an exploration constant and N(s) is the number of visits for state s and it is

equal to
∑

a∈AN(s, a).

Suppose the current node is associated with state s0, UCB1 determines the most promis-

ing action according to (2.10). With inputs of (s0, a), the simulator returns the informa-

tion about the next state and an immediate reward in the form of (s, R(s0, a)). Repeat this

process until the next state node does not exist in the search tree.

3. Expansion: When a leaf node is reached, we add a new state child node to the current

search tree if the expansion condition is met. The default value for Q(s, a) and N(s, a)

can be initialized according to our prior knowledge of the problem; otherwise, they can

be simply set as 0.

4. Estimation: The estimate (say q) of the newly added node can be obtained by running a

default policy. It can be done by a random walk up to a pre-defined number of steps. This
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estimate can be quite rough but it still can provide some information to bias the search to

promising directions.

5. Backpropagation: We update the information of Q(s, a) and N(s, a) for all nodes from

the expanded node to the root with the information obtained from the new estimate at the

bottom.

MCTS has been widely applied to different domains, for example, real-time strategy game

(Balla and Fern, 2009), general game playing (Finnsson and Björnsson, 2008) and the game of

Go (Silver et al., 2016). A relatively comprehensive survey is reviewed for its methodology,

enhancements and applications in Browne et al. (2012).

2.3 Partially Observable Markov Decision Process

2.3.1 Fundamentals

While the MDP is a principled manner to model sequential decision making with uncertainty in

the effect of action, a partially observable Markov decision process (POMDP) adds additional

uncertainty description over the state space, namely uncertainty effects of perception (Kaelbling

et al., 1998).

Definition 2.3.1 (POMDP). A partially observable Markov decision process can be described

as a 6-tuple 〈S,A,O, T, Z,R〉, where 〈S,A, T, R〉 are defined as the same way as in the MDP.

O and Z are defined as:

• Observation space: O is the set of possible observations. Observation o ∈ O is usually

an imperfect projection of the system state.

• Observation-transition function: Z(s, a, o) = p(o | s, a) is the probability of observation

o at the next state given action a in state s.
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Due to uncertainties in the effects of actions and in sensing, the agent never knows its exact

state. Therefore, a POMDP agent maintains an estimate of its current state in the form of a

belief b.

Definition 2.3.2 (Belief State). A belief state b is a distribution over the state space. After

executing an action a and obtaining an observation o, the next belief state is

b′ = τ(b, a, o), (2.11)

which can be computed as Bayes’ formulate as

b′(s′) = p(s′ | b, a, o)

=
1

p(o | b, a)
p(o | s′, a)

∑
s∈S

p(s′ | a, s)b(s), (2.12)

where p(o | b, a) =
∑

s′∈S p(o | s′, a)
∑

s∈S p(s
′|a, s)b(s).

Note that p(o | b, a) represents the probability of perceiving the observation o after perform-

ing the action a from the belief b.

A POMDP policy π : B → A assigns an action a for each belief b ∈ B, and induces a value

function V π(b) which computes the expected total reward of following policy π at the current

belief b.

Definition 2.3.3 (POMDP Infinite-horizon Reward). Let Bt be the belief at step t, t = 0, 1, . . ..

The discounted value function for a policy π and an initial state b is given by

V π(b) = E

[
∞∑
t=0

γtR̄(Bt, π(Bt))

∣∣∣∣B0 = b

]
, (2.13)

where R̄(b, a) =
∑

s∈S R(s, a)b(s) and γ (0 < γ < 1) is a discount factor.
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Similar to MDPs, the Bellman’s equation in POMDPs is

V ∗(b) = max
a∈A

[∑
s∈S

R(s, a)b(s) + γ
∑
o∈O

p(o | b, a)V ∗(τ(b, a, o))

]
︸ ︷︷ ︸

Q−value: Q(b,a)

, (2.14)

where τ(b, a, o) denotes the next belief.

Example 2.3.1 (Navigation POMDP problem). The decision maker is an agent that moves in a

grid world (Figure 2.9). The robot does not know where it is; instead, it keeps a belief, which

is a distribution over the state space. The different levels of grey cells indicate the likelihood

of the agent at each location. At each step, the robot takes an action based on a given belief. It

receives an immediate reward and an observation. In this problem, the agent can only observe

the existence of walls surrounding it. The goal of the robot is to reach the “+1” cell with a

lower cost.

Figure 2.9: Illustration of the Navigation POMDP problem
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In this example, the observation only captures local information of the surrounding walls.

Even though it knows exactly where walls are, it still can not fully observe the agent’s state.

This is because multiple states can yield the same observation. We elaborate and solve a much

larger version of this example (up to |S| ≈ 8×105, |A| ≈ 2, 400 and |O| = 256) in Section 4.4.2

of Chapter 4.

Example 2.3.2 (Tiger Problem (Kaelbling et al., 1998)). Imagine an agent that stands in front

of two closed doors. Behind one of the doors there is a tiger and behind the other one is a large

reward. If the agent opens the door with the tiger, a substantial penalty is received (presumably

in the form of some amount of bodily injury). Instead of opening one of the two doors, the agent

can listen to gain more information about the location of the tiger. Unfortunately, listening is

not free; besides, it is also not entirely accurate. There is a chance that the agent will hear a

tiger behind the left-hand door when the tiger is actually behind the right-hand door, and vice

versa.

2.3.2 Solving the Tiger Problem

To motivate the use of an on-line method, let us solve the Tiger problem in this section. Given

the current belief, the goal is to figure out the best action for this belief. In this tree, there are

two types of nodes: belief nodes (OR-nodes) and action nodes (AND-nodes). The root node

b represents the current belief. Starting from this belief b, two actions can be taken: a and a′.

Action a leads to two types of observations: o and o′. In this case the same observations can

occur for actions a and a′ (but with different probabilities). As a result of taking action a and

observation o, a belief node b′ = τ(b, a, o) is obtained.
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Figure 2.10: AND-OR tree with two actions and two observations

Example 2.3.3 (Tiger problem (cont.)). We can describe the problem in a POMDP manner.

• S = {sl, sr}. The tiger is behind the left door or behind the right.

• A = {LEFT, RIGHT, LISTEN}.

• The state-transition function. The LISTEN action does not change the state of the world.

The LEFT and RIGHT actions cause a transition to system state sl with probability 0.5

and to state sr with probability 0.5 (essentially resetting the problem).

– p(sl | LISTEN, sr) = p(sr | LISTEN, sl) = 0.

– p(sl | LISTEN, sl) = p(sr | LISTEN, sr) = 1.

– For the LEFT and RIGHT actions, p(· | LEFT, ·) = p(· | RIGHT, ·) = 1/2.

• The reward function.

– R(sl,LISTEN) = R(sr,LISTEN) = −1.

– R(sl,RIGHT) = R(sr,LEFT) = +10.

– R(sl,LEFT) = R(sr,RIGHT) = −100.
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• O = {TL,TR}. There are only two possible observations: to hear the tiger on the left

(TL) and to hear the tiger on the right (TR).

• The observation probabilities. When the tiger is in state sl, the LISTEN action results in

the observation TL with probability 0.85 and the observation TR with probability 0.15;

the same is true for state sr. No matter what state the world is in, the LEFT and RIGHT

actions result in an observation with probability 0.5.

– p(TL | LISTEN, sl) = p(TR | LISTEN, sr) = 0.85.

– p(TR | LISTEN, sl) = p(TL | LISTEN, sr) = 0.15.

We would like to emphasize that the objective in (2.13) is to generate a policy considering

an infinite planning horizon. However, for the convenience of getting a better insight into the

planning process, we only consider a few examples with horizon N = 2.

Let bd,i denote the i−th belief node at depth d of the search tree.

1. The denominator in (2.12) is computed as follows.

p(TL | b0,LISTEN) = 0.85b0(sl) + 0.15b0(sr) (2.15)

p(TR | b0,LISTEN) = 0.85b0(sr) + 0.15b0(sl). (2.16)

2. The new beliefs b1,2 and b1,3 are calculated using (2.12) as follows.

b1,2(sl) =
0.85b0(sl)

0.85b0(sl) + 0.15b0(sr)
, b1,2(sr) =

0.15b0(sr)

0.85b0(sl) + 0.15b0(sr)
. (2.17)

Using similar arguments, we arrive at

b1,3(sr) =
0.85b0(sr)

0.85b0(sr) + 0.15b0(sl)
, b1,3(sl) =

0.15b0(sl)

0.85b0(sr) + 0.15b0(sl)
(2.18)

Note that the above equations in 1 and 2 are valid for any horizon. Thus, they open the way

for exact policy calculation for any finite horizon N .
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Suppose there is no prior knowledge about the tiger position, namely b0 = (b0(sl), b0(sr)) =

(0.5, 0.5). We apply (2.14) to compute the Q-value for each belief and actions encountered. The

policy tree (Figure 2.11) contains the optimal policy at the root for planning N = 2 horizons

ahead. The optimal action for b0 is to LISTEN. Once LISTEN, the next belief evolves to

(0.85, 0.15) if the observation is the TL; otherwise the next belief becomes (0.15, 0.85).

Thereafter, suppose the agent gets the TL observation, then the next belief b1 is (0.85, 0.15).

The agent will need plan for N = 2 horizons again for the new belief. The optimal action in the

search tree (Figure 2.12) is still to LISTEN, though there is a relatively strong preference that

the tiger is on the left door. This process repeats until the agent opens the door.

[0.5,0.5]

LEFT

[0.5,0.5]

LISTEN RIGHT

[0.85,0.15] [0.15,0.85]

LEFT LISTEN RIGHT LEFT LISTEN RIGHTLEFT LISTEN RIGHT LEFT LISTEN RIGHT

[0.5,0.5]

𝑄 = −46 𝑄 = −46
𝑄 = −2

𝑄 = −45

𝑄 = −1

𝑄 = −45 𝑄 = −45

𝑄 = −1

𝑄 = −45𝑄 = −6.5

𝑄 = −1

𝑄 = −83.5 𝑄 = −83.5

𝑄 = −1

𝑄 = 6.5

𝑝 = 0.5 𝑝 = 0.5

Figure 2.11: Tiger AND-OR tree for b0 = (b0(sl), b0(sr)) = (0.5, 0.5) and N = 2.
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[0.85,0.15]

LEFT

[0.5,0.5]

LISTEN RIGHT

[0.97,0.03] [0.5,0.5]

LEFT LISTEN RIGHT LEFT LISTEN RIGHTLEFT LISTEN RIGHT LEFT LISTEN RIGHT

[0.5,0.5]

𝑄 = −7.5 𝑄 = −84.5
𝑄 = 3.74

𝑄 = −45

𝑄 = −1

𝑄 = −45 𝑄 = −45

𝑄 = −1
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𝑄 = −1

𝑄 = −96.7 𝑄 = −45

𝑄 = −1

𝑄 = −45

𝑝 = 0.745 𝑝 = 0.255

Figure 2.12: Tiger AND-OR tree for b1 = (b1(sl), b1(sr)) = (0.85, 0.15) and N = 2

2.3.3 Partially Observable Monte Carlo Planning

On-line Solvers

Although POMDPs essentially can be viewed as belief-state MDPs, the computation complexity

of finding the optimal policy increases exponentially respect to the number of states, actions,

observations and planning horizons. Various solvers can be applied to find the optimal policy

(Kochenderfer, 2015), including exact solution methods via the alpha vector, off-line methods

and on-line methods. Table 1.1 in Chapter 1 lists recent developments in off-line and on-line

POMDP solvers. In general, on-line solvers scale better and faster than off-line solvers.

In POMDPs, a policy is computed with respect to a belief rather than a single state. The

dimension of the planning space is normally high-dimensional. This is known as the curse of

dimensionality. To this reason, successful POMDP solvers plan only on a representative and

small subset of the belief space. Moreover, the number of belief-contingent plans increase ex-

ponentially with the planning horizon. The branching factor of the search tree is of the order

O
(

(|A||Z|)N
)

. Even for a simple problem like Tiger, maintaining such a large tree is com-
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putationally infeasible, which is known as the curse of history. As a consequence, we resort to

approximation techniques.

POMCP

Partially Observable Monte Carlo Planning (POMCP) (Silver and Veness, 2010) is one of

the most widely used on-line POMDP planners. It breaks the two curses mentioned above

by using a sampling approach. POMCP basically extends UCT to handle partially observable

problems. There are many similarities between UCT and POMCP. Firstly, POMCP adopts a

policy tree representation to compute the optimal policy with considering reachable beliefs only.

This largely helps to reduce the memory consumption compared with off-line POMDP solvers.

Secondly, POMCP applies a simulator to generate solutions instead of backpropagating the

value function explicitly. The only difference in a POMDP simulator is to additionally generate

an observation due to partial observability.

Instead of keeping track of beliefs exactly, POMCP adopts the particle filter to sample states

(Arulampalam et al., 2002). POMCP represents a belief as a collection of unweighted particles,

where such a collection is incrementally constructed by sampling. In each simulation, POMCP

always starts from the root node say b0, samples a state s ∼ b0 and takes an action a according

to UCB1 strategy (Auer et al., 2002a). With inputs of (s, a), one obtains the information about

a next state, an observation and a reward in the form of (s′, o, r). Specifically, the process of

generating samples from a POMDP simulator then become as follows.

1. Sample s from the belief b0

2. Sample s′ according to the state-transition function p(s′ | s, a)

3. Sample o according to the observation function p(o | s, a)

4. Get a reward from R(s, a)

Through the a-o pair, it arrives at a new belief. In particular, the next state s′ will be inserted into

the next belief node. The process repeats until the next belief node does not exist in the current

search tree. If a leaf belief node is reached, POMCP expands a new node and links it to the tree.
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Figure 2.13: One iteration of POMCP

In terms of estimating the newly added node, the simplest way is to run a default policy, such as

employing a random walk from this node. The estimate is used to backpropagate the Q-value

from this leaf node up to the root. Repeating such simulations many times, the number of states

arriving at any belief node in the tree gradually increases and then the set of those states is to

approximately represent the belief. A sample iteration of POMCP is visualized in Figure 2.13.

Similar to UCT, POMCP interleaves a planning phase with an execution. POMCP decides

the best action to execute from the root node after simulating the policy tree for a pre-defined

budget. Depending on the observation, the root of the policy tree resets and is ready to re-plan.

However, the number of particles used to represent the next belief decreases dramatically due

to effects of branching factor A and O. To deal with the issue, it will be useful to add an extra

number of particles before re-planning the policy for next step. This operation is called particle

reinvigoration.

2.4 Cross-Entropy Method

Decision making often involves an optimization component. The goal of the decision models

in (2.1) (2.6) (2.13) is inherently to solve noisy (or stochastic) optimization problems, in which

the objective function values are unknown and are obtained via Monte Carlo simulations. In
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this section, we introduce a randomized algorithm, called the Cross-Entropy method (CE) (Ru-

binstein and Kroese, 2004), to address optimization problems. Other common randomized op-

timization methods include stochastic approximation, stochastic counterpart method, simulated

annealing and evolutionary algorithms (Kroese et al., 2011).

The Cross-Entropy method can be considered as an importance sampling approach to the

problem of estimating rare events (Rubinstein, 1997). It is realized that its adaptation mecha-

nism could be applied to solve optimization problems as well, as searching for a small set of

solutions to that optimization problem can be treated as a rare-event (Rubinstein, 1999). Sup-

pose the goal is to find the maximum of S(x) on a given set X . Denote the maximum by γ∗

corresponding to maximizer x∗, so that

S(x∗) = γ∗ = max
x∈X

S(x). (2.19)

Now associate this problem with the estimation of the probability ` = P(S(X) ≥ γ), where

X is generated from some parametrized distribution f(x;v) on X and γ is some threshold.

Finding the optimal x∗ then converts into iterating of the rare-event simulation steps until the γ̂t

approaches γ∗. It is crucial to understand that one of the main goals of the CE in optimization

is to generate a sequence of pdfs f(x;v0), f(x;v1), . . . converging to a delta distribution and

all samples X will become almost identical. By doing this, the CE method aims to locate

an optimal parametric sampling distribution on X , rather than locating the optimal solution

directly.

The description of the CE algorithm for optimization is given in Algorithm 2. For initial-

ization, v̂0 denotes the parameter of a sampling density function, γ̂ stores the best level from

the beginning and N e is the number of elite sample in each iteration where ρ is elite proportion.

CE mainly iterates two stages. First, it generates N samples from the current sampling distri-

bution and receives the performance based on the objective function S(x). According to their

performance, CE sorts the batch samples and determines a new threshold γ̂t by top ρ-quantile

(line 2-4). Second, if the new threshold gets improved, CE updates the sampling parameter

via (2.20). It can be viewed as the exponential maximum likelihood estimation (line 5-7). The

CE algorithm repeats those two stages until the stopping criterion (line 1) is met. The condition
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can be set as the convergence of a parameter, for example ||v̂t − v̂t−1|| < ε, or the threshold

level goes to stable after a long run such as γ̂t = γ̂t+1 = · · · = γ̂t+d if for some t ≥ d, say d = 5.

At the end of the search, CE returns maximum value found γ̂ and its associated parameter of

sampling density v̂t (line 8).

Algorithm 2: CE Algorithm for Optimization
Input: Set v̂0 = u and let γ̂ = γ̂0 be a small number. Let N e = d%Ne. Set t = 1.
Output: γ̂, v̂t.

1 while γ̂t or v̂t meets stopping criterion do
2 Sample X1, . . . ,XN

i.i.d∼ f(x; v̂t−1).
3 Calculate Si = S(Xi), and sort them from smallest to largest: S(1) ≤ · · · ≤ S(N).
4 Estimate γ̂t = S(N−Ne+1).
5 if γ̂t ≥ γ̂t−1 then
6 γ̂ ← γ̂t.
7 Use the same sample X1, . . . ,XN and update parameter v̂t by,

v̂t = argmax
v

1

N

N∑
i=1

I{S(Xi)≥γ̂t} ln f(Xi;v). (2.20)

8 return γ̂, v̂t.

A smooth updating rule is often used, in which the parameter vector v̂t is taken as

v̂t = diag(α)ṽt + diag(1−α)v̂t−1, (2.21)

where ṽt is the solution to Algorithm 2 and α is a vector of smoothing parameters, with each

component in [0, 1]. More modifications of CE can be found in (Rubinstein and Kroese, 2017),

convergence properties are discussed in (Margolin, 2005; Costa et al., 2007; Hu et al., 2012)

and a runtime analysis is provided in (Wu et al., 2017, 2018).

So far, the performance function S(x) is assumed to be deterministic. In term of noisy opti-

mization problems, we consider the objective in (2.19) again and now outcomes of performance

function is stochastic. In other words, S(x) = E[Ŝ(x)] is not available but can be measured via

simulations. We are able to re-use the framework of CE (Algorithm 2) with replacing S(x) by

Ŝ(x).
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Since CE was invented, it has been widely applied to a broad in both deterministic and

stochastic domains, for example, Markov decision process (Mannor et al., 2003; Busoniu et al.,

2011), game of Tetris (Szita and Lörincz, 2006), robotics motion planning (Kobilarov, 2012),

Laguerre tessellation (Duan et al., 2014; Spettl et al., 2016), multi-armed bandit problem (Wang

et al., 2017), partially observable Markov decision process (Omidshafiei et al., 2016; Wang

et al., 2018).
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Chapter 3

CEMAB: A Sample-based Method for

Large-scale Multi-Armed Bandits

The Multi-Armed Bandit (MAB) problem is an important model for studying the exploration–

exploitation tradeoff in sequential decision making. In this problem, a gambler has to repeatedly

choose between a number of slot machine arms to maximize the total payout, where the total

number of plays is fixed. Although many methods have been proposed to solve the MAB

problem, most have been designed for problems with a small number of arms. To ensure con-

vergence to the optimal arm, many of these methods, including leading methods such as UCB

(Auer et al., 2002a), require sweeping over the entire set of arms. As a result, such meth-

ods perform poorly in problems with a large number of arms. This chapter proposes a new

method for solving such large-scale MAB problems. The method, called Cross-Entropy-based

Multi-Armed Bandit (CEMAB), uses the Cross-Entropy method as a noisy optimizer to find

the optimal arm with as lower costs as possible. Experimental results indicate that CEMAB

outperforms state-of-the-art methods for solving MABs with a large number of arms.

36
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3.1 Background

A fundamental question in sequential decision making is how to select the best action sequence

even if the consequence of each action may not be exactly known. In its simplest form, this

question can be studied as a multi-armed bandit (Robbins, 1952) problem. Under this frame-

work, selecting an action from a given state is akin to selecting which slot machine to play from

a number of such machines. The question becomes how to balance between playing machines

that have been giving good rewards in the past and machines that have not been tried before,

such that the total reward received is as close as possible to the total reward that would have

been received if the player had always played the highest-paying machine.

Many methods have been proposed to solve the above problem of balancing exploration and

exploitation, such as ε-greedy (Watkins, 1989), softmax (Sutton and Barto, 1998), and UCB

(Auer et al., 2002a). In fact, many of such methods have become the foundation of today’s

reinforcement learning (Sutton and Barto, 1998). However, except for a few (Bubeck et al.,

2011; Coquelin and Munos, 2007), most methods (Burtini et al., 2015) try and estimate the

reward of each and every action, to ensure that the best action is not missed. Therefore, their

effectiveness is limited to problems with a relatively small number of arms (e.g., fewer than

20). Unfortunately, this assumption is quickly becoming unrealistic in a growing number of

applications. For instance, one can now choose from hundreds of drug cocktails —combinations

of various types of drugs at various dosages— in personalized medicine, choose one of hundreds

of different combinations of investment portfolios, and select a subset of tens of millions of

possible combinations of data and sensors that can be used to analyze consumer preferences.

As a result, most of today’s methods for solving MABs (Burtini et al., 2015) are no longer

effective for solving the more recent large-scale problems.

To alleviate the difficulty of solving MABs with a large number of discrete actions, we

propose a novel method called Cross-Entropy-based Multi-Armed Bandit (CEMAB). The key to

CEMAB is the use of the Cross-Entropy method (Rubinstein and Kroese, 2004) as a stochastic

optimization method to identify the best action. By doing so, CEMAB can significantly reduce

the number of actions to test before identifying the best action, assuming that the reward for

pulling an arm is retrieved from an unknown fixed distribution. Preliminary results on standard
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test cases for MAB indicate that the number of arms to pull before CEMAB identifies the

(close to) optimal arms does not directly depend on the number of arms in the problem, which

indicates that CEMAB is able to scale up well. This observation is supported by our simulation

results, where tests on various MAB problems with up to 10,000 arms indicate that CEMAB

outperforms state-of-the-art MAB solvers on large problems.

3.2 Related Algorithms

Various methods for solving MAB have been proposed. Those algorithms share the common

structure as listed in Algorithm 3. The main difference depends on what kind of selection

strategy is used (line 2).

Algorithm 3: Basic framework of MAB
Input: The number of arms |K|, a (black box) function reward() to sample random

rewards. Maximum number of plays T .
Output: Total reward G.

1 Set µ← 01×|K|, visits← 01×|K|.
2 for t← 1 to T do
3 k ← Choose an arm according to different strategy.
4 r ← reward(k) // Draw an immediate reward
5 G← G+ r.
6 visits(k)← visits(k) + 1.
7 µ(k)← µ(k) + (r − µ(k))/visits(k).

8 return G

A brief overview of the well-known methods is reviewed.

ε-greedy (Watkins, 1989). The ε-greedy method is perhaps the simplest way to solve the MAB

problem. At each time step, the algorithm has a probability ε to select an arm uniformly at

random (exploration) and a probability 1−ε to choose the arm with the highest estimated

reward so far (exploitation). In general, this strategy does not converge to the optimal

arm.

Softmax (Sutton and Barto, 1998). Softmax picks each arm with a probability according to

its empirical performance. The probability of each arm in Softmax can be based on the
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Boltzmann distribution pk = eµ̂k/T /
∑|K|

k=1 eµ̂k/T , where µ̂k is an estimate of the expected

reward µk and T is the temperature. If T is very small, the arm with the highest estimated

reward will have a large probability of being chosen (exploitation). In contrast, when T
is very large, all {pk} are approximately equal, so that in this case Softmax is purely

exploring.

Exp3 (Auer et al., 2002b). Exp3 (exponential weight algorithm for exploration and exploita-

tion) is a variant of Softmax. The probability of choosing arm k is defined by pk = (1−
γ)wk/

∑|K|
j=1wj+γ/|K|. The weights {wj} are updated after each step. In particular, after

arm k is chosen (yielding reward rk), the weight wk is updated as wk ← wk expγrk/pk|K|.

It can be shown that the “weak regret”, defined as
(
T maxk∈K µk −

∑T
t=1 rt

)
, is bounded

under Exp3.

UCB (Auer et al., 2002a). The UCB is a family of algorithms for which optimal logarithmic

regret can be achieved uniformly over time, assuming that all reward distributions have a

bounded support (Auer et al., 2002a). The simplest member of this family is UCB1. It

records the number of times that each arm has been played, visits(k), and after each

choice k updates its current estimate of µk via µ̂k ← µ̂k + (rk − µ̂k)/visits(k). At

the beginning, each arm is played once (full sweep). Subsequently, at each time t arm

k is chosen that satisfies k = argmaxk=1,...,|K| µ̂k + C
√

log t/visits(k), where C is a

parameter of explorations.

Thompson Sampling (TS) (Agrawal and Goyal, 2012). Thompson sampling is a Bayesian

sampling algorithm based on (Thompson, 1933). For each arm k, the knowledge of the

expected reward µk is described by a Beta(αk, βk) distribution. At time t, random vari-

ables θk, k = 1, . . . , |K| are generated from each of these distributions. The index k∗

corresponding to the largest of the {θk} is the arm to play. If r is the corresponding

reward, a Bernoulli trial B with the probability r is generated. If B = 1, then αk∗ is

increased by 1, otherwise βk∗ is increased by 1.
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3.3 Cross-Entropy-based Multi-Armed Bandit (CEMAB)

3.3.1 The Method

The key idea of CEMAB is to search for the optimal arm, rather than optimizing a mapping

from the past history to arm space. We transform the MAB problem into a simpler stochastic

optimization problem, and then solve this simpler problem using the Cross-Entropy method.

To this end, notice that, under the assumption that the reward distributions of the arms do not

change over time, the objective is to find,

k∗ = argmax
k∈K

µk. (3.1)

Maximizing µk, k∈ K is simpler than solving the original MAB problem over all policies,

or even over all action sequences. This is because the solutions of the simplified problem lie

in a space of size |K|, while the solutions of the original problem lie in a space of all possible

policies. This difference in computational complexity becomes more pronounced as the number

of arms increases. Therefore, to be effective in solving MABs with a large number of arms,

CEMAB finds the best sequence of arms by searching the optimal arm to play.

Despite this simplification, the stochastic nature of MAB remains, as the expected reward

µk of any arm k ∈ K is not known as a priori and can only be estimated by playing the arm.

Therefore, to keep the total reward high, CEMAB strives to avoid using arms with low rewards

as much as possible when searching for the best arm. To this end, CEMAB adopts CE for noisy

optimization and modifies it to suit the nature of the MAB problem. It uses the quantile statistics

in CE and carefully adapts it to degrade the probability of selecting the bad arms gracefully. In

this way, it can find the best arm quickly without starving the arms that might be optimal. The

CEMAB algorithm is presented in Algorithm 4.

To find the optimal arm k∗, CE starts by initializing the probability p of pulling a partic-

ular arm uniformly (Line 2). It iteratively chooses an arm (say k ∈ K) to play, based on the

probability p, receives a reward r, which is drawn randomly from the unknown distribution

Dk, and updates the estimated expected reward µk (Line 11). This sampling and estimation
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Algorithm 4: CEMAB Method
Input: The number of arms |K|, a (black box) function reward() to sample random

rewards. CE parameters: sample size N , elite ratio ρ ∈ (0, 1), elite sample size
Ne = ρN and learning rate α ∈ (0, 1). Maximum number of plays T (for
simplicity, we assume T = MN ).

Output: Total reward G.
1 µ← 01×|K|
2 p← (1/|K|)1×|K|.
3 visits← 01×|K|
4 for τ ← 1 to M do
5 A← [ ] // empty matrix
6 for i← 1 to N do
7 Draw an arm k from the discrete distribution parameterized by p.
8 r ← reward(k) // Draw an immediate reward
9 G← G+ r.

10 visits(k)← visits(k) + 1.
11 µ(k)← µ(k) + (r − µ(k))/visits(k).
12 A← [A; [k,µ(k)]]. // Append row [k,µ(k)] to A

13 p̃← update(|K|, Ne, A)
14 Using the learning rate α, update p as

p← (1− α)p+ α p̃. (3.2)

15 return G

process repeats until one is confident that updating the selection probability p will benefit the

optimization procedure. Once the probability is updated, the iterative sampling and estimation

procedure repeat using the new selection probability.

Key to the performance of CEMAB is how it updates its selection probability (Lines 13–

14). A straightforward application of CE for noisy optimization would estimate the expected

reward of all of the arms, and only after all estimates are improved, the probability p is updated.

However, in the MAB problem, an estimate of the expected reward of any arm can only be

improved by playing an arm, and each play incurs a reward. Therefore, CEMAB updates the

probability p in an asynchronous manner: It clusters a sequence of N samples of the arm into

a single batch and updates the probability p after each batch ends. Note that at the end of

each batch the estimated expected reward of some of the arms may not have improved at all.

Therefore, a smoothing mechanism (Line 14) is needed, to avoid being overcommitted to the
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new estimate of the different arms and also to guarantee that each arm has a non-zero probability

of being visited.

Similar to most CE-based algorithms, CEMAB updates the probability p on the basis of

the estimate µ of the samples. The question is how the probability p should be updated based

on the set of samples (Line 13). To this end, we propose two strategies: CEMAB-truncated

and CEMAB-proportional. In CEMAB-truncated, we use the traditional CE updating formula,

ignoring any arm that does not make it to the elite sample set. Specifically, the probability

update rule for CEMAB-truncated is in Algorithm 5. In CEMAB-proportional, we assign the

probability based on the estimated values µ of each arm after the batch ends, and never set the

probability of selecting an arm to be zero. The description of this update strategy is given in

Algorithm 6.

Algorithm 5: update(|K|, Ne, A) for CEMAB-truncated
1 for k ← 1 to |K| do
2 Rearrange A by sorting its rows according to the second column, from largest to

smallest.
3 p̃(k) = 1

Ne

∑Ne

j=1 I{A(j,1)=k}

4 return p̃

Algorithm 6: update(|K|,−, A) for CEMAB-proportional
1 for k ← 1 to |K| do
2 For each arm k sampled in A, get the latest estimate µ(k).
3 p̃(k) = pkµ(k)∑K

j=1 pjµ(j)
.

4 return p̃

3.3.2 Example: Ten-Arm MAB illustration

Example 3.3.1. Consider a ten-arm case with truncated Gaussian reward functions. The prob-

lem is generated by the following µ,σ,

µ = [0.5606, 0.2631, 0.4288, 0.3061, 0.8117, 0.0851, 0.7781, 0.7890, 0.3613, 0.8346],

σ = [0.2974, 0.2725, 0.2795, 0.1429, 0.1001, 0.1983, 0.1535, 0.0021, 0.1951, 0.0338].
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Figure 3.1: An example of ten-arm bandit with Gaussian reward function is shown in the top
figure. Several sample iterations of running CEMAB are plotted in the bottom figure.

The Figure 3.1(top) shows this example. The optimal index of the arm is 10. Finding out

the optimal arm is not easy, since arms of number 5,7,8 have suboptimal expectations and arms

of number 1,3,5,7,8 have high variances overlapping the true optimal expectation.
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Figure 3.1(bottom) illustrates some sample iterations of running CEMAB on this example.

In CEMAB, finding out the index of the optimal arm is equivalent to assigning the probability

of choosing this arm to be 1. Hence, identifying the optimal arm is converted to searching for

the optimal distribution. At iteration 1, p1 is uniformly distributed over the set of arms. After

a batch of sampling, we use top ρ-quantile of performing samples to update p2. The process

repeats until the total number of plays is reached. Table 3.1 shows how the p updates. An

interesting observation is the probability changes for the 5-th arm. In first five iterations, it

seems that the arm is the optimal arm since it has the similar expectation to the optimal arm.

However, as more samples are generated, the estimation gets more accurate. The probability of

the truly optimal arm increases after more iterations.

Table 3.1: Evolution of p by CEMAB method

τ p(1) p(2) p(3) p(4) p(5) p(6) p(7) p(8) p(9) p(10)
1 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
2 0.1000 0.0300 0.1233 0.0300 0.2400 0.0300 0.1233 0.1700 0.0300 0.1233
3 0.0300 0.0090 0.0370 0.0090 0.3753 0.0090 0.0603 0.2610 0.0090 0.2003
4 0.0090 0.0027 0.0111 0.0027 0.4626 0.0027 0.0181 0.2416 0.0027 0.2468
5 0.0027 0.0008 0.0033 0.0008 0.5821 0.0008 0.0054 0.0725 0.0008 0.3307
6 0.0008 0.0002 0.0010 0.0002 0.4780 0.0002 0.0016 0.0217 0.0002 0.4959
7 0.0002 0.0001 0.0003 0.0001 0.2601 0.0001 0.0005 0.0065 0.0001 0.7321
8 0.0001 0.0000 0.0001 0.0000 0.0780 0.0000 0.0001 0.0020 0.0000 0.9196
9 0.0000 0.0000 0.0000 0.0000 0.0234 0.0000 0.0000 0.0006 0.0000 0.9759

10 0.0000 0.0000 0.0000 0.0000 0.0070 0.0000 0.0000 0.0002 0.0000 0.9928

3.3.3 Time Complexity and Convergence Properties

Similar to many state-of-the-art methods for solving MABs, such as Exp3 (Auer et al., 2002b)

and UCB (Auer et al., 2002a), the most time-consuming part of CEMAB is its update step, i.e.,

Line 13 of Algorithm 4. For CEMAB-truncated, each update takesO(N log(N)+max(|K|, Ne)),

where the first component is due to sorting the samples within a batch (Line 2 of Algorithm 5).

For CEMAB-proportional, each update will take O(|K|). Although Thompson sampling, Exp3

and UCB (current state-of-the-art methods) require O(|K|) for each update too, the number of

updates for CEMAB is much less than for these two methods. Exp3 and UCB update their
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probability for selecting an arm at each step, but CEMAB updates its probability for selecting

the arms only once per batch, i.e., M = T/N times for a total of T plays.

CEMAB-proportional is guaranteed to converge to the optimal expected reward, assuming

that the cumulative distribution function of the reward of the optimal arm is strictly increasing.

The proof is a straightforward application of the proof of the CE-proportional algorithm for

noisy optimization (Goschin et al., 2011). We do not have a theoretical proof that CEMAB-

truncated will converge to the optimal expected reward. However, under the aforementioned

assumption on the cumulative distribution function, CEMAB-truncated converges to the quan-

tile of the total reward function. This proof is a straightforward application of the proof of

the commonly used CE algorithm for noisy optimization in (Goschin et al., 2013). CEMAB-

truncated is more aggressive in its distribution update compared to CEMAB-proportional, and

therefore we can expect that CEMAB-truncated tends to converge to a particular arm faster than

CEMAB-proportional, which is good if the quantile function of the total reward is equivalent to

the expected total reward.

3.4 Experimental Results

The goal of our experiments are two-fold: The first goal is to test the proposed methods against

existing MAB methods on well-known benchmarks and understand the properties of the pro-

posed methods better (Section 3.4.1). This also helps us in setting the parameters for tests on

large MAB problems. The second and ultimate goal is to test the performance of our proposed

methods on large MAB problems (Section 3.4.2).

We compare the empirical performance of ε-greedy (with 0 initialization), ε-greedy (play

once), Softmax, Exp3, and UCB1, with our proposed CE-based methods on discrete (Bernoulli)

and continuous (truncated Gaussian) reward distributions. Note that we use two types of ε-

greedy: One initializes the estimate of the expected reward to zero (denoted as E1), while the

other initializes the estimate of the expected reward based on the reward received when playing

the arm once (denoted as E2). The reason for these two versions is that we found significant

performance differences between ε-greedy with these two different initializations in large-scale

problems.
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3.4.1 Small-Scale MABs

Experimental Setup

We test our methods and comparators on ten small-scale MAB problems, with up to ten arms.

Table 3.2 details the reward distributions of these problems.

Table 3.2: Bx refers to Bernoulli distributions and Gx to truncated Gaussian distributions.

1 2 3 4 5 6 7 8 9 10
Mean of B1 0.9 0.6
Mean of B2 0.9 0.8
Mean of B3 0.55 0.45
Mean of B4 0.9 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
Mean of B5 0.9 0.8 0.8 0.8 0.7 0.7 0.7 0.6 0.6 0.6
Mean of B6 0.55 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

Mean of G1 0.3 0.6
Std of G1 0.2 0.2

Mean of G2 0.3 0.6
Std of G2 0.6 0.2

Mean of G3 0.5 0.2 0.4 0.3 0.8 0.1 0.7 0.8 0.3 0.9
Std of G3 0.3 0.2 0.3 0.1 0.1 0.2 0.5 0.4 0.2 0.1

Mean of G4 0.5 0.2 0.4 0.3 0.8 0.1 0.7 0.8 0.3 0.9
Std of G4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

The first six problems (i.e., B1–B6) are MABs with discrete reward distributions, which is

the benchmark used in (Auer et al., 2002a). The reward of each arm in each of these problems

is sampled from a Bernoulli distribution, where the success probability corresponds to the prob-

ability of generating a reward of 1 and the failure probability corresponds to the probability of

generating a reward of 0. B1–B3 specify MABs with two arms and B4–B6 define MABs with

ten arms. Note that B3 and B6 are relatively “difficult”, because the reward of the optimal arm

has a higher variance and the gaps µ∗ − µk, k = 1, . . . , 10 are small.

The last four problems (i.e., G1–G4) are MABs with continuous reward distributions, in

particular truncated normal distributions with support [0, 1]. Table 3.2 specifies the mean and
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standard deviation of the Gaussian distribution of each arm in each MAB problem. In this set of

problems, G2 and G4 are quite challenging. The standard deviations of the reward distributions

in these two problems are large and the support of these distributions also overlap significantly,

which makes it difficult to distinguish between the best arm and bad arms.

Parameters Selection

To set the parameters for comparison, we first run a set of preliminary tests for each algorithm

on each problem in Table 3.2 with a wide range of parameters. The parameters are summarized

in Table 3.3. For each algorithm, the best parameters are those that maximize the most problems

across the 10 MAB problems described above.

Table 3.3: Parameter Range

Method Parameters Tested Best Parameter

CEMAB-truncated N ∈ {50, 100}, ρ ∈ {0.3, 0.4, 0.5}, α ∈ {0.7, 0.8, 0.9} N = 50, ρ = 0.5, α = 0.8

CEMAB-proportional N ∈ {50, 100}, α ∈ {0.7, 0.8, 0.9} N = 50, α = 0.7

ε-greedy (E1 and E2) ε ∈ {0.4, 0.35, . . . , 0.1, 0.05} ε = 0.1 (E1), ε = 0.05 (E2)
Softmax t ∈ {0.5, 0.45, ...0.1, 0.05} t = 0.1

Exp3 γ ∈ {0.7, 0.65, ...0.15, 0.1} γ = 0.2

UCB c ∈ {3, 2.75, ...0.5, 0.25, 0.1, 0.05} C = 0.1

Results

Figure 3.2 and Figure 3.3 present the performance of CEMAB and the comparator methods in

ten small-scale testing cases. The general pattern we can get from the results is that CEMAB-

truncated converges faster than CEMAB-proportional when the uncertainty is relatively small.

While CEMAB-proportional has a better ability to handle noise in rewards since it will consider

all data in the updating step rather than elite set only. Even though CEMAB does not always

get the best performance in the small-scale cases, it is still able to achieve above-average per-

formance. When the size of the arm becomes large in the next section, its advantage becomes

more obvious.
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Figure 3.2: The average total regret on six Bernoulli reward problem sets. All algorithms use
the best parameters and all experiments are repeated for 50 times.
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Figure 3.3: The average total regret on four Gaussian reward problem sets. All algorithms use
the best parameters and all experiments are repeated for 50 times.

Among the ten small problems defined in Table 3.2, B5, B6, G3, and G4, which are the

more difficult problems. In this set of problems, TS achieves the lowest total regret in B5 and

B6, followed by UCB and both CEMABs. In G3 and G4, UCB takes the first place, while one

of the CEMABs is the second. The reason is that in B6 the best arm (i.e., arm 1) does not show

significant performance difference at the beginning, and it is quite easy for CE-truncated to

underestimate this arm and set a probability zero during the updating step. Once this happens,

CEMAB-truncated fails to identify the best arm, and as time progresses the difference in the

total regret becomes more apparent. However, by avoiding this aggressive update, CEMAB-

proportional perform well and is similar to UCB in G4. It is important to note that the best

empirical parameter for UCB here is C = 0.1, rather than the default value C = 2.
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Softmax and Exp3 have the worst performance. In Softmax, the use of the Boltzmann

distribution is likely to exaggerate an arm with a “good” estimate. For Exp3, it is important to

note that this method is designed for non-stochastic MAB problems. A particular arm is highly

influenced by the current sample reward rather than the current estimate of the reward for each

arm, which is a downside for stochastic problems

It is also interesting to note that the performance of the simplest algorithm, ε-greedy, differs

significantly when applying different initializations. Variant E1 initializes the reward estimate

of each arm with 0, while variant E2 initializes the reward estimate based on the reward received

when playing the arm once. The performance of E2 is better in this set of small-scale problems.

However, in the next section we will see that E1 is better for large-scale problems.

3.4.2 Large-scale MABs

Experimental Setup

To assess the performance of CEMAB for large problems, we test the algorithms on problems

with an increasing number of arms. For each number of arms, we test the algorithms on four

different MAB problems, as shown in Table 3.4, which consists of two LB (Large Bernoulli)

that represent MABs whose reward distributions are Bernoulli distributed and two LG (Large

Gaussian) that represent MABs whose reward distributions are truncated Gaussian with support

[0, 1].

Table 3.4: Large-scale MAB Settings

LB1 µk ∼ U(0, 1)

LB2 10% of µk ∼ U(0.75, 1) and the rest of µk ∼ U(0, 0.25)

LG1 µk ∼ U(0, 1), σk ∼ U(0, 0.25)

LG2 10% of µk ∼ U(0.75, 1) and the rest of µk ∼ U(0, 0.25), σk ∼ U(0, 0.25)

For LB1, the success probability (i.e., the probability of sampling a reward of 1) of each

reward distribution is uniformly sampled from (0, 1). For LB2, 10% of the arms have rewards

drawn from a Bernoulli distribution whose success probability is sampled from (0.75, 1) and

90% have rewards drawn from a Bernoulli distribution whose success probability is sampled
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from (0, 0.25). For LG1, the means are uniformly sampled from interval (0, 1), while for LG2,

10% of the means are sampled from (0.75, 1) uniformly at random and 90% are sampled from

(0, 0.25) uniformly at random. The standard deviations for both LG1 and LG2 are sampled

uniformly at random from (0, 0.25) for each arm. All of these parameters for the reward dis-

tributions are sampled independently for each arm. Apparently, LB2 and LG2 are harder than

LB1 and LG1, since they require a strategy that has a good capability of exploring, rather than

keep playing the best arm so far.

Results

For these tests, each algorithm uses the best parameters as found in Table 3.3. All algorithms

use the best parameters and all experiments are repeated for 200 times. The best method is high-

lighted in boldface. If the difference between the best and second best method is not statistically

significant (meaning that one method lies in the 95% confidence interval of the other), we high-

light both of them. The results of these tests for |K| = 100, 1000, and 10000 are summarized

in Table 3.5 and Table 3.6. The results indicate that CEMAB outperforms all other methods as

the number of arms increases. The reason for the significantly decreasing performance of UCB

is that each arm has to be played at least once to estimate the performance of each arm, so that

it can converge to the optimal solution. However, exactly because of this, its performance be-

comes impractical as the number of arms increases. On the other hand, CEMAB incrementally

improves its estimate on the performance of the arms based on sampling, without ever requiring

to play the entire set of arms at first. This causes the convergence property of CEMAB to be

weaker than UCB, but its empirical performance to be significantly better in large problems.

It is also interesting to note that the simple ε-greedy with zero initial estimate (E1) is a

relatively strong competitor. In fact, for problems with a large number of arms, this simple

methods is a stronger competitor than the state-of-the-art UCB. Note that for the Gaussian

reward case, the gap between rewards is much less than for the Bernoulli case. As a result, even

if an arm that is played is not very good, the reward obtained by playing a better arm will not be

much higher. This could be a reason why the performance of E1 is comparable to CEMAB’s in

the LG1 and LG2, while it loses in the LB1 and LB2.
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Table 3.5: The average total reward for large MABs with Bernoulli reward functions.

LB1 LB2
The number of plays T The number of plays T

|K| Method 1, 000 5, 000 10, 000 20, 000 1, 000 5, 000 10, 000 20, 000

CE1 893 4749 9569 19207 718 4106 8342 16817
CE2 806 4612 9463 19184 741 4192 8571 17341
E1 864 4572 9230 18547 820 4139 8288 16597

100 E2 868 4686 9460 19010 767 4167 8437 17022
UCB 833 4674 9538 19225 787 4311 8788 17796

softmax 859 4407 8866 17798 801 4127 8305 16686
Exp3 580 3564 7702 16285 241 2610 6202 13550
TS 856 4695 9557 19323 678 4168 8634 17615

CE1 896 4788 9651 19380 784 4493 9130 18402
CE2 810 4655 9559 19409 792 4538 9297 18850
E1 868 4510 9131 18496 771 4352 8885 18019

1, 000 E2 500 4129 8802 18532 197 3852 8635 18217
UCB 499 3812 8358 17906 197 3730 8568 18361

softmax 875 4470 8989 18043 853 4445 8976 18074
Exp3 507 2666 5643 12378 202 1122 2601 7114
TS 580 4027 8957 18886 305 3949 8925 18897

CE1 895 4784 9644 19367 795 4554 9251 18649
CE2 809 4655 9554 19393 800 4574 9358 18969
E1 863 4479 9025 18158 761 4322 8812 17818

10, 000 E2 515 2492 5013 14126 181 1004 2007 11022
UCB 515 2486 5007 12135 182 1004 2007 9880

softmax 832 4341 8786 17734 776 4264 8725 17734
Exp3 500 2510 5040 10154 201 1006 2026 4109
TS 511 2707 5811 13091 207 1191 3081 10433

For CEMAB, the performance in LB1 and LG1 seems to be better than that in LB2 and

LG2. This is because the abundance of good arms in LB1 and LG1 is more than LB2 and LG2.

It helps CEMAB to sample good arm easily.
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Table 3.6: The average total reward for large MABs with Gaussian reward functions.

LG1 LG2
The number of plays T The number of plays T

|K| Method 1, 000 5, 000 10, 000 20, 000 1, 000 5, 000 10, 000 20, 000

CE1 885 4624 9297 18644 772 4378 8884 17897
CE2 800 4484 9150 18512 767 4435 9068 18341
E1 868 4463 8973 17995 783 4411 8977 18109

100 E2 877 4562 9177 18415 879 4685 9443 18956
UCB 804 4450 9110 18506 863 4777 9705 19578

softmax 833 4242 8513 17067 813 4282 8682 17551
Exp3 559 3449 7457 15737 281 2752 6678 14878
TS 785 4406 9071 18477 851 4779 9706 19580

CE1 876 4599 9254 18564 778 4405 8937 18004
CE2 782 4441 9109 18499 763 4381 8990 18236
E1 865 4532 9180 18542 768 4340 8895 18043

1, 000 E2 499 4358 9183 18835 238 4051 8818 18351
UCB 500 3560 7750 16852 238 3440 8071 17711

softmax 811 4125 8281 16609 816 4235 8535 17165
Exp3 504 2624 5493 11865 242 1287 2831 7095
TS 563 3713 8186 17729 312 3670 8378 18004

CE1 877 4612 9281 18618 779 4394 8913 17951
CE2 788 4470 9153 18572 770 4369 8934 18113
E1 876 4568 9247 18656 774 4313 8815 17894

10, 000 E2 488 2475 4997 14736 241 1207 2394 11942
UCB 488 2477 4997 12390 240 1207 2393 9131

softmax 794 4102 8275 16648 740 4030 8227 16690
Exp3 501 2506 5027 10108 239 1200 2412 4865
TS 507 2661 5637 12469 244 1339 3164 9783

3.5 Discussion

In this chapter, we propose a new approach, called CEMAB, for solving MABs with a large

number of discrete arms. It uses the CE method as a noisy optimization method to search for

the best arm with as little regret as possible. We present and evaluate the CEMAB algorithm

with two variants for the updating procedure. Using results on CE for noisy optimization, one
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of the variants is guaranteed to converge to the optimal arm, under certain conditions on the

reward function. Empirical results on a number of MAB problems with an increasing number

of arms indicate that CEMAB outperforms state-of-the-art methods.

However, there are still several shortcomings. Firstly, CEMAB-truncated can only guarantee

converging to the quantile of the total reward function, rather than the expectation. Although

CEMAB-proportional is able to converge to the expected total reward function, there is no

theoretical proof for the convergence rate. Secondly, the number of parameters in CEMAB is

more than the other methods, which makes finding the best performing parameters difficult. To

alleviate these problems, it is worthy for future research.
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Chapter 4

QBASE: An On-line Planner for

Large-scale POMDPs

A key difference between MAB and POMDP problems is the estimation part. Since a MAB only

has one state, after sampling an arm, the sampled reward immediately improves the estimated

expected reward of that arm. However, in POMDP, an action will move the agent to a new

belief. Therefore the Q-value must be estimated by considering many possible sequences of

future beliefs of the agent, which are affected by the future actions selected and observations

perceived. This intertwined effect makes balancing the belief and the action sampling essential

for solving POMDPs with large action spaces. To alleviate this difficulty, we propose an on-line

approximate solver, called Quantile-Based Action Selector (QBASE). Similar to most on-line

solvers, QBASE uses sampling to construct a belief tree. However, it uses a quantile-based

approach, derived from the Cross-Entropy method for optimization, to adaptively construct a

small subset of the action space, so as to avoid full enumeration of the action space without

sacrificing the quality of the generated decision strategies. Extensive numerical experiments

on three different robotics tasks with up to 100,000 actions illustrate that QBASE can generate

substantially better strategies than a leading method.

56



CHAPTER 4. QBASE: AN ON-LINE PLANNER FOR LARGE-SCALE POMDPS 57

4.1 Background

Decision making under partial observability is critical to autonomous systems. Except in highly

engineered scenarios, an autonomous agent must decide what to do “next” to get good long-term

outcomes, despite not knowing its exact state due to uncertainty in the effects of actions, errors

in sensors and perception.

The Partially Observable Markov Decision Process (POMDP) is a mathematically princi-

pled model for decision making under uncertainty; see, e.g., Sondik (1971). It quantifies this

uncertainty using probability distribution functions, and computes the best action to perform

with respect to distributions over the state space, called beliefs, rather than over a single state.

Unfortunately, finding the exact optimal decision strategy under a POMDP framework is so

computationally expensive (Papadimitriou and Tsitsiklis, 1987b) that it has been deemed im-

practical and is often abandoned at the expense of reliability and robustness. Loosely speaking,

four components have hindered the practicality of POMDP: long planning horizons and large

state, action, and observation spaces. Fortunately, the past decade has seen significant advances

in approximate POMDP solvers. As a consequence, we can now find good decision strategies

for POMDPs with large state spaces (Pineau et al., 2003; Smith and Simmons, 2004, 2005;

Porta et al., 2006; Shani et al., 2007; Kurniawati et al., 2008; Silver and Veness, 2010; Kur-

niawati and Yadav, 2013; Somani et al., 2013; Luo et al., 2016) and large observation spaces

(Hoey and Poupart, 2005; Bai et al., 2014; Sunberg and Kochenderfer, 2018), as well as up to

a hundred look-ahead planning steps (Kurniawati et al., 2011) in less than an hour. This has

enabled POMDPs to start becoming practical for solving various problems (Hoey et al., 2010;

Horowitz and Burdick, 2013; Young et al., 2013).

Despite these advances, finding good decision strategies for problems with large action

spaces remains difficult. A POMDP solver must compute, for each belief, an action that max-

imizes the expected total return (possibly discounted). Most successful solvers today compute

such a mapping only for a small set of sampled beliefs and estimate the expected total return

via sampling too, thereby trading optimality with approximate optimality for faster speed and

reduced memory requirements. However, finding the maximum action is more difficult, and
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most solvers resort to enumerating all possible actions. When the action space is large, such

enumeration is no longer feasible.

In this chapter, we present an on-line POMDP solver, called Quantile-Based Action Selec-

tor (QBASE), which alleviates the difficulty of finding good decision strategies for problems

with large action spaces. It extends the Cross-Entropy method for optimization (Rubinstein

and Kroese, 2004) to partially enumerate the action space, so as to avoid full enumeration of

all possible actions without sacrificing the quality of the resulting strategy too much. QBASE

adaptively constructs a small subset of the action space, based on quantile statistics of the cur-

rent estimate of the expected total return of the actions and uniform sampling. This allows more

computational resources to be allocated to obtain more refined estimates of the expected total

return of actions that are likely to perform well, as well as ensuring that all actions will even-

tually be visited. The method has been tested on three problems with an increasing number of

actions. It has shown significant improvements compared to a state-of-the-art method, POMCP

(Silver and Veness, 2010), for problems with large action spaces.

4.2 Related Algorithms

The overview of the recent developments in approximate POMDP solvers has been discussed

in Table 1.1. In this chapter, we mainly focus on large action spaces.

According to Bellman’s equation (2.14), finding the best action from the current belief is

affected by the estimation of Q(b, a) and the strategy of optimizing the action over the action

space A. Solving the action selection is essentially a stochastic optimization problem. Since

computing a good estimate of the Q-value function is costly, optimization methods that rely on

gradients would be expensive to compute.

If restrictive conditions can be assumed on POMDP models, linearized solvers can be ap-

plied to reduce the computation complexity (Van Den Berg et al., 2011; Sun et al., 2015; Hoerger

et al., 2016). As a result, it will help to scale up for solving problems with large action spaces.
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In terms of the optimization problem, prior work (Seiler et al., 2015) has attempted to al-

leviate this problem via the simplest stochastic optimization method that does not require gra-

dient information, i.e., generalized pattern search. It performs well for problems with up to

3-dimensional continuous action spaces. However, its convergence relies on a continuity prop-

erty of the gradient of the value function, which is unlikely to be satisfied for general POMDP

problems.

A method to solve MDP (the fully observable version of POMDP) with continuous action

space has been proposed in Mansley et al. (2011). This method uses the hierarchical optimistic

optimization tree, in which the action space is adaptively partitioned into regions, and actions

are evaluated per region, with more promising actions evaluated first. This approach assumes

that nearby actions are likely to generate similar results, which is generally correct for continu-

ous action spaces but not for discrete action spaces.

In this chapter, we aim to relax the requirement of gradient by using a quantile-based ap-

proach, which is adapted from the Cross-Entropy method (Rubinstein and Kroese, 2004). Re-

cent advances in solving multi-armed bandit provide a suitable tool to break such assump-

tion (Wang et al., 2017; Chaudhuri and Kalyanakrishnan, 2017). The crucial observation is that

CEMAB (Wang et al., 2017), a quantile based sampling approach, significantly outperforms es-

tablished methods when the size of space is large, given a fixed budget. It empirically indicates

such sample-based method is capable of scaling up well.

4.3 Quantile-Based Action Selector (QBASE)

4.3.1 Overview

QBASE is an on-line POMDP solver. At each step it aims to compute the best action to perform

from the current belief b for a fixed time limit, executes this action, and updates its belief to

b′ = τ(b, a, o), where a ∈ A is the computed best action and o ∈ O is the observation the agent

perceives right after performing a from b. The process then repeats from the new belief b′, until

a termination condition is met.
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To find the best action to perform from a belief, QBASE constructs a belief tree, denoted

as T . A belief tree is a tree where the nodes are sampled beliefs. For compactness, we denote

the nodes of T and the beliefs they represent in the same way. An edge labeled (a, o) from a

belief b to a belief b′ in T means there is an action a ∈ A and an observation o ∈ O such that

b′ = τ(b, a, o). QBASE represents each sampled belief as a set of particles (states) and estimates

the value of each sampled belief via Monte Carlo backup. The best action is then the action that

induces the best estimated value.

Algorithm 7: QBASE
Input: POMDP model 〈S,A,O, T, Z,R〉 or a corresponding black-box simulator P ,

parameters of QBASE 〈%,Ns,Mb, β〉 (described in subsection “Sampling
Action”)

1 Initialize T with b0 as the root node
2 INITINODE(b0)
3 while running do
4 while there is still time for planning do
5 GROWTREE (T , P , 〈%,Ns,Mb, β〉) // build tree T
6 Perform action a, such a = arg maxa∈A b.P(a)
7 o = get observation
8 b = τ(b, a, o) // update belief

Algorithm 8: INITINODE(b)
1 for a ∈ P .A do b.N(a) = 0 ; b.P(a) = 1

|P.A|
2 b.As =sample Ns actions uniformly at random from A

3 for a ∈ b.As do b.Ps(a) = b.P(a)∑
a∈b.As

b.P(a)

Algorithm 7 presents the overall algorithm. The next subsection presents how the belief tree

is constructed, while the subsequent subsections detail the key to QBASE’s capability in solving

problems with large action spaces, which is the action sampling strategy for constructing T .

4.3.2 Expanding the Belief Tree

To construct the belief tree T , QBASE follows a strategy similar to POMCP (Silver and Veness,

2010) and ABT (Kurniawati and Yadav, 2013). It initializes the tree by selecting the initial belief

(or setting the current belief) b0 as the root of T . The tree is then iteratively grown (expanded) by
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Figure 4.1: Correspondence between a history and a path in T

simulating histories that start from the root of the tree. A history is a sequence of 〈state, action,

observation, reward〉 4-tuples. To explain the growing of the tree, suppose that the “current”

tree is T . Generate the first tuple of a new history h by first sampling a state s0 ∼ b0, then

an action a0 ∈ A (detailed in the next subsection), followed by a new state s1 ∼ T (s0, a0, S),

and finally an observation o0 ∼ Z(s1, a0, O). The tuple 〈s0, a0, o0, r0〉 is associated with the

root of the tree, b0. The process is repeated for the next state s1 to generate the second entry

〈s1, a1, o1, r1〉 in h. This second tuple is then associated with the belief node b1, where the edge

from b0 to b1 is labeled by (a0, o0). And the state s1 is added to the set of particles that represent

b1. This process keeps repeating until the associated belief node is a leaf node of the current

tree. Suppose 〈sd, ad, od, rd〉 is associated with leaf node bd in T . Then, at this point, a new

tuple 〈sd+1,−,−, rd+1〉 is added as the last element of h, and a new belief node, denoted as

bd+1, is constructed, added as a child of bd via an edge labeled (ad, od), and associated with this

last tuple of h. Figure 4.1 illustrates the association between a history and a path in T . The

process of sampling a history from the root node is repeated until the time for planning is over.

The set of all sampled histories is denoted as H .

QBASE estimates the Q-value Q(b, a) as
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Algorithm 9: GROWTREE(T , P , 〈%,Ns,Mb, β〉)
1 Set d = 0, h = ∅, b = root of T , Irollout = false
2 s ∼ b
3 while γd > ε and Irollout == false do
4 a = SAMPLEACT(b, 〈%,Ns,Mb, β〉)
5 (s′, o, r) = SIMULATOR(P , s, a)
6 Append 〈s, a, o, r〉 to h
7 Associate 〈s, a, o, r〉 with b
8 b.particles = b.particles ∪ {s}
9 b.Av = b.Av ∪ {a}

10 s = s′ ; d++ ; b.N(a)++ ; b.N++ ; b′ = τ(b, a, o)
11 if b′ is not in T then
12 add b′ as a child of b and set Irollout = true
13 b = b′

14 if γd > ε then
15 Eh = 0

16 else
17 INITINODE(b) ; b.particles = {s}
18 Eh =ROLLOUT-POLICY(s) // rollout L steps

19 Append 〈s,−,−, Eh〉 to h
20 Associate 〈s,−,−, Eh〉 with b
21 UPDATEVALUES(T ,h,Eh) // Back propagate to root

Q̂(b, a) =
1∣∣H(b,a)

∣∣ ∑
h∈H(b,a)

V (h, l). (4.1)

Here, H(b,a) ⊆ H is the set of histories that correspond to paths in T that starts from the root

node, pass through node b and then follow action a. Also, l = l(b) denotes the depth level

of node b in T . The function V (h, l) is the value of a history h starting from the lth element,

and is computed as
(∑|h|

i=l γ
i−lR(hi.s, hi.a)

)
+ Eh, where γ is the discount factor and R is the

reward function. Eh is an estimate of the value of the last state in h, and is computed as the total

discounted reward of a random walk for a pre-defined number of steps (denoted as L) from this

last state. Algorithm 9 presents the tree expansion strategy.
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4.3.3 Sampling Actions

Key to QBASE is the way it samples actions when generating histories to construct the belief

tree T . Given a belief node to expand, most successful POMDP solvers today enumerate the

entire action space A to estimate the Q-values of these actions, and then choose the action

with the highest utility — generally, computed as a combination of the estimated value and

an exploration component (Silver and Veness, 2010; Kurniawati and Yadav, 2013) or an upper

bound of the Q-value (Somani et al., 2013). In contrast, for each node, QBASE adaptively

constructs a probability distribution function overA and uses this distribution to sample actions,

so as to avoid full enumeration of the action space.

The question is, what distribution should QBASE use to sample fromA? Ideally, we want to

assign high probability mass to good actions and zero mass to bad actions. Such a distribution

allocates enough computational resources to estimate the Q-values of good actions to the level

that the best action can be identified quickly, without wasting resources estimating the Q-values

of bad actions. Of course, which actions are good and which are bad are a priori unknown, as

otherwise the problem would have been solved. Therefore, QBASE aims to adaptively construct

a distribution proportional to the Q-value function, interleaving estimating Q-values of sampled

actions with adaptively improving the distribution in a Cross-Entropy method fashion.

For each node b of T , QBASE maintains and updates the distribution (denoted as b.P) over

A in a batch manner. At the beginning of the first batch, the probability is uniform over A.

Within each batch, QBASE is given a pre-specified budget (denoted as Mb) to sample actions

and update their Q-values. Algorithm 10 presents the algorithm. Let b.N be the number of

simulations for belief b, which is computed as b.N =
∑

a∈A b.N(a). At the end of each batch

(line 1), QBASE is going to conduct two-stage update.

To increase the chances that each batch improves the Q-values estimates of good actions

without starving any of the others, QBASE constructs a subsetAs ⊂ A at the start of the batch.

This set has a pre-defined size (denoted as Ns) and consists of two components: The top %-

quantile of b.P and Ns − %|A| exploration components, sampled uniformly without repetition

from action space A without the exploitation components (line 2-6). Actions for generating

histories, and hence expanding the belief tree, are then sampled from the subset As rather than
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Algorithm 10: SAMPLEACT(b, 〈%,Ns,Mb, β〉)
1 if b.N > 0 and (b.N mod Mb) == 0 then
2 E = the top b% · |A|c elements of sorted b.Q̂
3 b.As = E
4 while |b.As| < Ns do
5 a ∼ U(A\E)
6 Set b.As = b.As

⋃{a}
7 m = mina∈b.Av b.Q̂(a)

8 M = maxa∈b.Av b.Q̂(a)
9 for a ∈ b.Av do

10 W(a) = αb(a) b.Q̂(a)−m
M−m

11 for a ∈ b.Av do
12 b.P(a) = |b.Av |

|A|
W(a)∑

a∈b.Av
W(a)

13 for a ∈ b.As do
14 b.Ps(a) = b.P(a)∑

a∈b.As
b.P(a)

15 a ∼ b.Ps

16 return a

from the entireA. The size Ns is set a priori to be much smaller thanA, but slightly larger than

b% · |A|c to allow exploration. The distribution b.Ps to sample an action fromAs is proportional

to b.P for a ∈ As.

The distribution b.P is updated based on a slight modification of the proportional Cross-

Entropy (pCE) update (Goschin et al., 2013):

b.P(a) ∝ αb
Q̂(b, a)−m
M −m . (4.2)

The smoothing parameter αb(a) quantifies how much QBASE trusts the new estimate com-

pared to the past probability of sampling a. This increases with the number of visits according

to αb(a) = b.N(a)/(b.N(a) + β), where b.N(a) is the number of times the pair (b, a) has been

visited and β is a constant parameter. The quantities m and M refer to the minimum and max-

imum of the estimated Q-values up to this batch, i.e., mina∈b.Av b.Q̂(a) and maxa∈b.Av b.Q̂(a),

where Av is the visited action space (line 7-14). Then actions are sampled from the latest prob-



CHAPTER 4. QBASE: AN ON-LINE PLANNER FOR LARGE-SCALE POMDPS 65

ability function b.Ps (line 15). Figure 4.2 provides sample simulations to illustrate the concept

of two-stage sampling in QBASE.
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Figure 4.2: A batch simulation of QBASE
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4.4 Experimental Results

To assess the applicability of QBASE for solving problems with large action spaces, we test the

method on a total of 12 scenarios, classified into 3 different types of robotic tasks. We compare

QBASE with the state-of-the-art online POMDP solver, POMCP (Silver and Veness, 2010). For

a fair comparison, we ran POMCP using the authors’ code1 and implemented our code in the

POMCP code framework using C++. All experiments are run as a single thread process on an

Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz with 128GB RAM.

To set the parameters of QBASE and POMCP, we first carry out a set of pilot runs for each

solver to determine the best one. Specifically, in QBASE, the largest subset Ns is determined

by min(0.5 |A|, 100), % is selected from {0.3, 0.5, 0.7}, Mb from {1, 2}, and β from {5, 10, 20}.
For POMCP, the exploration constant C is selected from {0.1, 1, 10, 100, 1, 000, 10, 000}.

Other parameters of the algorithm are set independently from problem domains. As the

scale of the test problems is large, we set the discount factor γ = 0.98 and the tolerance of

the approximate Q-value to ε = 0.01, in order to obtain a relative long planning horizon. As a

result, the effective horizon is about D = log(ε)/ log(γ) ≈ 228. For a fair comparison, both

solvers use the same rollout policy.

Table 4.1 presents the average expected discounted total reward with 95% confidence inter-

val of the 1, 000 simulation runs for each scenario and method. Overall, QBASE outperforms

POMCP in all test scenarios. Furthermore, in general, except for RockSample, the gap be-

tween QBASE and POMCP increases, as the size of the problem increases. In RockSample,

the action spaces are relatively small, that the extra computation of constructing a subset via the

quantile-based method that QBASE performs becomes an unnecessary overhead.

In the rest of current section, we will explain each scenarios with necessary details and

additional results (e.g., how the planning time per step affects performance).

1http://www0.cs.ucl.ac.uk/staff/d.silver/web/Applications.html

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Applications.html
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Table 4.1: Simulation Results

Scenario
Time/Step

Method Reward
(sec)

Navigation(2, 30)
|S| ≈ 9× 102,

1
POMCP 732.0 ± 5.0

|A| = 49, |O| = 16 QBASE 741.7 ± 4.7

Navigation(3, 30)
|S| ≈ 2× 104,

2
POMCP 560.5 ± 7.6

|A| = 343, |O| = 64 QBASE 632.5 ± 8.6

Navigation(4, 30)
|S| ≈ 8× 105,

5
POMCP -8.2 ± 4.9

|A| = 2, 401, |O| = 256 QBASE 91.3 ± 10.9

RockSample(7, 8)
|S| = 12, 544,

1
POMCP 17.7 ± 0.4

|A| = 13, |O| = 3 QBASE 18.8 ± 0.4

RockSample(20, 50)
|S| ≈ 4× 1017,

2
POMCP 17.6 ± 0.6

|A| = 55, |O| = 3 QBASE 19.6 ± 0.7

RockSample(20, 100)
|S| ≈ 4× 1032,

5
POMCP 14.2 ± 0.8

|A| = 105, |O| = 3 QBASE 15.1 ± 0.9

Hunting-smart(11, 2, 2)
|S| ≈ 108,

1
POMCP −72.0 ± 5.7

|A| = 100, |O| = 4 QBASE −69.7 ± 4.3

Hunting-smart(11, 3, 3)
|S| ≈ 1012,

5
POMCP −179.1 ± 7.0

|A| = 1, 000, |O| = 8 QBASE −94.3 ± 5.7

Hunting-normal(11, 2, 2)
|S| ≈ 108,

1
POMCP 42.4 ± 2.9

|A| = 100, |O| = 4 QBASE 42.3 ± 3.9

Hunting-normal(11, 3, 3)
|S| ≈ 1012,

5
POMCP 26.1 ± 8.6

|A| = 1, 000, |O| = 8 QBASE 96.1 ± 7.3

Hunting-normal(11, 4, 4)
|S| ≈ 1016,

10
POMCP − 1, 572.7± 33.7

|A| = 10, 000, |O| = 16 QBASE 67.7 ± 7.1

Hunting-normal(11, 5, 5)
|S| ≈ 1020,

60
POMCP −2, 247.8± 32.7

|A| = 100, 000, |O| = 32 QBASE 28.6 ± 13.6
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4.4.1 RockSample(n, k)

Definition

Figure 4.3: Illustration of RockSample(20, 50)
.

Figure 4.3 illustrates the scenarios for (20, 50). Rocksample (Smith and Simmons, 2004)

is a well-known benchmark for POMDP solvers. A robot must explore an environment of size

n × n, populated with k rocks (marked as red squares). The position of the rocks are known

exactly, but whether a rock is good or bad is unknown. In fact, at the beginning, each rock

has a 0.5 chance of being good or bad. The goal of the robot is to sample as many good rocks

as possible as fast as possible. The state space is the Cartesian product of the robot’s position

and the quality of the rocks, forming a state space of size n2 · 2k. The robot can move to

its North, South, East, and West cell, sample a rock at its current location, or remotely check

rock i = 1, . . . , k to gain more information on whether it is good or bad. Its motion is perfect

and the robot’s position is fully observed. Checking a rock means that the robot applies a

scanner to identify if the rock is good or bad. The reliability of the signal received decreases

exponentially with the distance between the robot and the rock. The robot receives a reward

of +10 if it samples a good rock or if it exits the environment (entering the grey region in the
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figure). Sampling a bad rock incurs a penalty of −10. We tested our method on rock sample

(7, 8), (20, 50), and (20, 100), increasing the action space from 13 to 105.

Comparison with Different Planning Time
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Figure 4.4: Performance with different planning times per step in RockSample

Figure 4.4 shows the trend of performance with increasing planning budgets. The results

indicate that, in general, for a small planning time, both POMCP and QBASE perform equally

but, as we allow additional planning time, QBASE can signicantly improve on POMCP. The

reason is that, when the planning time is limited, both POMCP and QBASE do not have enough

time to compute good Q-value estimates and can only build relatively shallow belief trees,

causing both to perform equally poorly. However, when more time is allowed and deeper trees

can be built, POMCP still needs to sweep the entire action space every time a node is added

to the belief tree, which reduces the time it can spend on evaluating good actions. In contrast,

QBASE evaluates only a small subset of the action space, guided by quantile-statistics, and can

identify faster which actions are more promising and, as a result, can spend more resources on

evaluating these actions.
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4.4.2 Navigation(d, n)

Definition

Figure 4.5: Illustration of Navigation(2, 30)

.

Figure 4.5 illustrates the navigation scenario (2, 30). An agent must navigate to a goal location

(marked as red square) in a d-dimensional grid world populated by obstacles (marked as black

regions), where each dimension is discretized into n cells. The agent initial position is not

exactly known (the true position is the green square), but it must be at one of the 3d cells on

the upper left (marked by light blue squares). The agent can move to adjacent cells, within 3

cells away from its current position, resulting in 7d possible actions. Its motion is accurate 90%

of the time. The rest of the probability mass is divided equally among the 7d − 1 remaining

cells. The agent can only observe the existence and position of walls surrounding its current

cell, forming 22d observations. The observation function is perfect, though it is not sufficient

to make the state to be fully observable. The agent receives a +1, 000 reward for reaching the

terminal states and incurs a −1 penalty for every movement. In Navigation problem, we test

our methods on problems with d = 2, 3, 4 and n = 30, which increases the action space from

49 to 2, 401.
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Comparison with Different Planning Time

Figure 4.6 shows how the planning time per step affects the performance. It clearly shows

QBASE outperforms POMCP at all these three settings. Since Navigation can be viewed as a

discretized continuous action space problem, there will be sufficient many similar good actions

during our grid discretization. This property helps QBASE relatively easy to find a good action

by sampling even it does not visit all possible actions. However, POMCP will always expand

every candidate action. In this specific situation, POMCP will waste a significant simulation

budget on repetitively searching for the good solution.
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Figure 4.6: Performance with different planning times per step in Navigation

4.4.3 Hunting(n, u, v)

Definition

Figure 4.7 illustrates the scenario for (11, 3, 3). Multiple (u) robots (green squares with letters)

controlled by a centralized head, try to catch multiple (v) targets moving in a grid-world of size

n × n populated by obstacles (black regions). At the beginning, the targets’ positions are not

known, and represented as uniform distributions over the free cells (colored pink). The true
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Figure 4.7: Illustration of Hunting(11, 3, 3)
.

positions of the targets (which are unknown) are marked by red squares, The state space is the

Cartesian product of the positions of the robots and the targets, while the action and observation

spaces are the Cartesian products of all of the robots’ actions and observations. At each step,

each robot can stay where it is, move to one of the 8 cells adjacent to its current position, or catch

a target. Their motion has no error. Furthermore, at each step, each robot can perfectly detect

whether there is target(s) located in the same cell as itself or in one cell to its North, South,

East, or West directions. Note that although its detection is perfect, a robot cannot distinguish

which target is being detected nor the exact position (out of the five cells) of the target. A small

penalty −1 is imposed on movement action for each robot. The ‘catch’ action yields a +100

reward if the agent is in the same cell as the target(s), otherwise the action incurs a penalty of

−100. The targets know exactly the positions of the robots and always move to the direction

farthest from the closest robot.

Comparison with Different Planning Time

Figure 4.8 shows how the planning time per step affects performance in some of the scenar-

ios. The trends in Hunting-small(11,2,2) and Hunting-small(11,3,3) are similar to Hunting-
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Figure 4.8: Performance with different planning times per step
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normal(11,2,2) and Hunting-normal(11,3,3). For Hunting-normal, we report additional com-

parison for much larger settings upto 105 actions.

In the smaller case Hunting-small(11, 2, 2) and Hunting-normal(11, 2, 2), POMCP and

QBASE are comparable when the planning is limited. With additional time budget is given,

QBASE is able to take the advantage of identifying better strategies. However, POMCP gets

stuck to improve its policy for a relative long time. This is observed the performance does not

change from t = 10s to t = 20s.

A slightly different behavior is shown in Hunting-small(11, 3, 3) and Hunting-normal(11,

3, 3). In this scenario, with 5 seconds planning time, QBASE outperforms POMCP, but POMCP

catches up at 20 seconds planning time, before being outperformed by QBASE again as more

planning time per step is allowed. The reason is that this problem has a considerably large

action space, and therefore POMCP’s sweeping of the entire action space already takes a sig-

nificant portion of the 5 seconds planning time, causing POMCP to perform badly. However,

as more time is allowed, POMCP starts to improve its base-line performance into a relatively

good and easy to find policy, and then plateaus at this policy. In contrast, QBASE can quickly

identify good actions and generate this relatively good and easy to find policy fast, and then

takes significant additional time to improve this policy further.

It is worth mentioning that the action space in Hunting-normal(11, 5, 5) is upto 105 discrete

actions. From the results, QBASE is able to identify good policies faster than POMCP. Besides,

if more planning time is given, the improvement of QBASE is much better than POMCP. The

success rate in this scenario is provided in Table 4.2. Even though POMCP increases dramati-

cally at t = 60s, the success rate is still less than that of QBASE at t = 5s.

Table 4.2: Success rate of completing Hunting-normal(11, 5, 5)

Method t = 5s t = 60s

POMCP 33% 71%

QBASE 87% 98%

In in Table 4.3, the results show that the success rate of QBASE completing the task does

not decrease too much, while that of POMCP drops significantly when the action space is
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increasing. Within all successful runs, QBASE is more efficient than POMCP to catch all

targets as the average number of steps is significantly less.

Table 4.3: Summary of results in Hunting-normal with different number of agents and targets
with 10 sec planning per step.

|A| Success rate Avg. #steps (of successful runs)

POMCP QBASE POMCP QBASE

100 100% 99.9% 31±1 30±1
1,000 99.5% 99.7% 34±1 33±1
10,000 83.9% 98.3% 108±3 55±2

100,000 45.3% 95.8% 150±4 102±3

Collaboration in Hunting

Figure 4.9 illustrates some of the interesting behaviors that QBASE generates in Hunting-

normal(11, 3, 3). In this scenario, each robot has limited sensing capability, i.e., it can only

sense if a target exists in the same cell or in the adjacent cell at the North, South, East, or West

direction of the robot. Therefore, they must collaborate to locate the target exactly and avoid

the −100 penalty of performing a ‘catch’ action in the wrong cell.

Specifically, in Figure 4.9(a), agent C observes there is a opponent around it, but it cannot

tell the exactly position due to partially observability. Agent C tries to confirm the location of the

target by itself. However, it alone cannot succeed and instead it loses the detection of the target.

Since Hunting is a centralized planning scenario, agent A and B come back immediately to

help robot C in (c). With a certain chance, they can sense the target again. By communicating

with other agent’s observation, agent A is sure that the target and itself are in the same cell,

therefore robot A is safe to execute ‘Catch’ action in (d). After catching the opponent, all

robots currently are massed around the right up region. The best decision they can make is to

eliminate all other probability of the targets in this area. Agent B and C in (e) simultaneously

check the rest cells where other targets could stay. The black arrow shows the motion of each

agent. After that, in order to catch the rest of targets efficiently, each agent chooses a different
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Figure 4.9: Collaborations strategy in Hunting-normal(11, 3, 3) generated by QBASE
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region to further search. The last picture (f) shows the robot B moves in the corner diagonally

with effect of pushing the target trapped in the corner. At this moment, agent B is on the target.

If it captures the target, it will get a big reward and the problem finishes.

4.5 Discussion

In this chapter, we propose a novel online approximate POMDP solver, called Quantile-Based

Action Selector (QBASE), that alleviates the difficulty of solving problems that have a large

discrete action space. QBASE applies quantile statistics to adaptively construct a subset much

smaller than the action space, so that more resources can be given to evaluate the Q-values

of more promising actions. Experimental results on a range of robotics benchmark cases with

action spaces varying from 13 to 100,000 indicate that QBASE outperforms the state-of-the-art,

POMCP, on problems with large action spaces (more than 100).

The two-stage sampling idea underlying QBASE in principle can be generalized to other

belief tree search algorithms, for instance ABT (Kurniawati and Yadav, 2013), DESPOT (So-

mani et al., 2013). We hope this new advancement in solving problems with large action spaces

will further advance the practicality of POMDPs and allow more widespread applications of

this robust approach to decision making in the presence of uncertainty.
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Chapter 5

APS-QBASE: An Adaptive

Parameter Sampling

The aim of QBASE in the previous chapter was to alleviate the difficulty of handling POMDPs

with large action spaces. A good choice of parameters is essential for the performance of

QBASE. However, the best performing parameters are often unknown in advance and extra

work is required to tune them beforehand. In this chapter, we propose an adaptive parameter

sampling method called APS-QBASE, which is built on top of QBASE. The new extension

enables QBASE to interleave parameter searching with growing the search tree in an on-line

manner. Based on the outcomes of selected parameters, APS-QBASE uses the most promising

ones more often in the subsequent planning. Two different tasks with up to one million actions

are used to assess the performance of the proposed method. The results demonstrate that, given

enough planning time, the proposed APS-QBASE can perform as good as or better than QBASE

in the same parameter domain. Furthermore, a sensitivity study suggests that the performance is

not sensitive to inputs of APS-QBASE. This significantly reduces the difficulty of setting good

parameters in QBASE.

79
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5.1 Background

The Partially Observable Markov Decision Process (POMDP) is a general and mathematically

principled framework for decision problems that are partially observable and sequential. How-

ever, solving a POMDP is notorious for its computational complexity. It has been considered

impractical for decades. Recently, various approximate POMDP solvers have significantly im-

proved the capability to solve problems with large state spaces, large observation spaces, and

long planning horizons (see Table 1.1). Notably, QBASE in the previous chapter was proposed

to solve POMDPs with large discrete action spaces.

In QBASE, each parameter in 〈%,Ns,Mb, β〉 has its own capability of guiding the tree ex-

pansion. For example, % balances the preference of exploration and exploitation of sampling

actions in a subset of actions and β controls how aggressively the probability function b.P in

(4.2) evolves according to the current estimates of the Q-value. Experiments among different

problems in Chapter 4 show that by setting appropriate values for QBASE’s parameters, this

POMDP solver outperforms one of the fastest POMDP on-line solvers. However, the best com-

bination of 〈%,Ns,Mb, β〉 is difficult to obtain in advance, and evaluating it is costly. The most

common way of searching for the best parameters is conducted off-line and then apply them

to run POMDP planners on-line. This separation of searching and planning undoubtedly intro-

duces a heavy burden to users. Additionally, once a suitable choice of parameters is identified,

the same parameters are used for all nodes in the belief tree. However, these parameters should

depend on the current belief state and valid action spaces, which makes a single combination

of parameters unlikely to be compatible with different situations. This problem is common in

most POMDP solvers today (Silver and Veness, 2010; Kurniawati and Yadav, 2013; Somani

et al., 2013; Sunberg and Kochenderfer, 2018). Overall, this suggests that there is a significant

scope to further improve QBASE.

Motivated by those considerations, this chapter presents APS-QBASE, a QBASE-based

solver with a mechanism of dynamically searching and switching parameters within a prede-

fined planning phase. The basic idea of APS-QBASE is to use the promising sampled parame-

ters more frequently. Considering the planning budget usually is limited (for example, t = 5s

per step), we need to take care of the compromise between the bias of the number of parameter
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set and the regret of noisy outcomes of each parameter. The way of discovering a new parameter

is simply a random search. Bergstra and Bengio (2012) shows the efficiency of random search

over a grid search in hyper-parameter optimization. Which parameter to use is determined via

UCB1 rule (Auer et al., 2002a) to balance the noisy outcomes. The proposed method has been

tested on a robotics task and an operation research scenario with up to one million discrete

actions.

5.2 Related Algorithms

Several on-line POMDP algorithms are considered to provide solutions. All solvers are based

on MCTS but with different action selection strategies.

5.2.1 POMCP

POMCP (Silver and Veness, 2010) is considered as one of state-of-the-art on-line POMDP

solvers today . It frames the action selection as a multi-armed bandit and adopts UCB1 to handle

the exploration-exploitation. POMCP provides a baseline performance for various descendants.

We refer to Section 2.3.3 for details.

5.2.2 QBASE

POMCP finds the best action by enumerating all possible actions. Therefore, it has to sweep

the whole action space whenever a new belief node is expanded. We showed in Section 4.4

that such full enumeration quickly becomes infeasible when the size of action spaces are large

(> 100). However, the action selection is essentially a stochastic optimization problem. We

elaborate on the idea of QBASE and demonstrate experiments on different tasks in Chapter 4.
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5.2.3 POMCP-PW

Like QBASE, instead of interacting with the entire action space directly, progressive widening

(PW) (Couëtoux et al., 2011) is gradually expanding a subset of the action space and applying

UCB1 over the subset of actions. This technique has recently been introduced to POMDP

communities, called POMCP-DPW and POMCPOW(Sunberg and Kochenderfer, 2018). The

aim of those methods is to handle continuous observation spaces. In this chapter, all testing

scenarios are discrete observation spaces, therefore, the focus of comparison narrows down to

only large actions spaces. It is shown in Algorithm 11.

Algorithm 11: SAMPLEACT(b, 〈Cpw, kpw, αpw〉) for POMCP-PW

1 if |b.Av| ≤ kpw b.N
αpw then

2 a ∼ U(A\b.Av)
3 Set b.Av = b.Av ∪ {a}
4 return argmaxa∈b.Av

b.Q̂(a) + Cpw

√
log b.N
b.N(a)

5.3 Adaptive Parameter Sampling (APS)

5.3.1 The Method

This section presents a new QBASE-based method for automatically searching for the best

performing set of parameters 〈%,Ns,Mb, β〉. Similar to QBASE, APS-QBASE embeds the

optimal policy in a belief tree. It shares most of QBASE’s structure. Algorithm 12 describes the

overview of APS-QBASE. The entry of the proposed algorithm is no longer a fixed parameter

set of 〈%,Ns,Mb, β〉. Instead, the inputs of APS-QBASE become 〈Caps, αaps〉 and support D

of 〈%,Ns,Mb, β〉. The details on how APS-QBASE uses those inputs are presented in the next

subsection.

We use b.c = (%,Ns, Mb, β, n, µ̂, nsimTree) to store the information of running QBASE with

a specific setting at belief b. The first four elements are QBASE’s parameter set. The n counts

the number of times that a particular parameter set has been used so far and µ̂ is the estimates



CHAPTER 5. APS-QBASE: AN ADAPTIVE PARAMETER SAMPLING 83

Algorithm 12: APS-QBASE
Input: POMDP model 〈S,A,O, T, Z,R〉 or a corresponding black-box simulator P ,

parameters of APS-QBASE 〈Caps, αaps〉 and support set D of QBASE’s
parameters

1 Initialize T with b0 as the root node
2 INITINODE(b0, D)
3 while running do
4 while there is still time for planning do
5 GROWTREE (T , P , 〈Caps, αaps〉, D) // build tree T
6 Perform action a, where a = arg maxa∈A b.P(a)
7 o = get observation
8 b = τ(b, a, o) // update belief

Algorithm 13: INITINODE(b,D)
1 for a ∈ P .A do b.N(a) = 0 ; b.P(a) = 1

|P.A|
2 b.As =sample Ns actions uniformly at random from A

3 for a ∈ b.As do b.Ps(a) = b.P(a)∑
a∈b.As

b.P(a)

4 b.C = ∅ // parameter pool
5 〈%,Ns,Mb, β〉 ∼ U(D) // search a new combination
6 b.C = b.C ∪ {b.c}, where b.c = (%,Ns,Mb, β, n = 0, µ̂ = 0, nsimTree = 0)

of the highest Q-value found by applying its QBASE’s 〈%,Ns,Mb, β〉. nsimTree keeps records of

how many tree simulations are conducted by using the parameter set. APS-QBASE initializes

a configuration b.c in INITINODE (Algorithm 13). The major modifications in GROWTREE

(Algorithm 14) are different inputs of the function and adding a new function called APS, which

is described in the next subsection.

5.3.2 Details

Key to APS-QBASE is the way it uses an appropriate parameter when the belief tree is growing.

In general, APS-QBASE uses adaptive parameter sampling to create a gradually increasing set

of QBASE’s parameters as candidates for the best one for each belief node. It iteratively picks

the most promising settings and interleaves them with the belief tree expansion. The settings

will be used more often in the future if they are able to find a better Q-value. APS function is

presented in Algorithm 15.



CHAPTER 5. APS-QBASE: AN ADAPTIVE PARAMETER SAMPLING 84

Algorithm 14: GROWTREE(b, 〈Caps, αaps〉, D)

1 Set d = 0, h = ∅, b = root of T , Irollout = false
2 s ∼ b
3 while γd > ε and Irollout == false do
4 a = APS(b, 〈Caps, αaps〉, D)
5 (s′, o, r) = SIMULATOR(P , s, a)
6 Append 〈s, a, o, r〉 to h
7 Associate 〈s, a, o, r〉 with b
8 b.particles = b.particles ∪ {s}
9 b.Av = b.Av ∪ {a}

10 s = s′ ; d++ ; b.N(a)++ ; b.N++ ; b′ = τ(b, a, o)
11 if b′ is not in T then
12 add b′ as a child of b and set Irollout = true
13 b = b′

14 if γd > ε then
15 Eh = 0

16 else
17 INITINODE(b,D) ; b.particles = {s}
18 Eh =ROLLOUT-POLICY(s) // rollout L steps

19 Append 〈s,−,−, Eh〉 to h
20 Associate 〈s,−,−, Eh〉 with b
21 UPDATEVALUES(T ,h,Eh) // Back propagate to root

Algorithm 15: APS(b, 〈Caps, αaps〉, D)

1 c = b.c
2 a = SAMPLEACT(b,〈c.%, c.Ns, c.Mb, c.β〉) // same to Algorithm 10
3 c.nsimTree = c.nsimTree + 1
4 if c.nsimTree equals to c.M then
5 v = maxa∈As b.Q̂(a) // find the best Q-value
6 c.µ̂ = c.µ̂+ (v − c.µ̂)/c.n // update the measure in (5.1)
7 c.n = c.n+ 1

8 if |b.C| ≤
(∑

c∈b.C c.n
)αaps then

9 〈%,Ns,Mb, β〉 ∼ U(D)
10 b.C = b.C ∪ {b.c}, where b.c = (%,Ns,Mb, β, n = 0, µ̂ = 0, nsimTree = 0)

11 b.c = argmaxc∈b.C c.µ̂+ Caps

√
log
(∑

c∈b.C c.n
)
/c.n // select next x

12 c.nsimTree = 0 // reset the counter

13 return a
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At the beginning of the search, there is only one candidate in b.C. By using the current

sampled parameters in b.c, the SAMPLEACT returns an action that interleaves with evaluation

of Q-value (Line 2). The counter nsimTree is then increased by one. This process repeats until

the update condition is met (Line 4). In other words, APS-QBASE has already employed a

specified 〈%,Ns,Mb, β〉 in b.c to simulate the belief tree for a batch. Now, APS-QBASE needs

an appropriate way to measure the performance of the selected parameters so that it provides

information on parameter selection later. We consider the expected performance of the highest

estimates of Q-value. This quantity considers, firstly, the subset involves randomness of actions

due to the exploration component in As even if the parameter is the same, and secondly, the

simulations of Q-value is noisy. Since our objective function of POMDPs is to find out the

optimal policy via inducing from the highest Q-value, this measurement is consistent with this

goal. We can simply write the measure as

max
a∈As

E
[
b.Q̂(a)

]
. (5.1)

Furthermore, the quality of this measure is affected by the values in 〈%,Ns,Mb, β〉. This is

because the size of the current subset As is limited by Ns. The number of exploitative actions

in the elite set is controlled by the quantile %. The parameter β will affect how aggressively

the probability function learns from the information of the current estimates of Q-value and the

number of visits. The budget for evaluating the subset per batch is Mb. In Line 5-7, we update

the average mean of the measure and its associated statistics.

The next question is when and how to generate subsequent candidates. Ideally, we need

APS-QBASE to explore a new parameter at the right time. If the number of different parameters

have been tested is very limited, it causes APS-QBASE to perform poorly because it may not

find a good one. On the other hand, the number of different parameters should not explode.

Otherwise, APS-QBASE is difficult to focus on the good performing parameter, which could

also lead it to perform poorly. To this end, the growth speed of the parameter pool is limited

by using the parameter αaps according to the total number of parameters have been tried up to

now (line 8). In terms of how to generate the next candidate in the hybrid space with a union of

discrete variablesNs,M and continuous variables %, β. The possible parameters are infinite, but
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in practice, we can only visit a finite number of them. Various method can be applied here. We

simply use random search that a new candidate is uniformly sampled from the support domain

D (line 9).

APS-QBASE uses the estimates of Q-value so far to compare the performance of two dif-

ferent parameters. However, Q-value constantly updates throughout the search, therefore the

parameter selection from APS-QBASE must be modified accordingly. We model this task as a

stochastic multi-armed bandit problem and apply UCB1 to handle the exploration and exploita-

tion tradeoff (line 11).

5.4 Experimental Results

We aim to compare the performance of on-line POMDP solvers with different action selectors

in one robotics and one logistics tasks with up to a million discrete actions. In the rest of

this section, we will present necessary details of each scenario, describe how different action

selectors work and study the sensitivity of 〈Caps, αaps〉 in APS-QBASE approach.

5.4.1 Hunting-Normal(n, u, v)

Hunting-normal(n, u, v) is multi-agent (u) coordination robotics problem as introduced in Sec-

tion 4.4.3. This task aims to find multiple prior unknown targets (v) with limited sensing as soon

as possible in an n×n obstacle-populated environment. To achieve this goal, the agents in gen-

eral have to collaborate with each other to systematically explore the space. We test our methods

on (11, 5, 5), yielding an action space with |A| = 105 actions.

5.4.2 InventoryControl(K)

Inventory control problems have been well-studied in fully observable situations (Resh and

Naor, 1963). However, many real-world scenarios involve partial observations, for example,
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Figure 5.1: Illustration of InventoryControl(1). (a) The ground true state is not fully observable.
Instead, the agent maintains an estimate of the current state as a probability distribution over the
state space. Although the ground truth state is the same (e.g., s = 25), the belief over the state
space can be quite different. For example, the probability in the belief 1 masses in the [10,20],
which leads the decision maker to order new items immediately the next day. The situation is
different for the belief 2. The owner believes that there are still sufficient goods so will not
replenish at the moment. (b) Considering the cost of ordering, the decision maker should prefer
ordering a large number of items at once rather than frequently ordering a small amount. (c) The
red line denotes the demand from the customer and the black line shows the actual fulfilment.
The profits of the shop owner come only from the sale, therefore, one should avoid insufficient
supply. The goal is to keep the stock state at an appropriate level. If the stock level is too high,
there is a large holding cost. If the stock is too low, one may miss the sale.

inventory deterioration, misalignment and distributed storage. In this chapter, we assume our

observation of the inventory state can only be partially perceived.

Think of an agent in InventoryControl(K) as a shop owner, where the shop provides multi-

ple commodities (K) that are for sale. In order to maximize the cumulative profit, the manager

at each step (e.g., day) decides the type and quantity of items to order based on the predic-

tion of future demand. Figure 5.1 shows a sample run of computed policy for one commodity.

The state of commodity k denotes as sk, where sk ∈ {0, 1, 2, . . . , 100}, ∀k = 1, 2, . . . , K.

The state space is the Cartesian product of the stock level for all commodities. The action

ak ∈ {0, 10, . . . , 90},∀k = 1, 2, . . . , K corresponds to the amount of stock that is ordered from

suppliers for each commodity k. Similarly, the action space is A = {(a1, . . . , aK)} where

ak ∈ {0, 10, . . . , 90},∀k = 1, 2, . . . , K. We assume the number of orderings is perfect and all

items ordered will be delivered in good condition on time (i.e., before the opening of a step).
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At the start of the next step, inventory is either replenished by ordering certain goods due

to the sale from the current stage or is not replenished. During this time period, the customer

demand for each commodity is stochastic from Gaussian. This implies that the next state is

computed as s′ = s + a −D, where D ∼ N(µ,Σ). The correlation coefficients ρcor in Σ are

assumed to be greater than 0.

In term of observation, each commodity can be perceived by a categorical result:

õk =


High, s′k ∈ [66, 100]

Normal, s′k ∈ [33, 66)

Low, s′k ∈ [0, 33)

Furthermore, the result of such observation is also noisy, yielding the final observation ok ∼
N(õ, eZ) where eZ is observation noise.

At the end of the step, the shop owner will need to compute the profit. The reward is defined

as the incomes of sales minus the costs in general. For a given stock level s and ordered action

a, a step profit is defined as

R(s, a) =
K∑
k=1

[
pk min{sk, Dk} − I{sk≥δk}hk − I{ak>0}(tk + bk ak)

]
,

where pk(> 0) is the income of an unit stock, hk(> 0) is the holding cost, tk(> 0) is the

transition fee if the ordering action happens for commodity k and bk(> 0) is the cost price.

In InventoryControl, we test our methods on six commodities, yielding an action space with

|A| = 106 actions.

5.4.3 Performance Comparison

Experimental Setup

The implementation of POMCP follows the authors’ code. We build all other methods in

POMCP’s framework with improving the implementation to support a very large number of
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action spaces using C++. The experiments are run as a single thread process on an Intel(R)

Xeon(R) CPU E5-2620 v4 @ 2.10GHz with 128GB RAM.

To set the parameter, we execute a preliminary run to identify the best-performing ones. For

POMCP and QBASE, we follow the discretization manners in Section 4.4. In POMCP-PW, the

parameter kpw is chosen from {50, 200, 500}, exploration constantCpw from {10, 100, 1000, 10000,

100000} and αpw from {0.3, 0.7, 0.9}. For APS-QBASE, the parameter Caps is selected from

{10, 100, 1000, 10000, 100000} and αaps from {0.1, 0.3, 0.5, 0.7, 0.9}. The support domain D

of 〈%,Ns,Mb, β〉 used in APS-QBASE is the same as running QBASE alone.

In Hunting-normal, we use a random walk for a fixed number of steps as the rollout pol-

icy. In InventoryControl, the default policy is computed as the fully observable version of the

problem with the assumption that all items are independent. For a fair comparison, all solvers

use the same rollout policy for each problem.

Table 5.1 shows settings for a InventoryControl(6) problem. D̃k denotes the marginal dis-

tribution of D for each type of item. For other parameters, we let ρcor = 0.8, eZ = 5 and the

initial state of all commodities to be 0.

Table 5.1: Settings of InventoryControl(6)

Item pk hk δk D̃k tk bk

1 200 5 20 N(15, 2.5) 1000 10
2 200 5 20 N(10, 2) 1000 10
3 300 5 0 N(20, 5) 2000 0
4 300 5 0 N(15, 2.5) 2000 0
5 300 5 0 N(15, 2.5) 500 0
6 200 20 0 N(15, 2.5) 500 10

In particular, the inventory system should be assumed to run forever, as there are no ex-

plicitly terminal states. But for the convenience of computing the discounted total profits, the

system will be measured over 50 stages.
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Figure 5.2: Performance with different planning times per step in Hunting-normal and Inventory
Control problem

Results

Figure 5.2 presents the average results of expected total discounted rewards with 95% confi-

dence interval over 1000 simulations in each problem. In general, when the planning time is

small (t ≤ 5s), APS-QBASE can only try a limited number of different parameter sets. This is

the reason why APS-QBASE performs poorer, for example in Hunting-normal(11,5,5). How-

ever, as more planning time is allowed, APS-QBASE is able to identify an appropriate QBASE’s

parameter to catch up or further boost the total discounted rewards.

POMCP-PW shows its significant improvement over POMCP by simply replacing its full

sweeping strategy when the action space is large (≥ 105). This is because POMCP explodes

on expanding new actions in the initialization stage, which leads the tree cannot go deeper to

explore any useful information. POMCP-PW further verifies that partial enumeration methods

work well for problems with large action spaces.

Interestingly, POMCP-PW gets the best performance in InventoryControl(6) when the plan-

ning time is small (t = 2s). However, with providing extra budgets, POMCP-PW can only

slightly improve performance further. One possible reason is that the PW technique explores

a new action at the cost of the number of simulations growing exponentially . It causes the

number of actions can be discovered in practice is limited to find a better one. In contrast,
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the probability of sampling a starved action will be always a fixed probability in QBASE. This

does not prevent QBASE to expand the tree wider to keep increasing the performance when

additional planning time is provided.

5.4.4 Sensitivity Study

APS-QBASE aims to reduce the difficulty of setting QBASE’s parameters. It is done by replac-

ing the parameters of QBASE 〈%,Ns,Mb, β〉 down to 〈Caps, αaps〉. It is worthy of studying the

sensitivity of those two parameters.

We test APS-QBASE for different 〈Caps, αaps〉 values. The planning time for each task

is ten second per step. The normalized average results over 50 repetitions are presented in

Figure 5.3. The results show that APS-QBASE is not sensitive to αaps to get good results when

the exploration constant Caps is large.
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Figure 5.3: Sensitivity Study

In Table 5.2 and Table 5.3, we show the minimum and maximum of the expected discount

total rewards found in each algorithm’s parameter domains. The relative variation of the results

in InventoryControl(6) is small, because the default policy used in this task is the information



CHAPTER 5. APS-QBASE: AN ADAPTIVE PARAMETER SAMPLING 92

of solving a fully observable version of the original problem. Such approximation provides a

higher quality of the estimates of newly added belief node in the tree. Comparing with QBASE,

the proposed APS-QBASE can achieve a narrower variation. It indicates that this method is

more robust and efficient. Overall, we argue that APS-QBASE significantly reduces the diffi-

culty of tuning QBASE’s parameters.

Table 5.2: Performance variation in the each algorithm’s parameter domain in Hunting-
normal(11, 5, 5)

Method POMCP POMCP-PW QBASE APS-QBASE
min V̂ −1868.24 −549.48 69.37 95.56

max V̂ −1546.43 −94.32 189.74 198.22

Table 5.3: Performance variation in the each algorithm’s parameter domain in InventoryCon-
trol(6)

Method POMCP POMCP-PW QBASE APS-QBASE
min V̂ 392573.29 486544.72 453966.0 525819.08
max V̂ 403138.68 512261.73 536978.78 538058.14

5.5 Discussion

In this chapter, we propose an extension of QBASE, called APS-QBASE, for reducing the

difficulty of setting good parameters in QBASE. The algorithm creates a dynamic parameter

pool to search for the best parameter so that each belief node is able to identify the most suitable

running settings according to its own situation. The adaptive parameter sampling mechanism is

general and in principle can be applied to any POMDP solvers. Experiments on two different

tasks with up to one million discrete actions indicate APS-QBASE can outperform one of state-

of-the-art POMDP solvers and its enhancement for handling large action spaces.

There is still scope for further work in APS-QBASE. One limitation of the method is that

the exploring strategy for a new candidate is purely random search. It may sample in less

promising areas, causing unnecessary waste during the planning. A better data-efficient way is
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to build a probabilistic model on the available observations, for example, Bayesian optimization

(Srinivas et al., 2010; Brochu et al., 2010; Hoang et al., 2018). Another possible direction is

to design a cost-sensitive measure of assessing a specific parameter. Thirdly, the idea of APS

can be applied to POMCP and POMCP-PW to reduce the difficulty of setting good parameters.

Finally, considering the evaluation of APS-QBASE with a particular parameter is expensive,

we simply discretized the parameter space of APS-QBASE into a finite set and ran them for 50

times as an approximate sensitivity analysis. However, the ideal investigation is to study the

continuity property of the performance of APS-QBASE, which is reserved for future study.



Chapter 6

Summary

Rational actions are crucial to autonomous systems in the presence of uncertainty. The un-

certainties mean that the effects of actions are not precisely known, sensors and sensing are

erroneous, and information about the operating an environment can be imperfect. Except for

uncertainties, the problems of our interest are often sequential and large-scale. However, the

computation complexity of solving such problems are notorious. The goal of this thesis is

to develop general strategies to further advance the practicality of POMDPs and allow more

widespread applications of this robust approach to decision making. The principal methodol-

ogy is combining an appropriate structure of problems (e.g., the abundance of good solutions)

with recent advances in Monte Carlo methods (e.g., the Cross-Entropy method). By using

sampling techniques, it tends to be simple, flexible and scalable to break the heavy burden of

computation.

This thesis starts from how to model uncertainties in Chapter 2. Depending on the sources

of uncertainties, we review three types of mathematical models. Among those models, the par-

tially observable Markov decision process is the general and principled framework for decision

problems that are partially observable and sequential. It is followed by reviewing a stochastic

optimization without requiring gradient information.

The main contributions of the thesis are as follows.

94
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Firstly, the stochastic multi-armed bandit, viewed as the simplest version of POMDPs, is a

well-known decision making under uncertainty. Traditionally, classical algorithms work well

when the number of available pulls is often large compared to the number of arms. However,

in many practical applications, the number of arms that can be selected from is very large. It

causes existing algorithms can perform poorly. For example, UCB1 requires the agent to play

all arms once to set initializations. In Chapter 3, CEMAB represents the goodness of arms as

a probability distribution function and adopts the Cross-Entropy method as a core optimizer to

search for the optimal arm. It deals with exploration and exploitation in the form of sampling

an arm according to its probability. The probability function is updated in a batch mode, which

helps to focus on a subset of the entire arm space. Numerical experiments with up to 104 arm

space show that CEMAB is superior to various existing competitors.

Inspired by CEMAB, we propose QBASE in Chapter 4 — an on-line planner for POMDP

with large discrete action spaces — by keeping the idea of ‘partial enumeration’ in mind. Ex-

actly because of Q-value in POMDP cannot be computed in a closed form, it has to consider

many possible sequences of future actions selected and observations obtained. To get better esti-

mates, QBASE avoids complete enumeration by using a quantile-based stochastic optimization

approach to focus on going deeper to the promising sub-trees first. Simulation results on prob-

lems of RockSample, Navigation, Hunting-normal, and Hunting-smart indicate that QBASE

outperforms POMCP, one of the fastest POMDP solvers today. When the action space is large

(e.g., 105 possible actions), QBASE can generate substantially better policies.

Although QBASE has demonstrated its improvement over POMCP, the hyper-parameters

in QBASE need to be set carefully and it requires a long time testing. Once the parameter is

found, it will be applied to all belief nodes to handle the exploration and exploitation, which

is less likely to capture the information of state and valid action spaces. Chapter 5 presents an

enhancement of QBASE with setting parameters automatically, named APS-QBASE. It inter-

leaves parameter sampling with belief sampling in the tree. Based on the outcomes of sampled

parameters, APS-QBASE uses the settings more often with the highest expected performance.

The whole process is completely performed within the planning phase. We conduct experiments

on one robotics and one logistics tasks with up to one million actions. The comparison indicates
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that APS-QBASE is able to achieve higher quality results with less effort than POMCP and its

variant with an enhancement of large action spaces.

The theme of this thesis is about decision making under uncertainty. Most of our efforts

focus on alleviating the difficulty of solving problems with large-scale action spaces. In addition

to such developments, there are many possible directions for further research.

All investigations conducted in this thesis are simulation experiments. It is crucial to un-

derstand how well the proposed strategies work in more practical scenarios. For example, even

though CEMAB’s performance in Chapter 3 does not tie to any specific dataset, it would be

good to test CEMAB on more realistic datasets, for example, Yahoo! Front Page Today Module

User Click Log Dataset R6 1.

The way of selecting a distribution over the action space in QBASE is versatile. For exam-

ple, to handle discrete action spaces, we used in Chapter 4 a multivariate Bernoulli distribution.

However, there is no barrier to adopt other types of distributions including continuous ones

when dealing with continuous actions spaces. Such observations help generalize QBASE to a

wider applications.

The quality of estimates for newly added nodes in the belief tree is crucial to influence the

expansion of the search tree. Although we use a better default policy in Chapter 5 to improve

the estimates, there is no interaction between state values computed during on-line planning

and values from the default policy. Xiao et al. (2018) exploits a fixed size for the information of

past states, to predict the value for a newly added state in an on-line manner. Embedding a ma-

chine learning approach to generalize the value function during the planning may significantly

improve the quality of solving POMDPs in general. Moreover, all experiments conducted in

this thesis were run as a single thread process. By leveraging parallelization, it would be useful

to handle much larger problems, for example, HyP-DESPOT (Cai et al., 2018).

1https://webscope.sandbox.yahoo.com/



Appendix A

Details of Scenarios

A.1 RockSample(n, k)

• S = {
(
sagent, srock(1), . . . , srock(k)

)
}, where sagent ∈ {(1, 1), . . . , (n, n)} and srock(i) ∈

{Good,Bad}, i = 1, . . . , k.

• A = {North,West,South,East,Sample,Check1, . . . , Checkk} for the agent.

• O = {Good,Bad,Null}.

• T (sagent, a, s
′
agent) is deterministic, for a ∈ A.

• Z(s′agent, a, o) = Ber(η), where

η =
1

2
(1 + 2−d(s′agent,srock(a))/φ),

for a ∈ {Check1, . . . ,Checkk}. The function d(·, ·) measures the distance (i.e., Eu-

clidean distance) between the state of the agent and the rock intended to scan and φ is a

constant parameter.

• R(sagent, a) is defined as

. R(sagent, Sample) = +10, if the rock is good

97
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. R(sagent, Sample) = −10, if the rock is bad

. R(sagent, a) = −1, for a ∈{North,West,South, East}

. R(sagent, a) = 0, for a ∈ {Check1, . . . ,Checkk}

The positions of rocks in RockSample(7, 8) exactly follows code implemented in POMCP.

While for RockSample(20, 50) and RockSample(20, 100), the placements of rocks are set as

follows.

The placements of rocks for RockSample(20, 50) are set at (16, 14), (5, 3), (10, 8), (8, 12),

(6, 18), (16, 10), (19, 12), (12, 13), (3, 18), (2, 3), (11, 8), (6, 6), (5, 13), (11, 17), (3, 9), (13,

16), (1, 6), (0, 10), (5, 7), (1, 17), (18, 13), (16, 16), (7, 2), (3, 5), (8, 15), (8, 4), (14, 0), (8, 8),

(19, 18), (18, 5), (19, 11), (6, 7), (5, 0), (17, 10), (4, 16), (2, 5), (10, 0), (18, 4), (8, 13), (4, 6),

(1, 13), (18, 0), (12, 14), (7, 7), (13, 0), (15, 8), (6, 14), (13, 18), (4, 19), (19, 19).

The placements of rocks for RockSample(20, 100) are set at (8, 14), (11, 16), (18, 2), (2, 9),

(0, 4), (8, 15), (11, 6), (18, 16), (5, 3), (10, 17), (15, 18), (6, 3), (1, 1), (8, 10), (0, 0), (13, 16),

(2, 18), (3, 14), (10, 4), (12, 11), (7, 18), (12, 17), (16, 12), (14, 15), (7, 16), (11, 11), (4, 0),

(14, 5), (6, 8), (1, 8), (6, 17), (6, 1), (0, 6), (3, 3), (17, 4), (13, 14), (17, 5), (5, 4), (17, 2), (4, 4),

(19, 16), (8, 7), (4, 13), (17, 18), (7, 8), (10, 12), (14, 19), (16, 8), (7, 13), (1, 6), (4, 18), (15,

5), (18, 5), (11, 18), (18, 9), (11, 5), (19, 1), (15, 3), (3, 6), (10, 19), (12, 15), (17, 13), (12, 16),

(19, 8), (2, 14), (5, 9), (9, 16), (2, 8), (4, 17), (3, 0), (13, 19), (6, 5), (15, 0), (10, 3), (4, 9), (13,

17), (0, 5), (11, 15), (19, 3), (7, 14), (11, 4), (18, 1), (5, 17), (16, 13), (3, 19), (17, 19), (5, 10),

(16, 18), (16, 9), (3, 17), (19, 0), (5, 2), (15, 14), (16, 7), (9, 7), (18, 12), (2, 0), (2, 7), (17, 1),

(0, 13).

A.2 Navigation(d, n)

• Define a grid world as W = [1, n]d, where n is the size and d is the dimension. W
contains two parts: Wfree andWobstacle. The way to generateWfree andWobstacle follows

four steps. For example in d = 2 navigation, we start with an empty gird worldW . Then

1. add boundaries with thickness mb,



APPENDIX A. DETAILS OF SCENARIOS 99

2. add obstacles with thickness mo in the middle by: i) setting walls at x = {dn+1
2
e −

mo+1, . . . , dn+1
2
e+1} for any y; ii) setting walls at y = {dn+1

2
e−mo+1, . . . , dn+1

2
e+

1} for any x,

3. delete obstacles with thickness mf to getWfree if a cell (x, y) ∈ W is unwalkable,

∀x, y ∈ {dn+1
2
e −mf + 1, . . . , dn+1

2
e+

mf

2
+ 1},

4. set the goal cell in a corner.

After setting the grid, we can obtain a grid world including walkable cells and unwalkable

ones as well. For d > 2 problem, the way of constructing environment is the same.

• S =Wfree, where mb = 3,mo = 2 and mf = 6.

• A = {(Adim1 , . . . ,Adimd
)}, where each Adim = {−3, −2,−1, 0, 1, 2, 3} respect to the

distance current state in this dimension.

• O = {(Oface1 , . . . ,Oface2d)}, where each Oface = {Wall,NoWall}.

• T (sagent, a, s
′
agent) has 90% accuracy of arriving at the desired s′agent after executing action

a, while arriving (wrongly) at other states with equal probability.

• Z(s′agent, a, o) is deterministic.

• R(sagent, a) is defined as

. R(sagent, a) = +1, 000, if action a lead the agent reach pre-defined goal,

. R(sagent, a) = −1, otherwise.

A.3 Hunting(n, u, v)

• W is shown in Figure 4.7. It contains the forbidden areaWobstacle (marked in black) and

walkable areaWfree =W \Wobstacle.

• S = {
(
sagent1 , . . . , sagentu , starget1 , . . . , stargetv

)
}, where sagenti ∈ Wfree, i = 1, . . . , u and

stargetj ∈ Wfree, j = 1, . . . , v.
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• A = {
(
Aagent1 , . . . ,Aagentu

)
}, where each Aagenti = {Stay, North, Northwest,

West, Southwest, South, Southeast, East, Northeast,Catch}, i = 1, . . . , u.

• O = {(Oagent1 , . . . ,Oagentu)}, where each Oagent = {Yes, No}.

• T (sagent, a, s
′
agent) is deterministic. T (starget, a, s

′
target) in Hunting-smart follows the strat-

egy in Tag (Pineau et al., 2003). That is, whenever a robot and a target occupy the same

cell, the target can still get away, unless the robot performs the action ‘catch’. While in

Hunting-normal, once a robot and a target are in the same cell, the target cannot escape.

• Z(s′agent, a, o) has the deterministic effect of detecting targets around the agent

• R(sagent, a) is defined as

. R(sagent,Catch) = +100, if the target is tagged correctly,

. R(sagent,Catch) = −100, if there is no target,

. R(sagent, a) = −1, otherwise.
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