UNIVERSITY OF THE
WEST of SCOTLAND

OPEN ACCESS

UWS Academic Portal

Orchestration architecture for automatic deployment of 5G services from bare metal in
mobile edge computing infrastructure

Chirivella-Pérez, Enrique; Alcaraz Calero, Jose M.; Wang, Qi; Gutiérrez-Aguado, Juan

Published in:
Wireless Communications and Mobile Computing

DOI:
10.1155/2018/5786936

Published: 22/11/2018

Document Version
Publisher's PDF, also known as Version of record

Link to publication on the UWS Academic Portal

Citation for published version (APA):

Chirivella-Pérez, E., Alcaraz Calero, J. M., Wang, Q., & Gutiérrez-Aguado, J. (2018). Orchestration architecture
for automatic deployment of 5G services from bare metal in mobile edge computing infrastructure. Wireless
Communications and Mobile Computing, 2018, [5786936]. https://doi.org/10.1155/2018/5786936

General rights

Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 17 Sep 2019

https://doi.org/10.1155/2018/5786936
https://uws.pure.elsevier.com/en/publications/bfbfbb22-5baf-4661-8fe6-42e31eb5846f

Hindawi

Wireless Communications and Mobile Computing
Volume 2018, Article ID 5786936, 18 pages
https://doi.org/10.1155/2018/5786936

Research Article

WILEY

Hindawi

Orchestration Architecture for Automatic
Deployment of 5G Services from Bare Metal in
Mobile Edge Computing Infrastructure

Enrique Chirivella-Perez

,! Jose M. Alcaraz Calero ©®,
Qi Wang ,! and Juan Gutiérrez—Aguado2

1

!School of Engineering and Computing, University of Scotland, UK

’Departament d’Informatica, Universitat de Valéncia, Spain

Correspondence should be addressed to Enrique Chirivella-Perez; enrique.chirivella-perez@uws.ac.uk

Received 25 May 2018; Accepted 25 October 2018; Published 22 November 2018

Academic Editor: Riidiger C. Pryss

Copyright © 2018 Enrique Chirivella-Perez et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The progress in realizing the Fifth Generation (5G) mobile networks has been accelerated recently towards deploying 5G prototypes
with increasing scale. One of the Key Performance Indicators (KPIs) in 5G deployments is the service deployment time, which
should be substantially reduced from the current 90 hours to the target 90 minutes on average as defined by the 5G Public-
Private Partnership (5G-PPP). To achieve this challenging KPI, highly automated and coordinated operations are required for
the 5G network management. This paper addresses this challenge by designing and prototyping a novel 5G service deployment
orchestration architecture that is capable of automating and coordinating a series of complicated operations across physical
infrastructure, virtual infrastructure, and service layers over a distributed mobile edge computing paradigm, in an integrated
manner. Empirical results demonstrate the superior performance achieved, which meets the 5G-PPP KPI even in the most
challenging scenario where 5G services are installed from bare metal.

1. Introduction

The vast majority of existing tools for service orchestration
are traditionally designed for physical infrastructure and
assume the existence of an operating system installed in
the computers of the physical infrastructure. The num-
ber of service orchestration solutions currently available is
remarkably decreased when the underlying infrastructure
considered is a multitenant virtual infrastructure especially
in the emerging Fifth Generation (5G) mobile networks.
5G allows multiple network operators to share the same
physical infrastructure [1], consequently reducing capital and
operational expenditure significantly [2]. Furthermore, such
atool is almost nonexistent when looking for a service orches-
tration software that is able to deal with both 5G physical and
virtual infrastructures in an integrated manner to control the
complete life-cycle of service deployments of each layer.

This lack of solutions has led to an approach where
there is a separation between the management planes for

the deployment of services in physical and virtual infrastruc-
tures, respectively.

This separation is happening mainly due to the separation
of business roles among physical infrastructure provider,
virtual infrastructure provider, and digital service provider
(3].

However, there are some scenarios where these roles
are belonging to the same entity and yet there is a lack
of solutions to cover these scenarios. The current approach
requires employing more than one service Orchestrator to
achieve the deployment of services in physical machines
and virtual machines, respectively, to allow the deployment
in both infrastructures. However, this separation has two
main disadvantages. Firstly, it increases significantly both
capital and operational costs due to the fact that two different
software architectures need to be maintained in parallel.
Secondly, it slows down the management planes to react to
changes of the service deployment in the infrastructures,
mainly due to the fact that two different management planes

http://orcid.org/0000-0001-6363-7859
http://orcid.org/0000-0002-2654-7595
http://orcid.org/0000-0002-7764-9858
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/5786936

need to be synchronized and coordinated in a coherent and
consistent way.

Moreover, 5G is expected to be featured with new network
paradigms such as the Mobile/Multiaccess Edge Comput-
ing (MEC) architecture, where different edge networks are
geographically distributed to push resources closer to end
users for improved quality assurance. In terms of support for
dealing with the selection of the location where to deploy
services, most of the existing service orchestration tools are
only able to deal with physical infrastructures. Little service
orchestration software has even considered multitenant vir-
tual infrastructures. This lack of support for the selection
of the location results in the limitation of current service
orchestration solutions to handle distributed infrastructures
where location-specific deployment is key such as in MEC
infrastructures [4].

The evolution of current service Orchestrator software
towards 5G compliance and automation capabilities is espe-
cially important for 5G players such as telecommunica-
tion operators, infrastructure providers, Internet service
providers and digital service providers due to the expected
reduction of capital and operation costs. The magnitude of
this challenge has attracted the attention of the EU 5G Public-
Private Partnership (5G-PPP) program, the main research
initiative in Europe for developing novel 5G systems and
driving 5G standardization. One of the main technical Key
Performance Indicators (KPIs) defined by 5G-PPP is “the
reduction of the service creation time from the current 90
hours to 90 minutes in a 5G-compliant infrastructures” [5].

5G-compliant infrastructures require the capability to
deal with MEC infrastructures where geographical distribu-
tion of edge networks is a key challenge for the effective
deployment of 5G services. 5G-compliant infrastructure
also requires an integrated orchestration of both physical
and virtual infrastructures in order to fulfill the ambitious
KPI in service creation time in particular from bare-metal
infrastructures, which is the most challenging scenario and
the focus of this paper. These requirements and the lack of
architectures, designs, and prototypes that are able to meet
such requirements have been the main motivation for this
research work.

The main contributions of this research work are summa-
rized as follows:

(i) The research proposes a new service deployment
architecture that is able to handle both physical and
virtual infrastructures in an integrated way, which
reduces the provisioning times previously existing in
other tools that provisions the physical and virtual
infrastructures separately. The work presented in this
contribution is not only a methodology because it
also has a significant effort underneath related to the
implementation of the Orchestrator that has inte-
grated the other orchestrators that work in the differ-
ent management planes related to physical machines,
virtual machines and service life-cycle management.
Moreover, the physical infrastructure management is
extended to support geographically distributed edge

Wireless Communications and Mobile Computing

networks to allow oftloading the processing overhead
from the datacenter (the core network).

(ii) The proposed solution enables a complete control of
the life-cycle of each element in each layer of the
infrastructure, covering the whole life-cycle of the
deployment of 5G services from bare metal, and in
turn, fulfilling the ambitious service deployment time
KPI imposed by the 5G-PPP program.

(iii) The proposed solution allows the management of a
multilayer multitenant 5G MEC infrastructure, and
thus enables multitenancy at both the physical and
virtual infrastructure layers, leading to higher gran-
ularity in terms of security through isolation between
tenants and layers.

(iv) Different orchestration strategies in terms of horizon-
tal or vertical deployment of services are investigated
and compared based on either a centralized mul-
titenant cloud infrastructure or a novel distributed
multitenant MEC infrastructure.

(v) The proposed system with all the above novel tech-
nical advances has been integrated and prototyped
in a real infrastructure deployment. Empirical results
provide insights into optimal ways to carry out 5G
service orchestration over 5G MEC-compliant infras-
tructures.

The rest of the paper is organized as follows: Section 2
provides a review of related work where a comparative study
of existing tools is conducted to highlight the main gaps
in existing tools and thus motivates a solution. Section 3
presents the proposed MEC-compliant architecture with
ETSI MANO and emphasizes the new elements that the
proposed solution introduces to fill the gaps identified in
Section 2. Section 4 presents the detailed steps in automatic
orchestrating the deployment of 5G services from bare metal.
Empirical performance evaluation and analysis of different
orchestration strategies is provided in Section 5, based on
a realistic implementation of the proposed solution in a 5G
MEC testbed. Finally, concluding remarks are presented in
Section 6.

2. Related Work

Despite the fact that numerous tools are already available
in the market to deploy software in an automatic way, this
section will explain why the existing tools are not sufficient
to meet the 5G service deployment requirements and address
the KPI challenge in 5G and thus justify the contributions of
this paper based on a critical review.

2.1. Requirements for 5G Service Deployment Orchestration.
The 5G mobile edge computing paradigm [4] requires an
Orchestrator that is able to control a large number of
distributed machines that should be ready to deploy 5G
services in less than 90 minutes. To this end, a set of specific
requirements have been identified for the solution and are
explained in the following paragraphs:

Wireless Communications and Mobile Computing

Resource Life-Cycle Control. To be able to have a com-
plete control over physical resources and virtual resources.
The solution needs to control life-cycle of each physical and
virtual resource and its different states such as power on,
power off, soft restart, soft shutdown, hard restart, and hard
shutdown for the physical and virtual resources.

Service Life-Cycle Control. To be able to have a complete
control over the services deployed in physical and virtual
resources. The solution needs to control life-cycle of each
service, including start, stop, configure, reconfigure, deploy,
and redeploy services.

Operating System Provisioning. To be able to install a
complete operating system (OS) within the physical machine.
In essence, to consider the Operating System as a special
service that needs to be deployed, redeployed, configured,
and reconfigured. It imposes a significant number of require-
ments in the provisioning architecture since it needs to deal
with bare-metal management.

Multitenancy Support. This refers to the mode of opera-
tion of the solution where resources are isolated to allow the
sharing of them across multiple network operators (tenants).
The services of each tenant are logically isolated over the same
physical infrastructure. In 5G, for example, multiple network
operators (tenants) can share the same physical infrastructure
whilst operating independently logically.

Multizone Support. This is the capability to enable dis-
tributed deployment of services across multiple zones and to
deploy services faster than in a centralized architecture by
making use of data locality to speed up deployments.

Service Location Awareness. This is the capability to use
the geographical position to define zones within the infras-
tructure. The solution should be able to deploy services in a
specific location. This feature provides to the infrastructure
administrator the functionality to deploy services in each
zone and ensures that architecturally it is the best solution for
the user.

Workflow Dependencies Resolution. This is the ability
to determine if a service depends or not on another service
and resolve the dependencies for the workflow of service
deployment orchestration. It is noted that 5G services typi-
cally depend on various virtual and/or physical resources.

Parallel Deployment. This is the capability of the solution
to support parallel deployment and to deploy new services,
applications, or infrastructures. These activities may include
physical or virtual procurements, configuration, tuning, stag-
ing, installation, and interoperability testing.

2.2. Comparison of Orchestration Tools. Based on the above
requirements, a comparative review is carried out to ana-
lyze available tools in terms of which features they can
provide to the user to meet any of the identified corre-
sponding requirements. There are a number of existing tools
for automatic deployment services as listed and outlined
below:

Puppet [6] models the entire infrastructures as code
in order to significantly reduce the complexity of deploy-
ing and managing distributed infrastructure services and
applications. Chef [7] automates the process of managing
configurations, ensuring that every node in the infrastructure

is configured correctly and consistently using 'recipes’. Capis-
trano [8] is the extension of Chef to allow parallel deployment
and interdependency resolution along the deployment of the
different services. CFEngine3 [9-11] is an Orchestrator that
treats each computer as an autonomous entity, obtaining
its script and a few occasional pieces of information from
the policy server (conductor). Juju [12] is an open-source
orchestration service that provides easy scaling, automatic
provisioning on a variety of providers including bare-metal,
Linux containers and various cloud stacks, and a community
ecosystem of best-practice service definitions. The automa-
tion of the services is created using the so-called charms.
Ansible [13] is a versatile orchestration engine that can
automate deployment of systems and services. Instead of a
custom scripting language or code, it is very simple and shell-
based. It is also agent-less, and allows a user to utilize it using
SSH connectivity. Docker [14] creates native LXC sandboxes
virtual containers that act like isolated scenario where the
final user can deploy their own services without affecting
anything else with a configuration file that automates the
process installation. SaltStack [15] is a powerful and dif-
ferent approach to infrastructure management, by focusing
on high-speed communications between large number of
systems, and can perform orchestration and remote code
execution. CloudFormation [16] is an AWS Orchestrator that
allows spinning up any services in AWS with a predefined set
of parameters. With CloudFormation, the service of resource
creation is self-documenting and changes to the resources
can be tracked with the help of code repository, allowing
debugging. TerraForm [17] realizes multicloud deployments,
which can be very challenging as many existing tools for
infrastructure management are cloud-specific. Terraform
is cloud-agnostic and allows a single configuration to be
used to manage multiple providers, and to even handle
cross-cloud dependencies. This simplifies management and
orchestration, helping operators to build large-scale multi-
cloud infrastructures. Scalr [18] is an on-line solution that
orchestrates the deployment of services in different public
cloud providers using preconfigured configurations. Heat is
an OpenStack orchestration component in charge of creating
a human and machine-accessible service for managing the
entire life cycle of infrastructure and services. OpenMano
[19] delivers an open-source management and orchestration
(MANO) stack aligned with ETSI NFV Information Mod-
els. With the support from an operator-led community, it
offers a production-quality orchestration stack that meets the
requirements of commercial NFV networks. Cloudify [20]
is an open-source cloud orchestration platform, designed to
automate the deployment, configuration and reconfiguration
of applications and network services across hybrid cloud and
stack environments. ZOOM [21] is the implementation of
the zero-touch orchestration, operations and management
project to develop best practices to support both the tech-
nology and business transformation brought about by the
introduction of Network Function Virtualization (NFV) and
Software-Defined Networking (SDN). OPNFV [22] project
seeks to provide orchestration functionalities for testing
scenarios. Most of the time, they are emulating/simulating
those functionalities executing different procedures and/or

requests in parallel to different components. OpenBaton [23]
is the result of an agile design process having as major
objective the development of an extensible and customizable
framework capable of orchestrating network services across
heterogeneous NFV Infrastructures.

However, none of the above tools are able to meet all the
requirements identified. For instance, all of them have the
crucial limitation of not being able to control the life cycle
in all the layers (i.e., physical resources, virtual resources and
service) of the architecture.

Table 1 shows a comparison in terms of the features of
the most popular tools currently available. This comparison
provides a comparative overview of these tools in terms of
capabilities that are needed to meet the requirements for
5G service deployment orchestration. In addition, Table 1
indicates an estimation of the cost reduction by the tools to
different degrees: High (H), Medium (M), or Low (L). Most
of these tools in Table 1 are focused mainly on one or two of
the three layers in a 5G MEC paradigm. The main motivation
of this paper is to provide a complete solution that enables
a 5G infrastructure administrator to achieve a complete
control of the life-cycle of each element in each layer of the
infrastructure, thereby allowing the automatic deployment
of 5G services. The last entry of the table highlights the
comprehensive contributions provided in this paper.

2.3. Other Related Initiatives and Work. In addition to the
existing tools analyzed above, there are a number of related
ongoing standardization activities and industry initiatives.

Firstly, the Topology and Orchestration Specification
for Cloud Applications (TOSCA) [24] unifies invocation of
scripts and services in a generic way. Under this umbrella, the
prototype approach proposed in [25] realizes TOSCA based
on standards-based manner. Caballer et al. [26] propose an
orchestration model that can be used with open-source soft-
ware like OpenStack or hybrid infrastructures and leverages
TOSCA as a standard modelling language. Zimmermann et
al. [27] propose a tool to automate the provisioning and do
the integration of an Analytic tool to process production
steps, overall of the manufacturing processes in industrial
Environments using TOSCA.

Secondly, the ETSI Zero-touch Network and Service
Management (ZSM) [28] Industry Specification Group was
recently (December 2017) launched with the main objective
to gain benefits of automatic network and services operation
in 5G. ZSM highlights the usefulness of standardization
work in this area. Since it is a new initiative, no significant
work has been reported. Nevertheless, this latest initiative
further emphasizes the timeliness and necessity to research
and develop novel architectures and tools, e.g., for automatic
service orchestration, which is the focused contribution of the
proposed work in this paper.

Moreover, some additional alternative approaches have
been proposed. For example, Vukojevic et al. [29] introduce
a provisioning middleware that optimizes the standard pro-
visioning and deprovisioning behaviour and thus improves
cost and time efficiency. Demchenko et al. [30] propose
Zero-Touch Provisioning to provide access to education and
research and support new collaborative applications that are

Wireless Communications and Mobile Computing

becoming increasingly complex and dynamic in their scale,
enabling using distributed resources that require advanced
networking services. Karakostas [12] proposes an autonomic
cloud configuration and deployment environment that allows
automatic deployment, configuration and reconfiguration in
a cloud configuration. The solution only works in legacy
cloud computing architectures being able to install services
in virtual environments. Kumar et al. [31] propose automated
provisioning of applications in the cloud using Amazon as
an laaS provider and Ansible as the orchestration engine
to automate the deployment. Demchenko et al. [32] discuss
the importance of automation tools for deployment and
management applications for Big Data on the SlipStream
cloud automation platform.

The two most closely related tools in terms of capabilities
compared to our proposed solution are Juju and Terraform,
with Juju being the closest one. In fact, our proposal is based
on Juju software to provide the orchestration capabilities
in order to deploy and control the life cycle of physical
and virtual services. Our proposal can be considered as an
extension to Juju to support mobile edge computing infras-
tructure with multiple geographical zones and to support
parallel deployments of work flow dependencies in physical
and virtual resources allocation.

The above initiatives and technical advances contribute to
achieving more automatic network and service management.
However, a solution that fulfills the listed requirements for 5G
service deployment orchestration is still largely missing and
it is the main motivation of this research work.

3. MEC Infrastructure for the Automatic
Deployment of 5G Services from Bare Metal

To address the gaps identified in the related work, a novel 5G
MEC service deployment orchestration architecture is pro-
posed for provisioning services over a 5G MEC infrastructure
that is geographically distributed across different locations, as
shown in Figure 1. The proposed architecture can be deployed
in two complementary ways. One way is a conventional
centralized deployment where the architecture relies on only
one Controller (see the Datacenter Management Zone in
Figure 1) to carry out the provisioning of services across all
the zones of the infrastructure. This is the current design
for multitenant cloud infrastructures. The other way is a
more modern distributed scalable deployment where the
architecture relies on Edge controllers available in each of
the geographical zones of the infrastructure. This approach
is better compliant with the definition of the 5G MEC
architecture and helps the scalability requirements associated
with 5G Infrastructures.

Figure 1 is divided into two parts. The right side of
it contains all the architectural elements in charge of the
management and orchestration plane of the infrastructure.
There is also in the middle of the Figure the networking
part providing the interconnectivity infrastructure. This is a
logical diagram and the networks presented can be deployed
over the same physical port depending on the deploy-
ment strategy in production-grade deployments. Regarding
interconnectivity, the Management Infrastructure Network

Wireless Communications and Mobile Computing

[8£-9.]

[S2%L9T] [eL-12] [0£-89]

[£9-59]

[%9-79]

[19-6¢]

[85-9¢]

[SS FS]

[€6-1¢]

[0s-8¥] [¥-sv] [¥P-c¥]

suonedTqng

RERISEACIEN |
Pa1eIdossy

T

uonONpAY
150D

> >

~

> >

> >

~

ERZEEN
2010

[emaIA juowfordog
2010 [oTrereq
Teo1sAyq

> | x

>

X X M X X A4

X X X[X X X| A4

XX v X< x x| S

> >

X X X X X4

XX | X xS

XX M| X xS

X X M| X

X x| -

> >

> >

R N R -

~

ER VS EIN
92IN0SAY

[BNIIA sopuapuada
20IN0SNY MO[YIOM
[ea1sdyq

~

~

~

~

~

~

~

~

~

~

~

~

92IN0SAY
[enIIA
92IN0SAY
[earskyqg
Jduoy

uoneds0T
ERITNEN

X X X X X

> X X

> X I X

>

> X X >

.

> X v >

>

X X X [>

> X X I X

> x>

.

> x>

> X v >

>

> X X > »

[enyIp
<-> [eorsAyg
2010
[eMIIA
2010
TeorsAyq

uoZ BN

>

>

-

>

>~

>

.

-

20IN0SN
[eMIIA

201mosay AdueUL NN
Teo1sAy g

> > x

>

> | X

~

X X M| X

X X M X X

X X | X

X X X X | X X X [

> X x

>

X X M X X | X X X X >

> v X x

~

X | X

~

X X M| X

ER) VS EIN
92IN0SY
[eniIIp
92IN0SAY
[ea1sdyq

APAD I

\e

X

X

X

X

»

X

X

X

X

X

\e

Suruorstaoig

SO SO

uonnqriuo))
mQ

OUBIA
-901noguadQ

AyrpnoD

Jesl]

I1eds

ouensiden aurduge,yD wWIOeLIa],

UOTJBUILIO]
“Pnod

yoelsyres oqqsuy joddnd joyD

nm(

'S[003 TO1eI)SIYDIO JO QOthQEOU 1 a14v],

Managed Zone! f
i
N

i
i
Controller| | 1

Datacentre
Controller
1| (Centralized) =

Management Zone, | I

E
'
Controller 4 !!i
- ! (Distributed) &8 ||.
REX Controller |11}

i

... N
Nl
l

Management Zone' i
Controller

i|[TFTP][DNs | [Proxy |[pHCP|[1PMmI_]

Edge1
Controller 4
(Distributed) M

Wireless Communications and Mobile Computing

MANAGEMENT |NFRASTRUCTURE‘i
I
i
'''''''''''''''''''''''''''''''''''''' Orchestratori
i
1
I
i
1"
It
I
i
1"
It
I
i
1"
It
I
i
1"
It
I
i
1"
It
I
i
1"
It
I
i
1"
It
I
i
1"
It
I
i
1"
It

Service Infrastructure
Manager

Infrastructurel
Manager

Manager
Manager.

Deployment Server

Virtual Infrastructure

[Gui .
Physical Infrastructure ;
Manager

Network

Manager P -l
Inventory .
Manager

SouthBound API

FIGURE 1: Overview of the proposed 5G MEC service deployment orchestration architecture.

allows infrastructure administrators to provision all services
deployed over the physical resources of the infrastructure,
including an operating system. It expands across all geo-
graphical locations. The Management Edges Network allows
connectivity between all the physical resources deployed over
the same geographical location for localized management.
Figure 1 shows the interconnection between different Edges
Networks, although the visibility is filtered by the usage of
different Virtual LANs (VLANs) [33] according to the loca-
tion. The Management Service Network allows the Service
Infrastructure Manager to deploy services in all places of
the infrastructure and represents the data path for the 5G
services.

The right part of Figure 1 is the management plane and
is composed of three horizontal elements and one vertical
element. The horizontal elements are the Physical Infrastruc-
ture Manager (PIM), Virtual Infrastructure Manager (VIM)
and Service Infrastructure Manager (SIM). These elements
are explained in more detail below:

Physical Infrastructure Manager (PIM). PIM controls
physical resources and the life-cycle of all the hardware in
the infrastructure. To achieve so, it maintains and manages
a catalog of the different operating systems to be provisioned,
and also maintains an inventory of the hardware resources,
the operating systems deployed in each hardware resource,

the life-cycle status of such hardware resources and the stor-
age and network configuration. This information is stored in
the three databases shown in the PIM in Figure 1, namely OS
DB, PM Inventory and PM Configuration, respectively. PIM
has a GUT and an API to allow both Users and commands to
manage the hardware resources of the physical infrastructure.
The Application Programming Interface (API) allows access
via REST or Web Socket, and this Northbound interface
allows the Orchestrator to interact with the PIM. The PIM
implementation used in our testbed is based on Metal-as-a-
Service [34] provided by Ubuntu.

There is an Edge Controller node in each of the locations
in charge of performing the management of the hardware
resources of this zone to provide scalability. PIM is con-
nected to the Management Infrastructure Network allowing
databases in the Edge Controller to synchronize different
geographical locations.

Edge Controller provides an operating system to all
hardware elements in the zone. This operating system con-
tains different types of configurations depending on the
element managed such as servers, switches, routers and
customized configuration for network interfaces, hard drive
layout, certificates, users, and policies of each element. Each
Edge Controller contains two databases that are mirrored
from the databases in the Physical Infrastructure Manager.

Wireless Communications and Mobile Computing

Each controller has its own servers for Dynamic Host Config-
uration Protocol (DHCP), Domain Name System (DNS) [35],
Trivial File Transfer Protocol (TFTP) [36] and Proxy. Each
zone contains its own isolated Network used to provision the
operating system and to manage the compute node through
its Intelligent Power Management Interface (IPMI) [37].

Virtual Infrastructure Manager (VIM). VIM controls
virtual resources and the life-cycle of all the virtual hardware
resources in the virtual infrastructure. VIM allows sharing
the physical resources over more than one tenant (i.e.,
multitenancy) by dealing with virtualization technologies.
Among others, it is in charge of keeping a catalog of Virtual
Machine (VM) images, an inventory of the existing VMs,
an inventory of the virtual networks created for each of the
tenants. That information is stored in the three DBs shown
in the VIM depicted in Figure 1. VIM also takes the role
to determine where to deploy the VMs and to perform the
deployment in the indicated zone.

VIM exchanges messages with the compute services using
a message bus architecture so that each of the compute
services running in each of the hardware computers allow the
management of such hardware from different geographical
locations. VIM allows controlling the life-cycle of each virtual
resource in the infrastructure such as start, stop, soft shut-
down, hard shutdown, soft reboot, hard reboot. VIM exposes
a GUI for the user and a northbound API that supports the
control of all virtual elements in the infrastructure. The VIM
implementation used in our testbed is based on OpenStack
[38].

Service Infrastructure Manager (SIM). SIM controls
services deployed over both virtual and physical resources
and the life-cycle of all the virtual and physical resources
in the infrastructure. It is responsible to deploy services
over the Physical and Virtual Layers, controlling their life-
cycle, allowing deploy, redeploy, start, stop, reconfigure, and
upgrade. SIM maintains 3 DBs with the inventory of the
deployed services, the catalog of managed resources and the
different endpoints to interacts with the VIM and PIM in
order to request and free resources. SIM has a GUI and
API that allows deploying the services in every place of
the infrastructure. The SIM implementation used in our
testbed is based on Ubuntu Juju [12]. This SIM is referred
to as VNFM in ETSI MANO architectures. In our proposed
architecture, the SIM is extended from VNFM to incorporate
additional functionality not only for the deployment over
virtual resources but also over physical ones.

Orchestrator. The Orchestrator interacts with each of
the three management components described (PIM, VIM
and SIM) in order to orchestrate the automatic deployment
and control of services and resources over the 5G MEC
infrastructure. To this end, the Orchestrator interacts with the
APIs exposed by SIM, VIM and PIM in order to orchestrate
the steps involved in the deployment of resources and
services. However, in order to determine such a set of steps,
the Orchestrator should be aware of the status of the resources
and services in real-time to calculate the steps required to
achieve the desired deployment of services. For this purpose,
the PIM Collector, VIM Controller and SIM Collector plug-
ins of the Orchestrator are designed and prototyped in order

to extract the information from the different DBs of the PIM,
VIM and SIM, respectively, so that the Orchestrator is aware
of the current status and the changes produced by every of
the steps orchestrated in this status over the entire MEC
architecture.

Zone Synchronization. This component is required due
to the dynamic nature of the deployment of services from
bare-metal. The PIM, at the provisioning phase of the oper-
ating system, is aware of the location of the new computer
being commissioned. After that, the deployment of the VIM
Compute services in the computer is carried out by SIM
to allow VIM to take control over the virtual resources
of this computer. At this moment, VIM detects the new
computer but there is no way to synchronize the geographical
location of the physical machine available in the PIM with the
geographical location of the physical machine registered in
the VIM. This is exactly the main role of this new architectural
component in order to allow the management of virtual
resources taking into account their different geographical
locations.

The left side of Figure 1 represents the different geo-
graphical zones of the infrastructure. There are a datacenter
location and a number of edges for simplicity. They are
managed similarly so that it is just a naming convention to fit
the MEC terminology. In a traditional cloud infrastructure,
there is only 1 Management Zone whereas in MEC there
are several including the edge of the network. The reader
can see some deployment examples of the 5G services in
the managed computers. The layout of services for such
computers has an operating system together with the Element
Managed Service (EMS) to allow SIM to take control of the
deployment of services over the physical machine. EMS will
be used to perform the deployment of a hypervisor and a
VIM Computer service to allow the VIM to take control of
the resources. Then, SIM will also interface with the VIM in
order to perform the installation of VNFs in the edge of the
network so that the VNF has installed the operating system
inside together with the EMS daemon to allow SIM to also
take control of the virtual resources and the deployed 5G
services. In the example, the reader can see how a 5G User
Packet Forward (UPF) is deployed in the datacenter location
whereas a 5G Centralized Unit (CU) is deployed in an edge of
the network. A detailed description of all the 5G architectural
elements is provided in [39].

To clarify our architectural contribution compared with
the state of the art of the different components presented in
this section in order to make the orchestration architecture
compliant with MEC infrastructures, it is worth enumerating
our main architectural contributions as follows:

(i) PIM, based on MaaS, is integrated with the architec-
ture to extend the traditional ETSI NFV standardized
architecture and thus extend the coverage of the life-
cycle to bare-metal deployments, which is a signifi-
cant extension beyond the state of the art.

(ii) The orchestration component has been designed, pro-
totyped and validated. In fact, the following section
will provide a detailed explanation of all the steps
carried out by the Orchestrator in order to perform

the automatic deployment of the services in MEC
infrastructures.

(iif) PIM, VIM and SIM Collectors are designed, proto-
typed and validated to allow the interactions with
Maa$, OpenStack and Juju, respectively. It is noted
that the Orchestrator follows a TOSCA-compliant
pluggable architecture and thus a concrete imple-
mentation is prototyped in order to validate the
architecture proposed herein.

(iv) The proposed architecture resolves the problem
related to the lack of synchronization between PIM
and VIM with respect to geographical zone. To
the best of the authors’ knowledge, it is the first
time to achieve this integration between PIM and
VIM, which is, in fact, a clear requirement to allow
an Orchestrator with true support for orchestrating
services in MEC infrastructures. Thus, this gap is
identified and the Zone Synchronization component
is designed, prototyped and validated in order to fill
this gap.

(v) Another contribution with respect to the state of the
art is related to the concrete implementation used to
validate the proposed infrastructure. MaaS v1.9 was
adopted as the basis of PIM. This Maa$ software,
however, has a strong requirement for an Internet
connection between the edges and the datacenter
in order to allow the management plane to work.
Nevertheless, in a production-grade deployment, it
is very unlikely to expose the management plane of
the infrastructure to the Internet. Thus, the Maa$S
software has been extended in order to overcome this
limitation and thus be able to work with no Internet
access on the management plane.

Based on the above specific architectural contributions,
together with those listed in Introduction, this research is able
to provide an orchestration architecture with true support for
MEC architecture, to provide empirical results over service
provisioning times in MEC architectures and to provide
empirical results over service provisioning times of VNFs
from bare-metal.

4. Orchestration of 5G Service Deployment
from Bare-Metal

Figure 2 shows a detailed sequence diagram to explain the
comprehensive steps involved in the orchestration process
in order to achieve the deployment of a 5G VNF service in
a computer located in a remote edge of the network that
does not have any operating system or information inside
and is just bare metal. It means that the computer should be
provisioned with the operating system, the hypervisor and
VIM management support and also with the 5G VNF service
deployed in a given tenant network of the shared infrastruc-
ture. This workflow pushes the boundaries of the state of
the art in service provisioning due to all the requirements
involved in the orchestration process. Based on the literature

Wireless Communications and Mobile Computing

review conducted, this type of sequences is not supported by
any of the existing orchestrating tools.

The top of Figure 2 shows the main architectural compo-
nents involved in the orchestration process and the Manage-
ment API involved in the orchestration process (PIM, VIM
and SIM). Vertically on the left side of the diagram, it shows
the different states associated with both resources and ser-
vices and their changes along the whole orchestration process
to achieve the deployment of a 5G VNF from bare-metal in
the edge of the network. All the invocation lines available in
the diagram are labeled with a number that is mentioned in
the text to make it easier to follow the orchestration workflow.
The workflow represents the deployment of a new 5G CU
VNF into a computer located in Edgel of the network.

As a summary, there are three mayor phases involved
in the automation process. The first one is related to the
installation of the operating system in the physical machine.
The second phases is related to the installation of the Virtual
Machine operating system. And finally, the third one is
related to the installation of the services inside of the VM.

The description of the steps is grouped into different
subsections to make the process more readable. It is noted
that the different subsections follow a logical execution flow
of different phases as explained below.

4.1. Discovery Phase. 'The workflow starts when Infrastructure
Administrator sends to Orchestrator a request to deploy a new
CU VNF in Edgel (1). In order to make sure the selected
machine is provisioned from scratch and no other machine
is selected instead, it is assumed that there are no other
machines provisioned in Edgel. However, it is also assumed
that the edge location has at least 1 management node up and
running where the Cluster Controller of the PIM has already
been deployed and installed. The automation of this process
has also been achieved. (2) New Edge Machine is powered
on by the Infrastructure Administrator. Then, (3) New Edge
Machine that was previously wired and powered on is now
detected by the MaaS Edge controller of that zone, which is
always synchronized with Maa$ Datacenter controller. Then,
(4) MaaS Edge requests credentials (user and password) to
configure the access to the Intelligent Platform Management
Interface (IPMI) [37] interface of New Edge Machine and thus
gain control over it. In order to make the process fully auto-
mated, these credentials are extracted from a configuration
file and are the user/password provided by the vendor.

(5) Maa$S then overrides the configuration of the cre-
dentials of IPMI via the Baseboard Management Controller
(BMC) to allow MaaS to be able to control the life-cycle of
the physical machine.

The elapsed time for steps 1-5 is defined as the time
between the moment when a physical machine is physically
connected to the infrastructure and when it is registered in
MaaS$, henceforth referred to as Discovery Time.

4.2. Commissioning Phase. At this stage, (6) New Edge
Machine is properly configured in Maa$S and then Orchestra-
tor is aware of the new status of the machine pulling the PIM
Collector. In a separate thread, the Zone Synchronization
Service (ZSS) is periodically pooling MaaS DB (7) so that at

Wireless Communications and Mobile Computing 9
PHYSICAL SERVICE
. INFRASTRUCTURE INFRASTRUCTURE VIRTUALINFRASTRUCTURE
MANAGER MANAGER MANAGER
Zone
Infrastructs Ed PR
s EE - & EE e Ee=lE

1 Deploy("eNB', Edge1")

- ture "Manually Power ON"y————————————

i< MDiscovery("Edgel")—&MD\s(avery(Edgel")—<—MDiscovery("Edgel"—3
»

¢

“ AddedIP! [
s
- "New') 8.7 L
)

"New')—:
8 «: PowerMngt("ON"
s
| <—MComissioningReq(—
i
i

L nstallOS("ManagementOS')

DISCOVERY

COMMISIONING

MSendDetails(—33

|
i
; "Ready’
H i
L i

As — DepSewice("OpenStack Compute’

READY

DepOS("Ubuntu 16"

7DepOS("Ubuntu 16'; >>
(“ON‘J—.
MDeploy(—20—M*®

ALLOCATED

1

<
DEPLOYING

MStatus

StatusNotif("New’)

12
i <& PowerManagement('OFF")

i

|

| 21InstallOS("Ubuntu 16"

. Mstatus 2 !

(4 otf(Deploying') AMStatUNoE(Deploying" ¢ PowerManagement(OFF)
i

i

i

i

i

| i
i i
| i
i i
| i
| i
| i
| i
| |
i i
| i
| 1
| i
i i
| 1
| i
| i
| 1
i i
| i
| i
ation("Deploying i |
| i
| 1
| i
| |
| i
| |
| i
| 1
| i
| |
i i
| 1
i i
| 1
i i
| |
i |
| 1
| i
i

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
»
d
I

[" Noti("Deploying’) (‘Deploying’ > 0
27— powerMngt("ON"} ” ! !
DERLOYED §—MDeploy = ! !
30— UpgradeOS)——! | |
] Mstatus Mstatus 2Bl iupgradeos) | |
- ‘« MStatus 33 *Nomf(”Dep\uyed“) < Notif("Deploved) o !))
Notif("Deployed’) | Depl: > Deployed
i | 35 DownloadService >}
| | (“JujuDeamon”)]
Uy ! ' i i
DAEMON 1] Install, | !
! ! Confer | |
i I StatServ | 1
| | ("JujuDeamon”) | |
i ' | |
| i Sstatus |
- ! ! Notif("Readyy ™! 1
- T ("JujuDeamon, "Ready’) ' Download |
A2 : e("Openstack Compute” L 40(" Openstackp!
i | Compute’) |
| | Install, !
NOVA-COMPUTE ! ! s |
| | "r StartServ |
1 | ("Openstack Compute") L OpensStackKeepAlive('Ready” |
L i '
r < t ("Openstack Compute”, "Ready”, "Machine A", "Edge 1 L
s L "Ubuntu 16", "Edgel") . SStatusNotif %?aeHSla(kNétwﬁlcat\opA
('Openstack Compute”, achine A" "Readv’) !
H] ! (op P s SetComputeZone]
| 1 | —
I | | "Ready’, ('Machine A","Edge 1') |
| i | "Machine A", "Edge 1') i
| | : InstatiateVMSenvice("Ubuntu 16", "Edgel")—;—»
56 SERVICE i i i | i s DeployVMOS
| | ! ! ! I"('Ubuntu 16", "Edgel")
| | | | | | ¢_RetrieveVMimage_sy
1 | ! ! ! el 16) s
| 1 | | I
| | ! I ' ' tartVM()
| | I)
i i ! ! ! & Download . Install,
1 H ! ! | | ! Confa:
i ' | I I | (JujuDeamon) | [s4
| i | | | i 4 StrtServ
| ! i i 1 g)
h i Servl(eS(amsNonﬂ(ann(Ready’) ; . 55 (“JujuDaemon’)
i i T (‘Ready’)} T “
i 1 jice("eNB") =} L ownload("eNB') ‘ L »
i i < Down\oad(“eNB - =
| | [| Conf('eNB"y ‘ >y
i i
i i i < Start("eNB" —
! ! < i SSNunﬂcanon i i
! ! I y") i |

7]

FIGURE 2: Sequence diagram for the interactions among the different
architecture.

this stage ZSS is notified of the existence of a new machine in
the zone. Then, (8) Orchestrator powers on the new physical
machine detected in the edge via IPMI. (9) New Edge Machine
starts the boot process using the default boot sequence in the
BIOS, which is by default the network stack booting process
using the PXE protocol [40].

(10) The New Edge Machine broadcasts in the network
to discover a DHCP server that assigns dynamically an IP
address and also provides the image to be retrieved from
the TFTP server with the Management OS. Then, (11) the
MaaS TFTP server located in this edge of the network
returns to the New Edge Machine the Management OS (a
minimal version of Ubuntu kernel and some utilities) and
unattended installation is carried out. (12) The Management
OS is installed, which enables Maa$ to acquire the complete
control over a physical machine. Moreover, as part of the
installation process, the capabilities of the New Edge Machine
are detected by MaaS regarding RAM, CPU, NICs, Storage,
hardware accelerators, etc. This is exactly the main purpose
of this commissioning phase.

The elapsed time for steps 6-12 is defined as the time
between the moment when a physical machine is detected

ation("Ready’y—

architectural components available in the proposed orchestration

in Maa$S and when Maas$ takes full control of this machine,
henceforth referred to as Commissioning Time.

4.3. Machine Request Phase. (13) When all the information
required has been gathered from the New Edge Machine,
this information is registered in MaaS Edge. The New Edge
Machine then automatically powers off itself (14) so that the
New Edge Machine has been commissioned properly and is
ready to use. (15) The Orchestrator collects the data from
the PIM Collector and requests Juju Manager to deploy a
new OpenStack Nova-Compute service over the New Edge
physical machine.

The elapsed time for steps 13-15 is defined as the time
between the moment when Maa$S takes full control of a
machine and when the machine is requested as a resource
where to deploy a service, henceforth referred to as Machine
Request Time.

4.4. Allocation Phase. (16) Juju Manager requests MaaS Data
Center to deploy a Ubuntu 16.04 in the New Edge Machine.
(17) At this moment, MaaS Data Center allocates the New

10

Edge Machine to the owner of the administrative domain,
who is the only one that is able to manage this New Edge
Machine.

The elapsed time for steps 16-17 is defined as the time
between the moment when the machine is requested as a
resource where to deploy a service and when it is allocated
to a given administrative domain (user), henceforth referred
to as Allocation Time.

4.5. Deployment Phase. After the allocation is conducted,
MaaS$ Data Center requests MaaS Edge to deploy a Ubuntu
16.04 in the New Edge Machine. (18) MaaS Edge gathers the
IPMI information and powers on the New Edge Machine. (19)
The New Edge Machine starts booting with PXE, (20) requests
a Ubuntu 16.04 to be installed by the MaaS Edge together
with all the configurations about network cards, hard drive
layout, certificates, users, custom software to be installed and
the scripts of the postinstallation, etc. (21) TFTP in Maa$
Edge provides to the New Edge Machine the Operating System
requested. (22) The unattended installation of Ubuntu 16.04
starts. (23) When the installation is successfully completed,
the scripts that were previously transferred to the New Edge
Machine are properly executed. One of these scripts is always
executed for management purposes, notifying MaaS Data
Edge that the machine has been installed properly. MaaS Edge
synchronizes this new state of the physical resource with
MaaS$ Data Center. (24) New Edge Machine reboots itself to
complete all the scripts and postinstallation processes. (25)
Maa$ Data Center pulls the change to PIM Collector and
Orchestrator collects the new state from there.

The elapsed time for steps 18-25 is defined as the time
between the moment when the allocation of a machine to a
given administrative domain (user) and when the operating
system has been completely deployed and the machine is
ready to be used, henceforth referred to as Deployment
Time.

4.6. Upgrade Phase. (26) MaaS Data Center notifies Juju
Manager which has been waiting for this interdependency to
be sorted out from step 15, that the deployment is conducted.
However, it is not enough and Juju Manager is not able to
continue with the workflow until the upgrade of the operating
system is carried out. After the deployment phase, by default,
Maa$ will perform an upgrade of the operating system to
make sure that it is always up to date with no major security
vulnerability discovered.

Then, (27) after a complete reboot of New Edge Machine,
MaaS$ Edge powers on, via IPMI, New Edge Machine to finalize
the installation. (28) New Edge Machine starts booting with
PXE, (29) New Edge Machine requests, via PXE, the next
step (30) and Maa$ Edge replies now to boot from the local
hard disk and performs an upgrade the operating system. (31)
The operating system checks all the available packages in the
repository and starts to be upgraded. (32) Once the upgrade
has been done, New Edge Machine notifies MaaS Datacenter
through Maa$S Edge of the new state for New Edge Machine.
(33) MaaS$ Datacenter notifies the status of New Edge Machine
and PIM Collector collects the information and pushes the
new state through Orchestrator. (34) MaaS Datacenter also

Wireless Communications and Mobile Computing

requests through Juju Manager to upgrade this new State in
the Zone Synchronization Service.

The elapsed time for steps 26-34 is defined as the time
between the moment when the operating system has been
completely deployed and when it has been fully upgraded,
henceforth referred to as Upgrade Time.

4.7. EMS Deployment Phase. After the operating system is
installed and upgraded, Juju EMS is installed to allow Juju
Manager to take control of the resources in order to perform
the control of the services deployed in the machine.

To this end, (35) New Edge Machine executes a script
to download the Juju Daemon software via HTTP. (36) The
script starts the installation and configuration, and starts the
service Juju Daemon. (37) Juju Daemon notifies Juju Manager
of the new status of the daemon. (38) This change in the status
of Juju Daemon is detected by VIM Collector, which then
requests Orchestrator to proceed with the installation.

The elapsed time for steps 25-38 is defined as the time
between the moment when the machine has been fully
upgraded and when the EMS Service is installed, henceforth
referred to as EMS Deployment Time.

4.8. Service Installation Phase. Then, Orchestrator requests
Juju to perform the automatic installation of the Open-
Stack Nova-Compute service together with its dependencies
(hypervisor, drivers, etc.), which enables the infrastructure to
provide multitenant support over virtualized resources.

To this end, (39) once Orchestrator detects that Juju
Daemon is running in New Edge Machine, Orchestrator
requests for a New Service Installation of OpenStack Nova-
Compute. (40) Juju Manager requests the OpenStack Nova-
Compute service to Juju Catalog. (41) Juju Manager replies
to New Edge Machine with the Juju Charm (service template)
that contains all the information to install and configure the
OpenStack Compute service. (42) New Edge Machine starts
the installation of the OpenStack Nova-Compute with all the
dependencies, configuring the configuration files and starting
the service using the steps indicated in the Charm. (43)
When the OpenStack Nova-Compute service starts in the
New Edge Machine service, it starts sending packets to inform
OpenStack Manager that it is alive. Then, (44) Juju Manager
notifies the VIM Collector and the VIM Collector pushes,
through Orchestrator, the new state that OpenStack Nova-
Compute is ready to use Machine A in the geographical Zone
Edge 1. (45) At same time of step 44 Juju Manager notifies
the Zone Synchronization Service that the OpenStack Nova-
Compute is ready to use Machine A in the availability Zone
Edge 1.

The elapsed time for steps 39-45 is defined as the time
between the moment when the SIM takes control and when
the service is installed in the physical machine, henceforth
referred to as Service Deployment Time.

4.9. VNF Service Deployment Phase. Once the nova-compute
is deployed and running, the 5G VNF service can then be
installed into a Virtual Machine that will be allocated in the
new hardware resource. In our case, a 5G Centralized Unit or

Wireless Communications and Mobile Computing

CU VNE service is to be deployed. This CU VNF is an open-
source implementation based on OpenAirInterface [41]. This
service is currently being employed in the 5G infrastructure
in the EU H2020 5G-PPP SELFNET project.

To perform the installation of this 5G VEN service, (46)
Orchestrator sends to Juju Manager a request to instantiate
a New Virtual Machine in the Availability Zone Edgel. (47)
OpenStack Manager notifies Zone Synchronization Service
that Machine A is ready. (48) Zone Synchronization Service
moves Machine A to Availability Zone Edge 1 to be completely
synchronized with the real geographical layout as indicated
by MaaS. (49) Juju Manager requests to instantiate a new
service choosing the VNF image, the availability zone and
the tenant. OpenStack supports multitenant that are different
from those tenants supported by MaaS. That means that the
tenants that belong to the VIM are nested over the PIM,
which implies higher security in the system due to the addi-
tional isolation layer and benefits for the operational and cap-
ital expenditure. (50) OpenStack Manager deploys a Virtual
Machine with Ubuntu 16.04 in New Edge Machine allocated in
Edgel called New Virtual Machine. (51) The Virtual Machine
starts to spawn between OpenStack Manager to New Edge
Machine and it is switched on once this process is completed.
Then the new VM (52) starts in New Edge Machine with at
least two interfaces as requested by the CU. These interfaces
are connected to the associated network using the network
manager’s information provided by collecting plug-ins into
Orchestrator. (53) The Virtual Machine requests to download
the EMS Service (Juju Daemon). (54) The Virtual Machine
installs the Juju Daemon, and configures and starts the
service. (55) Once the Juju Daemon Service is ready, Juju
takes control of the VNE and notifies the SIM Collector
that the Juju Daemon was successfully installed. Then, the
SIM Collector pushes the new state through Orchestrator.
(56) Once Juju Daemon Service is ready, it sends to Juju
Manager its new state. (57) Orchestrator has been notified
that Juju Daemon was installed properly in New Virtual
Machine and Orchestrator requests the installation of a CU
software to New Virtual Machine. (58) New Virtual Machine
requests Juju Catalog to install the CU Charm in the VM.
(59) Once the CU software is downloaded, the installation
and configuration of the CU starts. (60) If some additional
packages should be installed due to service dependencies,
this will be performed as part of the installation process.
After that, (61) the CU service starts properly, (62) loading
all the configurations that need to be completely operative. At
this state, (63) the 5G Service notifies Juju Manager that the
installation has been properly carried out. This is done in fact
by the Charm (service template). (64) Finally, the 5G service
notifies Orchestrator that the installation has been completed
properly.

The elapsed time for steps 46-64 is defined as the time
between the moment when the service is installed in the
physical machine and when the 5G CU VNF is running inside
of OpenStack, henceforth referred to as VNF Deployment
Time.

At this stage, anew 5G VNF (CU) is fully operational and
running in a VNF allocated to a given tenant network in the
new physical machine at the edge of the network that was

11

at the beginning simply a bare-metal computer. The whole
process is a zero-touch orchestration where there is no human
intervention during the course.

4.10. Parallel Deployment Considerations. The software takes
care of multiple service requests by dealing with a separate
deployment status per each of the requests being processed in
different threads. If a user increases the number of individual
services that are working together, the deployment time
increases. However, when this happens the Orchestrator
controls the interdependency and the internal scheduler
decides the best manner to deploy a complex service by taking
in consideration the state of each of the services currently
being deployed.

5. Empirical Validation and Results

5.1. Execution Testbed. The purpose of this testbed is to
empirically investigate the service deployment time achieved
to perform the installation of VNF services for 5G MEC
infrastructures from bare-metal. The testbed has been created
using 6 physical machines as managed computers, and each
one has 8 cores, 24 Gbytes of RAM, and 4x1Gbps Ethernet
NICs + IPMI Ethernet. Each physical machine hosts up to
8 virtual machines. Therefore, the managed infrastructure
consists of up to 48 machines. These machines are managed
by a physical machine with an Intel Xeon Processor E5-2630
v4 with 32GBytes and 3x10Gbit Ethernet NIC acting as a
management plane depicted in the right part of Figure 1.

Architecturally, we evaluate both the centralized (conven-
tional cloud computing) and the distributed (MEC) scenar-
ios. In the centralized scenario, all the 48 machines belong
to the datacenter core, whilst in the distributed scenario we
emulate 6 edge geographical locations in our lab, each one
deployed in each of the physical machines. In the distributed
scenario, each edge will have its own Edge Controller as
shown in the left part of Figure 1.

Each of the edge machines has been virtualized in order
to be able to emulate up to 8 “physical machines” (virtual
machines acting as physical machines in the infrastructure)
in each of the servers used in the testbed, i.e., 48 physical
machines. Thus, the testbed is making use of nested vir-
tualization inside of each of the virtual machines that are
acting as compute nodes registered in OpenStack to host
virtual machines. It is known that nested virtualization has
a significant impact in performance for the VNFs deployed
therein. However, the main purpose of the testbed is not to
optimize the performance of the virtualized service deployed
but to demonstrate the scalability of the proposed architec-
ture, so this deployment has allowed us to test the proposed
architecture with a large number of managed resources. If
we can show that the performance is acceptable even in this
suboptimal setting of using nested virtual machines, we can
expect that better performance will be achieved in a more
optimal setting. It is worth mentioning that the architecture
presented in Figure 1 matches the deployment carried out in
our testbed.

12

5.2. Experimental Setup. Only the most complex scenario
has been executed due to the significant time required to
gather and process the results. The scenario is composed
by 48 machines to be provisioned that are at the beginning
of the experiment at bare-metal state (no operating system
installed and even no hard disk partitioning). The experiment
has been executed 12 times. Then, the experiment will initiate
the creation of a new 5G CU VNF service in each of
these 48 machines with a request time interval of 1 second.
It means, that at time t=1, the first 5G CU VNF Service
Deployment request will be started and in t=2 a new one
will be requested on top of the first one and so on up to 48.
At the end of the experiment, 48 physical machines will be
handled by OpenStack and each of them will host a CU VNF
belonging to a tenant. For each of the service deployment
requests initiated, the complete list of steps presented in
Section 4 is executed in an orchestrated way by the proposed
Orchestrator. For the sake of simplicity, this scenario has used
the same tenant for all the VNFs but the prototype supports
such capability. A separate experiment conducted in our lab
has allowed us to realize that the use of multitenancy does not
impose any overhead in the Orchestrator and in the service
deployment times.

Centralized versus Distributed Infrastructures. As men-
tioned, this experiment has been executed over two architec-
turally different infrastructures that are geographically dis-
tributed across different locations to see empirically the per-
formance comparison of a traditional centralized multitenant
cloud infrastructure against the novel distributed multitenant
MEC infrastructure. Between each of the execution of the
experiments, a complete clean-up of the infrastructures has
been carried out to allow the execution of the experiment
always from bare metal as starting point.

Horizontal versus Vertical Deployment Strategies. The
usage of emulated physical machines where many of them
are hosted inside the same physical device allows us to
also investigate how the selection order of such physical
machines affects the deployment times. To analyze this factor,
two different deployment strategies have been defined. The
horizontal strategy will select an emulated physical machine
by doing a round-robin between all the real physical device
whereas the vertical strategy will select all the emulated
physical machines hosted by the same real physical device
before to start with the next device.

Opverall, the above arrangements led to a comparative
analysis of two different infrastructures to deploy 5G services
(cloud computing and mobile edge computing) against the
two different deployment strategies described. The results of
such analysis are described in the next subsection.

5.3. Performance Results. Figure 3 shows the detailed times
taken by each of the 48 CU 5G VNF services deployed in
the analyzed scenarios. The top half of the figure ((a) and
(b)) shows the times in the centralized cloud computing
infrastructure and the bottom shows the times in the dis-
tributed MEC infrastructure. The average times taken by
all the services to be deployed in each of the scenarios
employed are shown in Table 2. As expected, the total
service deployment times are lower for the distributed MEC

Wireless Communications and Mobile Computing

TABLE 2: Average deployment times in minutes.

Scenario Time (min)

Centralized cloud computing - horizontal deployment 47.0 + 9.2

Centralized cloud computing - vertical deployment ~ 55.9 + 6.3
Distributed MEC - horizontal deployment 36.0£2.7
Distributed MEC - vertical deployment 50.4 +2.8

architecture when compared with the centralized ones. In
the centralized scenario, the datacenter controller receives
all the requests and must serve all the images; whereas in
the distributed scenario, the requests are served by the edge
controllers, and hence this scenario has six nodes serving
requests and this fact has a positive impact on the service
deployment time. Figure 3 shows a white-box analysis of all
the times defined in Section 4. It also shows five new times
where there was a transition (indicated by the ’-> symbol)
between different steps along the orchestration process and
the system was waiting for an event to trigger the next step.

In both infrastructure scenarios, the vertical deployment
strategy always provided worse results than the horizontal
one. In the vertical deployment strategy, each physical node
starts 8 managed nodes in 8 seconds before starting other
managed nodes in another physical node. This imposes a
stress in the workload handled by the hypervisor and also
imposes a stress burst in the network traffic generated by the
simultaneous provisioning from the same edge. In contrast,
in the alternative horizontal deployment strategy, a managed
machine is powered on at each physical node using round-
robin so that when a managed machine boots in a physical
node there is a lag of six seconds until other managed node
starts in the same physical node and it allows homogenizing
better the performance across all the physical machines.

It is worth noting that the distributed MEC infrastructure
orchestrated using a distributed horizontal strategy performs
the deployment of 48 CU VNF services from bare-metal in
36 minutes on average. This is a 30% improvement in service
deployment time compared with the current centralized
cloud computing infrastructure. Moreover, it is noted that the
horizontal deployment strategy provides significantly better
results in both centralized and distributed infrastructures,
17% and 10% time savings, respectively, compared with the
vertical deployment strategy.

Furthermore, Figure 3 also shows how the stability of the
times gathered by all the services deployed is significantly
higher for the distributed infrastructure when compared with
the centralized infrastructure. This is empirically shown in
the standard deviations shown in Table 2, where one can
see a deviation of almost 20% and 11% for the centralized
infrastructure in contrast to a much more stable 75% and
5.5% for the distributed infrastructures. It makes the latter
architecture not only faster but also more stable against the
scalability stress tests.

This change of behaviour in the standard deviation is
mainly due to the efficiency of the architecture that provides
a clear offloading in the datacenter to pass the responsibility
of serving the operating system through the machines to the
edges. This methodology not only allows offloading the main

Wireless Communications and Mobile Computing

Centralized Architecture With
Horizontal Orchestration Strategy

= 8 T T T T T
g2
TEOT T
'I||||| II| I|_
g Ewf
£ | | I |I
=1
ggOr | I| il | I
= L ML L ||| |
g 2 2 1 || I II I
g il
- | 1= I
g 210} 1] i
g 8
S 3
E= 0 [1 1 1 1]
g 0 10 20 30 40
Deployment time behavior per machine
Discovery Deployment
[| Discovery->Commissioning B Deployment->Upgrade
Commissioning Upgrade
B Commissioning->PM Request [l EMS Deployment
PM Request Service Deployment
B PM Request->Allocation [| VNF Deployment
Allocation
B Allocation->Deployment
(@
Distributed Architecture With
. Horizontal Orchestration Strategy
2
g T T T T T
= é 70 -
£
S = 60 -
3
Q=
%a § 50 | -
3 E L .
i || | | |||| |
5 £ 1111 1 11 TR TP
£ £ so Lttt
E =
E g 20 -
s E
= 2oL
55
SE o| 4
= 1 1 1 1 1
8

0 10 20 30 40 50

Deployment time behavior per machine

Discovery Deployment
[| Discovery->Commissioning B Deployment->Upgrade
Commissioning Upgrade
B Commissioning->PM Request [| EMS Deployment
PM Request Service Deployment
B PM Request->Allocation [| VNF Deployment
Allocation
B Allocation->Deployment
(©

13

Centralized Architecture With
Vertical Orchestration Strategy

i T T T T T
R T
£ 2
£ 5 60
[= -

v W -

o
é r_g
5 |

40
o E
5 &
€ 2 30|
v 9
E 2 III | II |
e I I || I I | | |
= £ 20+
g = | |
£z |
= < I
RS .
< K
R

= L a

= 0 1 1 1 1 1

g 0 10 20 30 40 50

Deployment time behavior per machine
Discovery Deployment
[| Discovery->Commissioning B Deployment->Upgrade
Commissioning Upgrade
B Commissioning->PM Request [l EMS Deployment
PM Request Service Deployment
B PM Request->Allocation [| VNF Deployment
Allocation
B Allocation->Deployment
(b)
Distributed Architecture With

. Vertical Orchestration Strategy

3 20 | T T T T
52
E 2
= -
2 £
o 3
/=
8 B 50 —
£k |
o}

r | Il
R &

5 &

€2 30 —
E 2

23 20

2 - m
s E
= 2 o MR
< B
g =

= L a

= 0 1 1 1 1 1

5 0 10 20 30 40 50

Deployment time behavior per machine
Discovery Deployment
[| Discovery->Commissioning Bl Deployment->Upgrade
Commissioning Upgrade
B Commissioning->PM Request [| EMS Deployment
PM Request Service Deployment
B PM Request->Allocation [| VNF Deployment
Allocation
B Allocation->Deployment
(d)

FIGURE 3: Service deployment times to deploy a 5G CU VNF service from bare-metal. (a) and (b) correspond to the centralized infrastructure.
(c) and (d) correspond to the distributed infrastructure. (a, c) show the times for a horizontal deployment strategy whereas (b, d) show the

vertical one.

data paths but also is able to optimize the time consumed
transferring all the files required by the machines thanks to
the speed of the network in each edge.

All the four experiments carried out in this testbed
together have empirically validated the efficiency and effec-
tiveness of the proposed orchestration solution, which is
able to fulfill the ambitious KPI of the 5G-PPP program of
deploying 5G services in less than 90 minutes. It is noted that
the best case scenario (using the recommended distributed

MEC infrastructure with the horizontal deployment strategy)
managed to complete the deployment of 48 VNFs in 48
machines in 36 minutes and the worst scenario (using the
alternative centralized cloud computing infrastructure with
the vertical deployment strategy) was achieved in less than
56 minutes.

In order to gain a better understanding of how the time
was spent along all the steps involved, Figure 4 shows the
distribution of times of each of the phases involved in the

14 Wireless Communications and Mobile Computing

Distribution Times in Centralized Distribution Times in Centralized
Architecture With Horizontal Orchestration Strategy Architecture With Vertical Orchestration Strategy
30 T T T T T T T T T 30 T T T T T T T T T
25 - 25 B
20 B 20 E
) w
£ &
gw- - El% B
= % =
10 - - 10 - 4
5L - 51 4
oF S — - oL B 4
L L L 1 1 1 1 1 1 1 1 1 1 1 L L L L L L 1 1 1 1 1 1 1 1
CEEYE2SE5EEEES CEECE3SE5EEEEE
tEETESREERBEEE EEETECREERRBEEE
82233822255 SS 23TV EERREEE
28 aME=S 22895592823 2 g oME=29285592278
A 22 < =Z aan oA A A2 2 < 2 aer oo A,
EESS A< oo oo © EESSAN< oo o' o' D
EEARL 0Aag oQAQ EEARL ant AQA
$Ss £ 1 £ gi% $S8% £ L 2 g%
A°E g 5 B Ztg R°8 5 5§ B &f¢g
1y =) & £ 2 3} Iy =) ~ = 2 3]
= 2 157 oy @ = 2 o o «
ez = = A gz = =2 &
5 2 = & 2 N =
3 g < 3 E <
5 £ A
®) QO
() (b)
Distribution Times in Distributed Distribution Times in Distributed
Architecture With Horizontal Orchestration Strategy Architecture With Vertical Orchestration Strategy
30 T T T T T T T T T T T T T T 30 T T T T T T T T T T T T T T
25 - 25 - R
20 - 20 4
3 3
g 151 . EREIS 4
b= p= =

10 B 10 - él .

HH
HIH

0+ — — . 0+ —_———T -

N A N AN N AN NN NN AN NN AN NN N | | IS I A S S A A I S N
R A MY 2T gE e e 0sse
SES882358583358¢8 §55882558%%85858
2S5 SREEmEBEEE Z2EE 508 EEKLEEE
S 2L 009 EEAEEE S 2L 0oV EEAEEEE
2 g eEE=2200559 909 29 gME=299055992%
A 232 <Zaan A= Pr=h A B E <ZeE&R Flolon
EEEE/\<@®, 0O O EEEE/\<0)®. 0O O
EER~L AARE AAAQ EER~ML AT AAQAQ
ISERSIR0 3 N o ©YE o o k41 N 3} QY
QO & 3 = E S 22Z QO & = = E =Se2Z
ATE § S z omzbS ANTE g S oz omzb
! =}] = =1 o ! = S = =} 3}
= =2 < = > [=7 < =

i~ =] S o =2 o (=} S [=9 95]
5] ‘o = 3 %) 9] ‘B b= 3 j5)

g 2 A = A z 2 & = A

o =] << o = <

2 g 2 g

a o a o

©)] O

(© (d)

FIGURE 4: Distribution of the times along the orchestration steps related to the deployment of a 5G VNF CU service from bare-metal. (a)
and (b) correspond to the centralized infrastructure whilst (c) and (d) correspond to the distributed infrastructure. (a, c) show times for a
horizontal orchestration strategy whereas (b, d) correspond to the vertical one.

orchestration process. It reveals more insights on identifying Figure 4 shows that the service deployment phase is the
the bottleneck points that should be further investigated in ~ most time-consuming portion around (around 18 mins) of all
order to further reduce the overall times in future work. The the times analyzed, followed by the VNF Service Deployment
subfigures shown in Figure 4 directly matches the subfigures ~ phase (around 10 mins). These are the times required to
shown in Figure 3. install all the OpenStack software and its dependencies into

Wireless Communications and Mobile Computing

Comparison of averages between scenarios

" Commissioning PM Request

Deployment Upgrade EMS Deplo Service Deplo VNE

B Centralized Horizontal - Centralized Vertical Ci - Distributed Hori:

¥ Distributed Horizontal - Distributed Vertical ~ ® Centralized Vertical - Distributed Vertical

F1GURE 5: Differences in average service deployment times.

the physical machine and also to have the VNF deployed,
installed and running. It is noted that the testbed does not
have any cached VNF images in the physical machines since
it is the first allocated VM with that image. It means that
the spawning time, defined as the process to move the VNF
image from the management image repository to the proper
location, needs to be considered (only happening on the
first installation of a VNF service in the physical machine).
Subsequent installations of such services will take much less
time since the image is already spawned.

When the figures are compared between infrastructures,
it can be noticed how the commissioning time and PM
request time are significantly reduced in the distributed
infrastructure when compared with the centralized one. It
shows the improvement related to the exploitation of the
locality of the data and the distributed split of workload
across different areas of the distributed architecture proposed.
This improvement highlights the benefit from employing the
distributed architecture.

In order to gain more insights and further identify room
for potential improvement, the differences in the times of
different phases among the four service deployment scenarios
(2 deployment orchestration strategies per infrastructure x
2 infrastructures) are highlighted in Figure 5. It is noted
that phases yielding insignificant time differences have been
removed from the figure for brevity. The following four
comparisons are conducted, and a difference is equal to the
time of a phase in the former scenario (e.g., Centralized
Horizontal) minus that of the latter scenario (Centralized
Vertical). A positive difference indicates increased time in
the former scenario whilst a negative one indicates decreased
time.

Centralized Horizontal-Centralized Vertical. This com-
parison is to show differences between the two orchestrations
strategies using the centralized architecture. The differences
in the first phases are negligible whilst in the last three phases
(highlighted in the last three light brown bars) there is 9.53
minutes of joint time reduction, which is the main reason
why the Centralized Horizontal scenario is about 9 minutes
quicker than the Centralized Vertical scenario as shown in
Table 2.

Centralized Horizontal-Distributed Horizontal. This
comparison is to show differences between architectures
using the same horizontal orchestration strategy. It is noted
that the only phase that reduced time in the Centralized

15

Horizontal is the EMS Deployment (highlighted in the only
negative yellow bar), which can be further investigated to
benefit the recommended Distributed Horizontal approach.
In all the other phases, Distributed Horizontal outperforms
its alternative.

Distributed Horizontal-Distributed Vertical. This com-
parison is to show differences between the two orchestration
strategies using the distributed architecture. It can be seen
that Distributed Horizontal manages to reduce times in the
three last phases (highlighted in the last three green bars),
which explains the better performance of the horizontal
orchestration strategy compared with its vertical counterpart
in the distributed MEC infrastructure.

Centralized Vertical Distributed Vertical. This compar-
ison is to show differences between architectures using the
same vertical orchestration strategy. The only phase showing
time reduction in Centralized Vertical is the EMS Deploy-
ment (highlighted in the only negative dark brown bar).
Again, this phase can be further examined in Distributed
Vertical for potential improvement.

6. Conclusion

This paper presents the design, prototyping, and empirical
evaluation of a new 5G orchestration solution that is capable
of achieving fast service deployment across different locations
in a 5G Multiaccess/Mobile Edge Computing compliant
infrastructure. This novel Orchestrator enables the control
of each managed element in each of the three infrastructure
layers (physical, virtual, and service infrastructures) through
an integrated and automated orchestration process in the
proposed architecture.

Consequently, this solution empowers 5G network
administrators to own a complete life-cycle control of the
resources at different layers in an integrated operational
environment and be able to deploy a 5G service from bare-
metal in less than 90 minutes in a real infrastructure (even in
the disadvantaged case of employing nested virtualization),
meeting one of the most ambitious KPIs proposed by the
5G-PPP. The extensive empirical results gathered from
differently combined scenarios of architectures (centralized
versus distributed) and orchestration strategies (horizontal
versus vertical) have successfully validated the proposed
solution. When the recommended distributed MEC
infrastructure with the horizontal deployment strategy was
employed, the system completed the deployment of 48 5G
VNEF services in 48 physical machines in 36 minutes.

Future work will further explore optimization mecha-
nisms to minimize the times taken in selected bottleneck
steps/phases so that the overall service deployment time can
be further reduced. It is also planned to explore the benefits
of using an alternative event-based architecture rather than
the current polling-based architecture to explore the impact
on performance.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

16

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was funded in part by the European Commission
Horizon 2020 5G-PPP Program under Grant Agreement
no. H2020-ICT-2016-2/761913 (SliceNet: End-to-End Cog-
nitive Network Slicing and Slice Management Framework
in Visualized Multi-Domain, Multi-Tenant 5G Networks)
and by the European Commission Horizon 2020 5G-PPP
Programme under Grant Agreement no. H2020-ICT-2014-
2/671672-SELENET (Framework for Self-Organized Net-
work Management in Virtualized and Software-Defined Net-
works). This work has been additionally funded by the UWS
5G Video Lab project.

References

[1] R. Marco Alaez, J. M. Alcaraz Calero, F. Belqasmi, M. El-
Barachi, M. Badra, and O. Alfandi, “Towards an open source
architecture for multi-operator LTE core networks,” Journal of
Network and Computer Applications, vol. 75, pp. 101-109, 2016.

[2] E. Commission, “Report from the commission to the european
parliament and the council, on the implementation of directive
2014/61/eu of the european parliament and of the council of 15
may 2014 on measures to reduce the cost of deploying high-
speed electronic communications networks,” Report, 2018.

[3] 1. G. B. Yahia, “Management Plane System Definition, APIs and
Interfaces,” Slicenet Deliverable D2.4, p. 95, May 2018.

[4] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young,
“Mobile edge computingé a key technology towards 5g,” ETSI
white paper, vol. 11, no. 11, pp. 1-16, 2015.

[5] “D2.6 Final Report on Programme Progress And Kpis,” 2017,
https://5g-ppp.eu/wp-content/uploads/2017/10/Euro-5G-D2.6.
Final-report-on-programme-progress-and-KPIs.pdf.

[6] L. Kanies, “Puppet,” in LISA, 2006.

[7]1 M. Marschall, Chef Infrastructure Automation Cookbook, Packt
Publishing, 2013.

[8] D. Frost, “Using capistrano,” Linux Journal, vol. 2009, no. 117, p.
8,2000.

[9] M.D. Poat,]. Lauret, and W. Betts, “Configuration Management
and Infrastructure Monitoring Using CFEngine and Icinga for
Real-time Heterogeneous Data Taking Environment,” Journal of
Physics: Conference Series, vol. 664, no. 5, p. 052020, 2015.

[10] D. Zamboni, Learning CFEngine 3: Automated system adminis-
tration for sites of any size, O’Reilly Media, Inc, 2012.

[11] M. Burgess and R. Ralston, “Distributed resource administra-
tion using cfengine,” Software: Practice and Experience, vol. 27,
no. 9, pp. 1083-1101, 1997.

[12] B. Karakostas, “Towards autonomic cloud configuration and
deployment environments,” in Cloud and Autonomic Com-
puting (ICCAC), 2014 International Conference on, pp. 93-96,
September 2014.

[13] L. Hochstein and R. Moser, Ansible: Up and Running: Automat-
ing Configuration Management and Deployment the Easy Way,
O’Reilly Media, Inc., 2017.

[14] D. Merkel, “Docker: lightweight linux containers for consistent
development and deployment,” Linux Journal, vol. 2014, no. 239,
p. 2,2014.

Wireless Communications and Mobile Computing

[15] B.Hosmer, “Getting started with salt stack—the other configura-
tion management system built with python,” Linux journal, vol.
2012, no. 223, 2012.

[16] B. A. C. W. Stacks and A. A. C. W. Instances, “In this section,”
AWS CloudFormation, p. 104, 2015.

[17] K. Shirinkin, Getting Started with Terraform, Packt Publishing,
2017.

[18] H. Work, “Scalr: The auto-scaling open-source amazon ec2
effort,” TechCrunch posted Apr, vol. 3, pp. 1-6, 2008.

R. Mijumbi, J. Serrat, J. Gorricho, S. Latre, M. Charalambides,
and D. Lopez, “Management and orchestration challenges
in network functions virtualization,” IEEE Communications
Magazine, vol. 54, no. 1, pp- 98-105, 2016.

[20] S. T. Graham and X. Liu, “Critical evaluation on jClouds and
cloudify abstract APIs against EC2, Azure and HP-Cloud,
in Computer Software and Applications Conference Workshops
(COMPSACW), 2014 IEEE 38th International, pp. 510-515, July
2014.

[21] “The ZOOM project zero-touch orchestration, operations and
management,” 2018, https://www.tmforum.org/collaboration/
zoom-project/.

[22] Price, Christofer, Rivera et al., “OPNFV: An open platform to
accelerate NFV,” White Paper. A Linux Foundation Collaborative
Project, 2012.

[23] G. A. Carella and T. Magedanz, “Open baton: a framework for
virtual network function management and orchestration for
emerging software-based 5g networks,” Newsletter, vol. 2016,
2015.

[24] T. Binz, U. Breitenbiicher, F. Haupt et al, “OpenTOSCA -
A Runtime for TOSCA-Based Cloud Applications,” in Service
Oriented Computing and Applications, vol. 8274 of Lecture Notes
in Computer Science, pp. 692-695, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013.

[25] J. Wettinger, T. Binz, U. Breitenbiicher, O. Kopp, F. Leymann,
and M. Zimmermann, “Unified invocation of scripts and
services for provisioning, deployment, and management of
cloud applications based on TOSCA,” in Proceedings of the
4th International Conference on Cloud Computing and Services
Science, CLOSER 2014, pp. 559-568, Spain, April 2014.

[26] M. Caballer, S. Zala, A.1.Garcfa, G. Molté, P. O. Fernandez, and
M. Velten, “Orchestrating Complex Application Architectures

in Heterogeneous Clouds,” Journal of Grid Computing, vol. 16,
no. 1, pp. 3-18, 2018.

[27] M. Zimmermann, M. Falkenthal, F. Leymann, E. W. Baumann,
and U. Odefey, “Automating the provisioning and integration of
analytics tools with data resources in industrial environments
using OpenTOSCA,” in Proceedings of the 2Ist IEEE Inter-
national Enterprise Distributed Object Computing Conference
Workshops, EDOCW 2017, pp. 3-7, Canada, October 2017.

[28] “Etsis new zero touch network and service management group
starts work,” 2018, http://www.etsi.org/news-events/news/1254-
2018-01-news-etsi-s-new-zero-touch-network-and-service-man-
agement-group-starts-work.

(19

[29] K. Vukojevic-Haupt, S. G. Séez, F. Haupt, D. Karastoyanova,
and F. Leymann, “A middleware-centric optimization approach
for the automated provisioning of services in the cloud,” in
Proceedings of the 7th IEEE International Conference on Cloud
Computing Technology and Science, CloudCom 2015, pp. 174-
179, Canada, December 2015.

[30] Y. Demchenko, S. Filiposka, R. Tuminauskas et al., “Enabling
Automated Network Services Provisioning for Cloud Based

https://5g-ppp.eu/wp-content/uploads/2017/10/Euro-5G-D2.6_Final-report-on-programme-progress-and-KPIs.pdf
https://5g-ppp.eu/wp-content/uploads/2017/10/Euro-5G-D2.6_Final-report-on-programme-progress-and-KPIs.pdf
https://www.tmforum.org/collaboration/zoom-project/
https://www.tmforum.org/collaboration/zoom-project/
http://www.etsi.org/news-events/news/1254-2018-01-news-etsi-s-new-zero-touch-network-and-service-management-group-starts-work
http://www.etsi.org/news-events/news/1254-2018-01-news-etsi-s-new-zero-touch-network-and-service-management-group-starts-work
http://www.etsi.org/news-events/news/1254-2018-01-news-etsi-s-new-zero-touch-network-and-service-management-group-starts-work

Wireless Communications and Mobile Computing

Applications Using Zero Touch Provisioning,” in IEEE/ACM
8th International Conference on Utility and Cloud Computing
(UCC), pp. 458-464, Cyprus, December 2015.

[31] N. K. Singh, S. Thakur, H. Chaurasiya, and H. Nagdev, “Auto-
mated provisioning of application in TAAS cloud using Ansible
configuration management,” in Proceedings of the Ist Interna-
tional Conference on Next Generation Computing Technologies,
NGCT 2015, pp. 81-85, India, September 2015.

[32] Y. Demchenko, F. Turkmen, C. De Laat, C. Blanchet, and C.
Loomis, “Cloud based big data infrastructure: Architectural
components and automated provisioning,” in Proceedings of the
I4th International Conference on High Performance Computing
and Simulation, HPCS 2016, pp. 628-636, Austria, July 2016.

[33] D. McPherson and B. Dykes, “VLAN Aggregation for Efficient
IP Address Allocation,” 2001.

[34] A. Sirbu, C. Pop, and F. Pop, “MaaS advanced provisioning
and reservation system,” in Proceedings of the Ist International
Workshop on Automated Incident Management in Cloud, pp. 13-
18, ACM, New York, NY, USA, 2015.

[35] T. Brisco, “RFC 1794 - DNS support for load balancing - ietf
tools,” 1995.

[36] K. Sollins, “The tftp protocol (revision 2),” 1992.

[37] T. Slaight, “Using IPMI platform management in modular
computer systems,” Intel Corporation, Intel Developer Forum,
2003.

[38] T. Rosado and]. Bernardino, “An overview of openstack
architecture,” in Proceedings of the 18th International Database
Engineering & #38; Applications Symposium, pp. 366-367, ACM,
New York, NY, USA, 2014.

[39] J. Kim, D. Kim, and S. Choi, “3GPP SA2 architecture and
functions for 5G mobile communication system,” ICT Express,
vol. 3, no. 1, pp. 1-8, 2017.

[40] M. Johnston and S. Venaas, “Dynamic Host Configuration
Protocol (DHCP) Options for the Intel Preboot eXecution
Environment (PXE),” RFC Editor RFC4578, 2006.

[41] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp,
and C. Bonnet, “OpenAirInterface: A Flexible Platform for 5G
Research,” Computer Communication Review — acm sigcomm,
vol. 44, no. 5, pp. 33-38, 2014.

[42] D. Armstrong, D. Espling, J. Tordsson, K. Djemame, and E.
Elmroth, “Contextualization: Dynamic configuration of virtual
machines,” Journal of Cloud Computing, vol. 4, no. 1, 2015.

[43] D. K. Meghana and J. G. Reddy, “Cloud-based approach to
increase the performance of execution of binary by using the
separate debug file,” in Applied and Theoretical Computing and
Communication Technology (iCATccT), 2016 2nd International
Conference on IEEE, pp. 743-746, July 2016.

[44] R. Sheu, S. Yuan, X. Liu, and P. Chung, “A plug-and-work
tool for cloud system reconfiguration with single command,”
in Proceedings of the 31st Annual ACM Symposium on Applied
Computing, pp. 477-479, April 2016.

[45] M. De Bayser, L. G. Azevedo, and R. Cerqueira, “ResearchOps:
The case for DevOps in scientific applications,” in Integrated
Network Management (IM), 2015 IFIP/IEEE International Sym-
posium on IEEE, pp. 1398-1404, May 2015.

[46] G. Iuhasz and I. Dragan, “An Overview of Monitoring Tools
for Big Data and Cloud Applications,” in Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC), 2015 17th Inter-
national Symposium on IEEE, pp. 363-366, September 2015.

[47] Y. Katsuno and H. Takahashi, “An automated parallel approach
for rapid deployment of composite application servers,” in

17

Cloud Engineering (IC2E), 2015 IEEE International Conference
on IEEE, pp. 126-134, March 2015.

(48] N. Forsgren and J. Humble, “DevOps: Profiles in ITSM Per-
formance and Contributing Factors,” SSRN Electronic Journal,
2015.

[49] J. R. Santiago, Observability and the decision-making process
in information technology service management: A delphi study
[Ph.D. thesis], Northcentral University, 2017.

[50] K. Torberntsson and Y. Rydin, A study of configuration man-
agement systems: Solutions for deployment and configuration of
software in a cloud environment, 2014.

[51] O. Hanappi, W. Hummer, and S. Dustdar, “Asserting reliable
convergence for configuration management scripts,” ACM SIG-
PLAN Notices, vol. 51, no. 10, pp. 328-343, 2016.

[52] J. Wettinger, “Gathering solutions and providing apis for their
orchestration to implement continuous software delivery,” 2017.

[53] S. Thakur, S. C. Gupta, N. Singh, and S. Geddam, “Mitigating
and Patching System Vulnerabilities Using Ansible: A Com-
parative Study of Various Configuration Management Tools
for TAAS Cloud,” in Information Systems Design and Intelligent
Applications, vol. 433 of Advances in Intelligent Systems and
Computing, pp. 21-29, Springer India, New Delhi, 2016.

[54] V. Sobeslav and A. Komarek, “OpenSource Automation in
Cloud Computing,” in Proceedings of the 4th International
Conference on Computer Engineering and Networks, pp. 805
812, Springer, 2015.

[55] P. Safarik and S. Schuenemann, “Ground segment as a service,”
in Proceedings of the 14th International Conference on Space
Operations, 2016, Republic of Korea, May 2016.

[56] M. Falkenthal, J. Barzen, U. Breitenbiicher, C. Fehling, and

F. Leymann, “From pattern languages to solution implemen-

tations,” in Proceedings of the in Proceedings of the Sixth

International Conferences on Pervasive Patterns and Applications

(PATTERNS), pp. 12-21, 2014.

“Efficient pattern application: validating the concept of solution

implementations in different domains,” International Journal on

Advances in Software, vol. 7, 2018.

[58] H. Ding, Persistence and discovery of reusable cloud application
topologies [Master, thesis], 2016.

[59] M. De Lucia, J. Wray, and S. S. Collmann, “Cloud migration
experiment configuration and results,” Technical Report, US
Army Research Laboratory Aberdeen Proving Ground United
States, 2017.

[60] B. Jones, G. McCance, C. Cordeiro, D. Giordano, S. Traylen,
and D. Moreno Garcia, “Future Approach to tier-0 extension,’
Journal of Physics: Conference Series, vol. 898, p. 082040, 2017.

[61] C. Adam, N. Anerousis, M. E Bulut et al., “Design and Eval-
uation of a Self-Service Delivery Framework,” in International
Conference on Service-Oriented Computing, pp. 445-452, 2017.

[62] R. Underwood, “Building bridges: The system administration
tools and techniques used to deploy bridges,” in Proceedings of
the Practice and Experience in Advanced Research Computing
2017 on Sustainability, Success and Impact, p. 5, ACM, 2017.

[63] P. M. Smith, J. St. John, and S. L. Harrell, “There and Back
Again,” in Proceedings of the the HPC Systems Professionals
Workshop, pp. 1-7, Denver, CO, USA, November 2017.

[64] D.Armstrong, K. Djemame, and R. Kavanagh, “Towards energy
aware cloud computing application construction,” Journal of
Cloud Computing, vol. 6, no. 1, 2017.

[65] M. Airaj, “Enable cloud DevOps approach for industry and
higher education,” Concurrency Computation, vol. 29, no. 5,
2017.

o
X

18

[66] M.K. Aljundi, Tools and practices to enhance DevOps core values,
2018, Master Thesis For LUT university, 2018.

[67] A. Aguinaga Mendibil, “Orquestacion de servicios vagrant y
capistrano,” Grado en Ingeniera en Tecnologa de Telecomuni-
cacin, Telekomunikazio Teknologiaren Ingeniaritzako Gradua,
2017.

[68] S. Son, H. Choi, B. T. Oh, S. W. Kim, and B. S. Kim, “Cloud
SLA relationships in multi-cloud environment: models and
practices,” in Proceedings of the 8th International Conference on
Computer Modeling, pp. 1-6, ACM, Canberra, Australia.

[69] P.Rajand A. Raman, “Multi-cloud management: Technologies,
tools, and techniques,” in Software-Defined Cloud Centers, 240,
p. 219, Springer, 2018.

[70] L. Wang and X. V. Wang, “Latest advancement in cloud
technologies,” in Cloud-Based Cyber-Physical Systems in Man-
ufacturing, pp. 3-31, Springer, 2018.

[71] M. Villari, A. Celesti, G. Tricomi, A. Galletta, and M. Fazio,
“Deployment orchestration of microservices with geographical
constraints for Edge computing,” in Proceedings of the 2017 IEEE
Symposium on Computers and Communications, ISCC 2017, pp.
633-638, Greece, July 2017.

[72] P. Massonet, A. Levin, A. Celesti, and M. Villari, “BEACON
project: Software defined security service function chain-
ing in federated clouds;,” Advances in Service-Oriented and
Cloud Computing: Workshops of ESOCC 2016, Vienna,Austria,
September 5-7, 2016, Revised Selected Papers, vol. 707, Springer,
p- 305, 2018.

[73] M. Villari, G. Tricomi, A. Celesti, and M. Fazio, “Orchestration
for the Deployment of Distributed Applications with Geograph-
ical Constraints in Cloud Federation,” in Cloud Infrastructures,
Services, and IoT Systems for Smart Cities, pp. 177-187, Springer,
2017.

[74] P. Raj and A. Raman, “Automated Multi-cloud Operations and

Container Orchestration,” in Software-Defined Cloud Centers,

pp. 185-218, Springer, 2018.

S. Chatlapalle, “Generic Deployment Tools for Telecom Apps in

Cloud,” 2018.

[76] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D.
Sabella, “On Multi-Access Edge Computing: A Survey of the
Emerging 5G Network Edge Cloud Architecture and Orches-
tration,” IEEE Communications Surveys & Tutorials, vol. 19, no.
3, pp. 1657-1681, 2017.

[77] A.Komarek, J. Pavlik, L. Mercl, and V. Sobeslav, “VNF Orches-
tration and Modeling with ETSI MANO Compliant Frame-
works,” in Internet of Things, Smart Spaces, and Next Generation
Networks and Systems, vol. 10531 of Lecture Notes in Computer
Science, pp. 121-131, Springer International Publishing, Cham,
2017.

[78] J. Santos, T. Wauters, B. Volckaert, and F. de Turck, “Fog
computing: Enabling the management and orchestration of
smart city applications in 5G networks,” Entropy, vol. 20, no. 1,
2018.

[75

Wireless Communications and Mobile Computing

International Journal of

Rotating

Machinery

The Scientific . 35
WorldJournal —— Sensors BRI~

Journal of
Control Science
and Engineering

sin

Civil Ehgineering

Hindawi

Submit your manuscripts at
www.hindawi.com

2 1 Journal of
Journal of Electrical and Computer
Robotics Engineering

Advances in
OptoElectronics

International Journal of

Modelling & Aerospace

\r‘\tf}m_at\'g;wla\ Journal of Simulation q o
Navigation and in Engineering Engmeerlng

Observation

International Journal of) :
International Journal of Antennas and Active and Passive T
Chemical Engineering Propagation Flectronic Components Shock and Vibration A and Vibration

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

