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1. Introduction 14 

Pollution of the aquatic environment is common near human activity and the 15 

presence of chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), tin 16 

(Sn) and zinc (Zn) is associated with antifouling paint, industry, insecticides, fertilizer 17 

use, fuel consumption and waste water treatment works (Caccia et al., 2003; Deheyn 18 

and Latz, 2006; Canning-Clode et al., 2011; Xu et al., 2014; Rodriguez-Iruretagoiena 19 

et al., 2016). Areas with intense, localised activity (e.g. harbours and ports within 20 

estuaries) are known to exhibit greater anthropogenic influence (Birch et al., 2015).  21 

An example of this is the Clyde Estuary, Scotland, which has since the Industrial 22 

Revolution received pollution from ship building, dye works and petroleum 23 

installations resulting it becoming the UK’s most contaminated estuarine environment 24 

(Turner, 2000; Edgar et al., 2003; Vane et al., 2007; Vane et al., 2011).   25 

The Water Framework Directive (2000/60/EC) and Annex II of the 26 

Environmental Quality Standards Directive (2008/105/EC) include a number of PTEs 27 

(arsenic (As), cadmium (Cd), mercury (Hg), nickel (Ni)) which are classified as 28 

‘priority substances’ and ‘priority hazardous substances’. Requirements of the Water 29 

Framework Directive include a target of ‘good’ ecological status for waterbodies and 30 
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levels of pollutants within the Clyde have reduced over the last three decades and 31 

ecological recovery has been observed (Critchlow-Watton et al., 2014). 32 

Elements such as Cu, Fe, Zn and Mn, are essential in trace amounts to 33 

support and maintain functions in aquatic ecosystems (Tchounwou et al., 2012), 34 

however Pb, Cu and Zn have previously found to be a ‘triad’ of metals associated 35 

with human influence, and at high concentrations are toxic, adversely impacting on 36 

human/animal health and the environment (ten Brink and Woudstra, 1991; McLellan 37 

et al., 2013). To determine the effect of pollutants on aquatic organic substances, 38 

numerous studies exposing invertebrates to heavy metals have previously been 39 

undertaken (Lasier et al., 2000; Borgmann et al., 2005; Torres Guzmán et al., 2010; 40 

García et al., 2011; Liber et al., 2011; Lopes et al., 2014, Jośko et al., 2016). 41 

Karntanut and Pascoe (2002) exposed four different Hydra species (vulgaris 42 

(Zurich),attenuata, oligactis and viridissima) to varying concentrations of Cu, Cd and 43 

Zn. A variation in the lethal concentration (LC) between species was found with Cu 44 

being the most toxic of the three elements with an LC50 ranging from 0.025 to 0.084 45 

mg/l after 96h of exposure, followed by Cd (0.16 to 0.52 mg/l), then Zn (11 to 14 46 

mg/l). 47 

H. attenuata (also known as Hydra vulgaris) is a species of cnidarian that are 48 

ubiquitously found in freshwater ecosystems and are commonly used for toxicity 49 

testing. The health status and acute toxicity of H. attenuata is easily observed 50 

through a series of defined morphological changes following exposure to a toxin in a 51 

relatively simple bioassay (Wilby, 1988). Other chronic endpoints used to measure 52 

toxicity include asexual reproduction (budding), feeding behaviour and attachment to 53 

a substrate (Quinn et al., 2012). This species has relatively unique regenerative 54 

properties, is easy to culture and maintain in a laboratory, has a high reproductive 55 
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rate and as a diploblastic organism, is sensitive to environmental pollutants and is 56 

therefore used as a bioindicator for the health of a freshwater aquatic ecosystem 57 

(Quinn et al., 2012).  H. attenuata have been widely used in cost effective bioassays 58 

to assess the toxicity of numerous contaminants including wastewater (Trottier et al., 59 

1997), industrial effluents (Blaise and Kusui, 1997), pharmaceuticals (Pascoe et al., 60 

2003; Quinn et al., 2008a, 2008b, 2009) , PTEs (Holdway et al., 2001; Karntanut and 61 

Pascoe, 2002; Quinn et al., 2007) and more recently rare earth elements (Blaise et 62 

al., 2018).   63 

The aim of this study is to evaluate the toxicity of PTE’s, both individually and 64 

as a mixture, found in the Clyde estuary in Scotland against the cnidarian Hydra 65 

attenuata. Water samples from various locations in the Clyde estuary (Scotland) 66 

were analysed for anthropogenic PTEs Cu, Fe, Mn, Ni and Zn. The toxicity of these 67 

metals individually and as a mixture at environmentally relevant and elevated 68 

concentrations was tested using the H. attenuata bioassay on the ecologically 69 

relevant endpoints of morphology, feeding, attachment and reproduction. To the best 70 

of our knowledge, this is the first toxicity study investigating the mortality of any 71 

Hydra species individually exposed to Fe, Mn or Ni. 72 

   73 

2. Materials and Methods 74 

2.1. Test organism 75 

Hydra were maintained in glass bowls containing 0.5 L of Hydra media (147 mg/l 76 

CaCl2H2O, 110 mg/l TES [N-Tris(hydroxymethyl) methyl 1-2-aminoethanesulfonic 77 

acid], pH adjusted to 7 using 0.5 M NaOH), maintained at 18± 2°C with a 12 h light 78 

12 h dark photoperiod. Hydra were fed 3 times per week with newly hatched Artemia 79 
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salina nauplii and were fasted 48 h prior to exposure. To avoid algal contamination, 80 

Hydra media was regularly changed after each feeding. 81 

 82 

2.2. PTE determination 83 

Water samples were collected from two estuarine (Kelburn Park and Erskine 84 

Harbour) and one freshwater (Gourock Burn) sites along the Clyde estuary (Fig. 1). 85 

Samples were collected in polypropylene sample bottles with pH and temperature 86 

recorded immediately (Mettler Toledo).  Samples were then acidified with conc. 87 

HNO3 (Fisher Trace Grade, UK) on site for preservation, transported to the laboratory 88 

and refrigerated at 4°C until analysis.  Prior to analysis samples were filtered to 89 

<45μm (Filtermate, Environmental Express, USA). 90 

 Potentially toxic elements were determined by ICP-OES (Thermo Fisher, 91 

iCAP); a calibration series (0 mg/l, 2 mg/l and 10 mg/l of multi-element standard, 92 

ME/1001/05; Fisher Scientific, UK) was determined. Samples were analysed in 93 

triplicate. ICP-OES conditions were as follows: rf generator: 1.15 kW; Plasma: 1.4 94 

l/min; Auxillary: 0.5 l/min; Nebuliser: 0.8 l/min; sample flow rate 1.5 ml/min.   95 

Averages of the sample concentrations were calculated; Limits of Detection were 96 

calculated using standard practice (e.g. (McLellan et al., 2013)) (Table 1). It can be 97 

seen that levels of Fe within the Gourock Burn were very high therefore it was 98 

decided not to put this forward at the reported concentrations. Ni was taken at 0.5 99 

mg/l to reflect potential toxicity levels within the selected biota.  These are the 100 

‘environmentally relevant’ concentrations. 101 

 102 

 103 
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2.3. Test solutions 104 

Environmental relevant PTE solutions (1x) of metals in hydra media (HM) were 105 

prepared for the individual elements and for the mix solution. These stock solutions 106 

were then diluted with HM to give concentrations: 0.0001x, 0.001x, 0.01x, 0.1x.  10x, 107 

100x and 1000x concentrations were made from a 1000x stock solution (Table 2). 108 

 109 

2.4. Hydra toxicity tests 110 

All PTE exposures to Hydra attenuata were undertaken in quadruplicate (4 111 

repetitions of each concentration) and the whole experiment was undertaken in 112 

triplicate for the PTE mixture and duplicate for each individual metal exposure. A 4 ml 113 

sample of the relevant solution was added to 4 wells in a 24 multiwell plate, 114 

containing a single Hydra, and the wells wrapped in parafilm to prevent evaporation 115 

and kept at 18± 2°C for 96 h. Healthy Hydra with a morphology score of 10 on the 116 

Wilby table (Table 3) and having one bud (2 hydranths) were used in each exposure. 117 

Selection of healthy Hydra was undertaken using a binocular microscope. 118 

Morphology, hydranth number and attachment were observed at 24, 48, 72 and 96 h. 119 

The Hydra’s ability to ingest prey (feeding endpoint) was tested on all Hydra that 120 

scored > 5 on the Wilby score table after 96 h as per Quinn et al., (2007). These 121 

Hydra were placed individually into a well of a clean 24 well multi-well plate 122 

containing 4 ml of Hydra media. Freshly hatched Artemia were rinsed three times 123 

with HM with 5 individuals added to each well at time 0, taking care not to add them 124 

directly to the tentacles of the Hydra. The number of ingested prey were observed 125 

every 20 min for 120 min. 126 

 127 
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 2.5. Statistical Data Analysis 128 

The 96 h LC50 values for the mortality exposure were calculated using the Probit 129 

analysis program. The mortality exposure the sub-lethal LOEC (Lowest Observable 130 

Effect Concentration) was reported for ≥2 Hydra with score 8 or below and the NOEC 131 

(No Observable Effect Concentration) was based on Hydra with a score >8 (Quinn et 132 

al., 2009). A toxicity threshold (TT) was determined from the LOEC and NOEC using 133 

the following equation: TT=(NOECxLOEC)/2 (US EPA, 1989). Variability in all 134 

endpoints (morphology, attachment, hydranth number, feeding behaviour) between 135 

the exposed and control Hydra were tested by one-way analysis of variance 136 

(ANOVA). Significance was set at p≤ 0.05. The Pearson correlation coefficient was 137 

used to measure the strength of the association between the concentration of the 138 

pollutant and the endpoints.  139 

 140 

 141 

3 Results 142 

3.1. Toxicity of individual metals to Hydra attenuata  143 

Complete (100%) population mortality (indicated by a score ≤5 on the Wilby scale) 144 

was found at 0.1x (0.05 mg/l) for Cu (Fig. 2 A), 0.1x (0.3 mg/l) for Fe (Fig. 2 C), 10x 145 

(5 mg/l) for Ni (Fig. 2 D). For Mn, 100% mortality of all Hydra exposed was found at 146 

100x (200 mg/l). Although some mortality was observed at 1x, mortality numbers 147 

were low (Fig. 2 B). Highly significant (p = < 0.005) and negative correlations were 148 

found with hydranth number and feeding behaviour (Table 5). For Zn, 100% mortality 149 

was found at 1000x (100 mg/l). Although mortality was detected at 100x (10 mg/l), 150 

mortality numbers were low (Fig. 2 E). An extremely significant (p = < 0.001) and 151 
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negative correlation was found with hydranth number, and a very significant (p = < 152 

0.005) negative correlation was found for feeding behaviour (Table 5). The 96 h LC50 153 

values were determined as follows: Cu 0.0225 mg/l, Mn 20 mg/l, Fe 0.135 mg/l, Ni 154 

2.25 mg/l, and Zn 31.622 mg/l. The Toxicity thresholds were calculated at: Cu 155 

0.000125 mg/l, Mn 0.2 mg/l, Fe 0.000045 mg/l, Ni 0.0125 mg/l, Zn 5 mg/l (Table 4). 156 

 157 

3.2 Toxicity of PTE mixture 158 

For the PTE mixture, 100% mortality was found at 0.1x (Fig. 3). The 96h LC50 value 159 

was calculated as 0.045x. The LOEC was 0.01x and NOEC was 0.001x. The toxicity 160 

threshold was calculated at 0.000005x (Table 4). The high toxicity of Cu was not 161 

entirely responsible for the very high toxicity of the mixture. The toxicity threshold for 162 

the mixture (0.000005x) showed that the mixture was more toxic than Cu individually, 163 

which had a toxicity threshold of 0.000125 mg/l (0.00025x).     164 

 165 

3.3 Toxicity of heavy metals at environmental concentration 166 

Both Cu and Fe when exposed individually to the concentration of their respective 167 

metals found in the environment resulted in 100% mortality of all Hydra exposed (Fig. 168 

2 A & C). A significant (p = < 0.001) toxic effect occurred when Hydra were exposed 169 

to Mn and Ni at the environmentally relevant concentration. Zn remained at a perfect 170 

morphology score of 10 when exposed to the Zn concentration found in the 171 

environment (Fig. 2 E). The concentration of Zn found in the environment also had no 172 

significant toxic effect on hydranth number, feeding behaviour or attachment of Hydra 173 

to a substrate. When exposed to the concentration of Mn found in the environment, a 174 

significant (p = < 0.01) toxic effect occurred in the attachment of Hydra to a substrate 175 

(Fig. 2 B). The concentration of Mn found in the environment had no significant toxic 176 
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effect on hydranth number or feeding behaviour. The concentration of Ni found in the 177 

environment resulted in a significant (p = < 0.05) toxic effect on the feeding behaviour 178 

of Hydra (Fig. 2 D). The concentration of Ni found in the environment had no 179 

significant toxic effect on hydranth number or attachment of Hydra to a substrate. 180 

Hydra morphology was monitored at 24 h, 48 h, 72 h and 96 h of exposure to the 181 

concentration found in the environment with any toxic effect occurring within the first 182 

24 h of exposure (Fig. 4).  183 

 184 

4 Discussion 185 

Since the 18th Century and the beginning of the Industrial Revolution, the Clyde has 186 

had a diverse heritage and there is a well-documented legacy of pollutants e.g. 187 

(Hursthouse et al., 1994; Edgar et al., 2003; Vane et al., 2007; Vane et al., 2011).  188 

The sample locations chosen for this site are near former landfill sites (Gourock Burn 189 

and Kelburn Park) or wastewater treatment works (Erskine Harbour) and there is 190 

potential for continued contamination from these sources. This is in addition to former 191 

industrial activity e.g. metal plating near Kelburn Park (Miller, 1986). Despite the 192 

improving physical and ecological status of the outer Clyde estuary (Critchlow-193 

Watton et al., 2014), it is concerning that this study has found that PTE levels are 194 

above legislative requirements (Table 6) which may be caused by the proximity of 195 

potential point sources of pollutants. In that light, the Clyde is similar to other 196 

estuaries where point sources can be attributed to elevated PTE levels (Larrose et 197 

al., 2010; Birch et al., 2015; Petit Jérôme et al., 2015; Rodriguez-Iruretagoiena et al., 198 

2016). Levels of all heavy metals tested were higher than levels in the Thames river 199 

in London, Canada (Environment and Engineering Services, 2018) and the Ganga 200 

river in India (Central Water Commission, 2018) (Table 6). The maximum acceptable 201 
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limits for copper (0.00376 mg/l) and iron (1 mg/l) based on EU / UK legislative 202 

requirements are higher than the H. attenuata LC50’s for copper (0.0225 mg/l) and 203 

iron (0.135 mg/l). 204 

To the best of our knowledge, this is the first toxicity study investigating the 205 

toxicity of any Hydra species exposed to Fe, Mn or Ni. This study calculated the LC50 206 

values, LOEC, NOEC and Toxicity Thresholds for Cu, Fe, Mn, Zn and Ni (Table 4). 207 

The 96 h LC50 results for Cu (0.0225mg/l) are similar to those reported by Karntanut 208 

and Pascoe (2000) (0.032 mg/l) for H. vulgaris (also known as H. attenuata) and for 4 209 

different species of Hydra; H. vulgaris Zurich (0.042 mg/l), H. vulgaris (0.056 mg/l), H. 210 

oligactis (0.084 mg/l), H. viridissima (0.025 mg/l) (Karntanut and Pascoe, 2002). The 211 

Cu LC50 value in the current study were higher than the LOEC value which is unusual 212 

but is due to the dilution range used for the serial dilution.  213 

The 96 h LC50 value calculated for Zn in the present study (31.6 mg/l) is higher 214 

than those reported for  H. vulgaris (7.4 mg/l) (Karntanut & Pascoe, 2000) H. vulgaris 215 

Zurich (14 mg/l), H. vulgaris (13 mg/l), H. oligactis (14 mg/l), H. viridissima (11 mg/l) 216 

(Karntanut & Pascoe, (2002). In the current study Zn was tested at a concentration of 217 

10 mg/l and a mortality percentage of 12.5% was found. The large divisions used in 218 

the serial dilutions resulted the high LC50 value of 30 mg/l that was calculated, as the 219 

next concentration tested after 10 mg/l was 100 mg/l.  220 

The same could be true of Mn (with an LC50 value of 20 mg/l) but as this is the 221 

first time this metal has been used in a toxicity test to study mortality of Hydra, there 222 

is no literature for comparison. Harford et al., (2015) however, exposed Hydra 223 

viridissima to varying levels of Mn to test population growth. The highest 224 

concentration tested by Harford et al., (2015) was 10 mg/l at which the population of 225 
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H. viridissima was still growing but had dropped to 10% growth compared to the 226 

control. A very significant (p = <0.005) negative correlation was found for hydranth 227 

number and feeding behavior when exposed to Mn.  228 

An extremely significant (p = <0.001) negative correlation for hydranth number 229 

and a very significant (p = <0.005) negative correlation was found when exposed to 230 

Zn. However, there was no significant correlation for attachment when exposed to 231 

any of the tested metals and no significant correlation for attachment, hydranth 232 

number or feeding behavior when exposed to Cu, Fe or Ni.  233 

In this study, a significant toxic effect occurred when Hydra were exposed to 234 

the Cu, Fe, Mn and Ni at concentrations found in the Clyde estuary (Fig. 2A-D). 235 

Hydra morphology was unaffected and remained at a score of 10 when exposed to 236 

the concentration of Zn found in the environment (Fig. 2E). Mortality levels of 100% 237 

were measured when Hydra were exposed to the heavy metal mixture (Fig. 3) and to 238 

Cu and Fe (individually) (Fig. 2A, C) at concentrations found in the Clyde. These 239 

results indicate that Hydra attenuata are unable to survive in aquatic environments 240 

with the metal concentrations found in the Clyde estuary, which may also have an 241 

impact on Hydra predators and prey.  242 

The results also indicate that the PTE mixture (including the individual 243 

concentrations of Cu, Fe, Mn and Ni) could potentially prove significantly toxic to 244 

other invertebrates. The concentration of Cu found in the Clyde estuary was 245 

measured at 0.5 mg/l, this was 22 times higher than the LC50 found for Hydra 246 

attenuata. When compared with other studies (Table 7), the levels of Cu found in the 247 

Clyde would also be toxic to aquatic vertebrates such as Rasbora sumatrna, the 248 

guppy (Poecilia reticulata) and the zebrafish (Danio rerio). The concentration of Fe 249 
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found in the Clyde estuary was measured at 3 mg/l, this was also 22 times higher 250 

than the LC50 found for Hydra attenuata and would be toxic to other aquatic 251 

invertebrates such as Daphnia magna, and aquatic vertebrates, such as the brown 252 

trout (Salmo trutta) (Table 7). 253 

For the PTE mixture, a significant (p≤0.05) toxic effect was seen at the lowest 254 

concentration studied (0.0001x) (Fig. 3). The LC50 was calculated as 0.045x for the 255 

mixture and the toxicity threshold was calculated as 0.000005x. The toxicity threshold 256 

(TT) was lower than any of the corresponding values of the individual metals 257 

contained within the mixture (Table 4). This result indicates that the metals have a 258 

cumulative effect, with each metal behaving cumulatively, contributing to the total 259 

effect of the mixture and further increasing the toxicity.  260 

 Morphology was found to be the most significant endpoint in studying the toxic 261 

effects of metals. Using the additional endpoints of hydranth number, attachment and 262 

feeding behavior, Quinn et al., (2007) found a significant decrease in hydranth 263 

number, attachment and feeding behavior as the concentration of the toxin 264 

increased. In the present study, a similar significant negative correlation was 265 

observed for hydranth number and feeding behavior following exposure to Mn and 266 

Zn. There was no significant correlation found with attachment in any of the 267 

exposures undertaken. 268 

 Most toxicity tests involving Hydra spp expose the organism to a toxin for 96 h. 269 

In this study, it was observed that any significant toxic effect of a pollutant occurred 270 

within the first 24 h of exposure. A review of other toxicity studies using Hydra as a 271 

test organism shows that the toxic effect of a contaminant occurs within the first 24 h 272 

of exposure (Blaise and Kusui, 1997; Karntanut and Pascoe, 2000, 2002). It may 273 
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therefore be necessary to only expose Hydra to a toxin for 24 h to test a compounds 274 

toxicity. However, more research is needed to confirm this. The potential 275 

replacement of a 96 h exposure with a 24 h one would greatly reduce the time 276 

needed for toxicity testing, helping to reduce the cost and potentially increasing the 277 

number of toxins that can be tested within a given time period.  278 

 279 

5. Conclusion 280 

This paper shows that a significant toxic effect was observed on Hydra exposed to 281 

the PTE mixture at the concentration found in the environment (1x) after a short-term 282 

exposure period (24 h). The high toxicity of Cu was not entirely responsible for the 283 

very high toxicity of the mixture. The toxicity threshold for the mixture (0.000005x) 284 

showed that the mixture was more toxic than Cu individually, which had a toxicity 285 

threshold of 0.000125 mg/l (0.00025x). The toxicity threshold (TT) for the PTE 286 

mixture was lower than that for the same metals when exposed individually to Hydra, 287 

indicating that metals may act cumulatively in a mixture. However, a significant toxic 288 

effect occurred when Hydra were exposed individually to Cu, Fe, Mn and Ni at 289 

concentrations found in the environment, with 100% mortality when exposed 290 

individually to the environmental concentrations of Cu and Fe. These high 291 

environmental concentrations of PTE would impact, not only on the predator and 292 

prey interactions within the Hydra community but also could potentially prove 293 

significantly toxic to other aquatic organisms. 294 

 295 
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 455 

 456 

Fig. 1: Overview of heavy metal sampling locations along the Clyde estuary, Scotland. * indicates 457 
sample location. 458 
 459 

  460 
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 461 

Fig. 2: – Lethal and sub-lethal effects of individual metals at varying concentrations on Hydra 462 
morphology, hydranth number, attachment and feeding after 96hr exposure. Points at Morphology and 463 
feeding represent the mean score (n=8)±standard error. Points at attachment and hydranth number 464 
represent sum(n=8). Significance for morphology at *=p≤0.05; **=p≤0.01; ***=p≤0.001. Significance for 465 
hydranth number at =p≤0.05;  =p≤0.01; =p≤0.001. Significance for attachment at 466 
=p≤0.05; =p≤0.01; =p≤0.001. Significance for feeding at =p≤0.05; =p≤0.01; 467 
=p≤0.001. 468 
Note: Error bars do not show at points where results had no variability. 469 
(Should be printed in colour) 470 
 471 

  472 
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 473 

 474 
Fig. 3 – Lethal and sub-lethal effects of several concentrations (0.0001×–1×) of the heavy metal 475 
mixture found in the environment on Hydra morphology, hydranth number, attachment and feeding 476 
after 96hr exposure. Points at Morphology and feeding represent the mean score (n=12) ±standard 477 
error. Points at attachment and hydranth number represent sum (n=12). Significance for morphology 478 
at *=p≤0.05; **=p≤0.01; ***=p≤0.001. Significance for hydranth number at =p≤0.05;  =p≤0.01; 479 

=p≤0.001. Significance for attachment at =p≤0.05; =p≤0.01; =p≤0.001. Significance for 480 
feeding at =p≤0.05; =p≤0.01; =p≤0.001. 481 
 482 

 483 

 484 
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 485 

Fig. 4 – Effect of heavy metal concentrations found in the environment on Hydra morphology at 24, 48, 486 
72 and 96 h exposure. Mean scores are represented the individual metals (n=8) and metal mixture 487 
(n=12)±standard error. Significance for morphology at *=p≤0.05; **=p≤0.01; ***=p≤0.001. Significance 488 
for Cu at =p≤0.05; =p≤0.01; =p≤0.001. Significance for Fe at =p≤0.05; =p≤0.01; 489 
=p≤0.001. Significance for Mn at =p≤0.05; =p≤0.01; =p≤0.001. Significance for Ni at 490 
=p≤0.05; =p≤0.01; =p≤0.001. 491 

(Should be printed in colour) 492 

 493 

 494 
Table 1: Estuarine and freshwater concentrations of heavy metals found in the environment. 495 

Element Gourock Burn 
(mg/l) 

Kelburn Park 
(mg/l) 

Erskine 
Harbour (mg/l) 

Average   
(mg/l) 

Cu <LOD 0.98 0.67 0.82 
Fe 33.78 <LOD 9.87 21.82 
Mn 1.72 <LOD <LOD 1.72 
Ni <LOD 1.74 1.42 1.58 
Zn <LOD 0.20 0.23 0.21 

 496 
 497 
 498 
 499 
 500 
Table 2: The concentrations of PTEs used in the exposure tests (mg/l). Based on the concentrations 501 
found in the environment. 502 
Metal 0.001x 

(mg/l) 
0.01x 
(mg/l) 

0.1x 
(mg/l) 

1x Environmental 
concentration (mg/l) 

10x 
(mg/l) 

100x 
(mg/l) 

1000x 
(mg/l) 

Copper 0.0005 0.005 0.05 0.5 5 - - 
Iron 0.003 0.03 0.3 3 30 - - 
Manganese 0.002 0.02 0.2 2 20 200 - 
Zinc - - 0.01 0.1 1 10 100 
Nickel 0.0005 0.005 0.05 0.5 5 50 - 

 503 
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 504 
 505 
 506 
 507 
 508 
 509 
Table 3: Hydra morphology score table used to assess acute toxicity, based on the Wilby morphology 510 
score (Wilby, 1988). 511 

Score Morphology  

10 Healthy, long tentacles and body reactive  

9 Partially contracted, slow reactions  

8 Clubbed tentacles, body slightly contracted Alive 

7 Shortened tentacles, body slightly contracted  

6 Tentacles and body shortened  

5 Totally contracted, tentacles visible  

4 Totally contracted, no visible tentacles  

3 Expanded, tentacles visible Dead 

2 Expanded, no visible tentacles  

1 Dead but intact  

0 Disintegrated  

 512 

 513 

Table 4: LC50, LOEC and NOEC values based on morphology for Hydra attenuata exposed to heavy 514 
metals individually and as a mixture. Toxicity Threshold (TT=(NOECxLOEC)/2). Actual concentrations 515 
measured in the environment are also presented.  516 
Metal Concentration in 

environment 
(mg/l)  

LC50 
(mg/l) 

LOEC 
(mg/l) 

NOEC 
(mg/l) 

TT (mg/l) 

Mixture 1x 0.045x 0.01x 0.001x 0.000005x 
Copper 0.5 0.0225 0.05 0.005 0.000125 
Iron 3 0.135 0.03 0.003 0.000045 
Manganese 2 20 2 0.2 0.2 
Zinc 0.1 31.622 10 1 5 
Nickel 0.5 2.25 0.5 0.05 0.0125 

 517 

 518 

 519 

 Table 5: Pearson correlation coefficient of heavy metal pollutants and attachment, hydranth number 520 
and feeding behaviour endpoints. 521 

 Mixture Cu Fe Mn Ni Zn 
Attachment -0.6742 -0.5048 -0.4882 -0.6132 -0.6666 -0.6662 
Hydranth no. -0.702 -0.5032 -0.5032 -0.9257** -0.717 -0.9996*** 
Feeding -0.7013 -0.5048 -0.5048 -0.9308** -0.6848 -0.922** 

Significant results indicated by bold with significance set at *p <0.05, **p <0.005, ***p <0.001 522 
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 523 

Table 6: A comparison of the heavy metal concentrations found from the Clyde, Thames and Ganga 524 
rivers with the maximum acceptable limits based on EU / UK legislative requirements. 525 

Metal 
 

EU / UKa 

(mg/l) 
Average measured 

Concentration (mg/l) 
River 

Copper 0.00376 0.5 Clyde, Glasgow, Scotlandb 
  0.001 Thames, London, Canadac 
  0.022 Ganga, Kachlabridge, Indiad 
Iron 1 3 Clyde, Glasgow, Scotlandb 
  0.044 Thames, London, Canadac 
  0.0004 Ganga, Kachlabridge, Indiad 

Manganese - 2 Clyde, Glasgow, Scotlandb 
  0.011 Thames, London, Canadac 
  - Ganga, Kachlabridge, Indiad 
Zinc 0.0079 0.1 Clyde, Glasgow, Scotlandb 
  0.002 Thames, London, Canadac 
  0.00009 Ganga, Kachlabridge, Indiad 
Nickel 0.0086 0.5 Clyde, Glasgow, Scotlandb 
  0.004 Thames, London, Canadac 
  0.006 Ganga, Kachlabridge, Indiad 

a SEPA (2018)  526 
b Present study 527 
c Environment and Engineering Services (2018) 528 
d Central Water Commission (2018) 529 
 530 

 531 

 532 

 533 

 534 

 535 

 536 

 537 

 538 

 539 

 540 

 541 

 542 

 543 

 544 

 545 

 546 
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Table 7: Comparison of LC50 for H. attenuata with those from other species for selected 547 
heavy metals. 548 

Metal Organism LC50 (mg/l) Source 
Copper Hydra attenuata 0.0225 Present study 
 Danio rerio 0.01166 Alsop & Wood (2011) 
 Rasbora sumatrna 0.0056 Shuhaimi-Othman et al., (2010) 
 Capoeta fusca 1.1 Ebrahimpour et al., (2010) 
 Poecilia reticulata 0.0379 Shuhaimi-Othman et al., (2010) 
Iron Hydra attenuata 0.135 Present study 
 Daphnia magna 0.23 García et al., (2011) 
 Salmo trutta 0.05 Dalzell and MacFarlane (1999) 
 Hyalella azteca >1 Borgmann et al., (2005) 
Manganese Hydra attenuata 20 Present study 
 Rutilus rutilus caspicus 300 Hoseini et al., (2014) 
 Mogurnda mogurnda 240 Harford et al., (2015) 
 Ceriodaphnia dubia 6.2 Lasier et al., (2000) 
 Garra gotyla gotyla 3.2 Sharma & Langer (2014) 
Zinc Hydra attenuata 31.622 Present study 
 Danio rerio 2.535 Alsop & Wood (2011) 
 Daphnia magna 0.76 Lopes et al., (2014) 
 Capoeta fusca 13.7 Ebrahimpour et al., (2010) 
 Lecane quadridentata 0.12 Torres Guzman et al., (2010) 
Nickel Hydra attenuata 2.25 Present study 
 Clarias gariepinus 8.87 Ololade & Oginni (2010) 
 Hyalella azteca 2 Liber et al., (2011) 
 Danio rerio 0.5898 Alsop & Wood (2011) 
 Chironomus dilutus 119.5 Liber et al., (2011) 

 549 

 550 
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